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ABSTRACT As an important data type, the demand of network analysis and learning is increasingly
prominent. A key problem of network analysis is to study how to reasonably represent the feature information
in the network, that is network embedding. However, in the study of network embedding, only the first-order
proximity relationship of nodes is characterized, while the second-order proximity relationship hidden in
the network nodes is ignored. Therefore, we propose an algorithm, called SINE, to realize the representation
learning of nodes in the network which fuses the first-order and second-order proximity of nodes in the
original network. Through applying SINE to three real networks, we obtain the feature representation of
the nodes in the networks and cluster the nodes based on these features. Comparing with the existing
network embedding learning methods—Node2vec, Large-Scale Information Network Embedding (LINE)
and Structural Deep Network Embedding (SDNE), the SINE algorithm showed better performance in
clustering tasks.

INDEX TERMS Network embedding, second-order proximity, representation learning.

I. INTRODUCTION
In the era of big data, network data is everywhere in the
real world. The research and analysis of network data has
attracted extensive attention from all walks of life. However,
the network data is often complex, huge, and unstructured
in real world, which makes it extremely difficult to obtain
effective information in the network. In order to analyze and
process network information, network embedding algorithm
came into being [1]. The algorithm is responsible for learning
from the network data to the vector embedding of each node
in the network and is a bridge connecting the original network
data with the network application task. Traditional methods
can use high-dimensional sparse vectors to represent a node
in the network, but the limitation is that it is difficult to
measure proximity between nodes and it will increase the
time and space complexity of the model. With the devel-
opment of embedding learning technology, researchers have
turned to mapping nodes in the network into vectors with
certain reasoning ability into low-dimensional space, aiming
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to preserve the original relationship between nodes as much
as possible in a more intuitive and efficient way, so as to
conveniently serve as inputs to machine learning models,
such as node classification [2], [3], community identifica-
tion [4], link prediction [5] and network visualization [6] and
so on.

At present, the methods of network embedding can be
divided into two categories, as shown as Fig 1.

The first category can be divided into three sub-categories
according to different methods: based on matrix eigenvectors
and matrix decomposition, based on shallow neural network
and based on deep learning. The first sub-category included
LLE algorithm [7] (Locally Linear Embedding), Lapla-
cian Eigenmaps algorithm [8], and GraRep algorithm [9]
(Learning Graph Representations), where LLE algorithm and
Laplacian Eigenmaps algorithm can only handle undirected
network, but in real word, many networks are directed [8].
The main disadvantage of this kind of method is its complex-
ity. Calculating eigenvectors of large-scalematrix consumes a
lot of time and space. The second sub-category include Deep-
Walk [10], LINE [11] and Node2vec [12] algorithms. LINE
explicitly define the corresponding loss function to maintain
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FIGURE 1. Classification of network embedding algorithms.

the first and second order proximity between nodes. The
performance of DeepWalk and LINE algorithm in network
node label prediction task has surpassed the base traditional
spectrum and optimization method, but DeepWalk and LINE
algorithm lack of application cases in other social network
analysis tasks, and the universality is slightly insufficient. The
third sub-category is SDNE [13] algorithm (structural deep
network embedding), which combines the first an d second
order proximity to retain the local and global information of
the network structure at the same time. The common learning
methods of network embedding based on network structure
are shown in TABLE 1.

TABLE 1. Applicable network and experimental data set of algorithm.

The second category is network embedding combined with
external information. In network data, nodes contain not
only label information, but also some text information as a
supplement to network information. MMDW [14] algorithm
(Max Margin DeepWalk), which learns embedding of net-
work nodes in some tags. Cheng and others proposed the
TADW algorithm [15] (text associated deep walk), which
introduced the text information of nodes into network embed-
ding based on matrix decomposition. Tu et al put forward a
new CENE [16] algorithm (a general framework for content
enhanced network embedding), which uses the text informa-
tion of network nodes to explain the relationship between
nodes and learn context dependent network representation for
network nodes according to different neighbors. The common
learning algorithm of homogeneous information network rep-
resentation combined with external information is shown
in TABLE 2.

TABLE 2. Applicable network and experimental data set of algorithm.

Considering the high sparsity in the real network, in order
to better integrate the characteristics of the network structure,
we propose the SINE algorithm through fusing the second-
order proximity to reconstruct the network to compensate for
the sparsity of the network. Then the existing network embed-
ding algorithm is used to obtain the vector representation of
the node. In order to show the performance of SINE, input the
real information network reconstructed by SINE algorithm
into the existing network embedding algorithm to get the
vector representation of nodes. Node vector representation
as feature are applied to clustering tasks, according to the
three kinds of clustering measure assess the effectiveness of
learning embedded. Compared SINE with SDNE, LINE and
Node2vc algorithm, the clustering effect is obtained when the
number of clusters m is different under different embedding
dimension d , It is shown that the going algorithm is applied
to clustering task overall better clustering results.

II. METHOD
This section will introduce the method for implementing
the SINE algorithm. Firstly, the second-order proximity of
the network is calculated and the reconstructed network is
obtained. Secondly, the vector representation of nodes is
obtained by using the network embedding algorithm. Finally,
the clustering measure is introduced. The specific process of
the SINE algorithm is to input the original network graph
and reconstruct the original network to fuse the features of
the first-order and second-order nodes in the network by
two second-order proximity calculation methods. The vector
representation of each node in the network is obtained from
the reconstructed network, and the input of k-Means cluster-
ing algorithm is node feature and then the clustering effect
diagram is draw Fig 2.

Let G = (V ,E) denote the undirected, weighted network
under consideration with vertex V = {vi, i = 1, · · · ,N } and
edge set E . Let A =

(
ωij
)
N×N denote the adjacency matrix of

the network. ωij represents the edge weight from nodes vi and
vj. If (vk , vi) ∈ E and (vi, vj) ∈ E, vk and vj have second-order
neighborhood relationship. If there is no node connected to
nodes vk and vj at the same time, then second-order proximity
of the two nodes is 0.

A. SECOND-ORDER PROXIMITY CALCULATION
The observed first-order proximity in the real world data is
not sufficient for preserving the global network structures.
As a complement, we explore the second-order proximity
between the vector, which is not determined through the
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FIGURE 2. Framework of SINE algorithm.

observed tie strength but through the shared neighborhood
structures of the vector. The general notion of the second-
order proximity can be interpreted as nodes with shared
neighbors being likely to be similar. Two nodes have a high
second-order proximity and therefore should also be repre-
sented closely to each other. We expect that the consideration
of the second-order proximity effectively complements the
sparsity of the first-order proximity and better preserves the
global structure of the network.

SINE algorithm expands the adjacency of a node by adding
higher-order nodes. Such as, neighbors and neighbors. In this
paper, we only consider adding second-order neighbors, that
is, neighbors of neighbors, to each vertex. Two methods are
proposed to calculate the second-order proximity between
nodes as following:
a. Second-order proximity calculation (denoted

by SINE-1)
The weight between vertex vk and its second-order neigh-

bor vj is measured as:

ωkj =
∑

i∈N (K )

ωki · ωij

ωki + ωij
(1)

where N (K ) represents the neighbor set of node vk · ωki · ωij
represents the product of node vk and node vj and the weight
of two nodes’ common neighbor vi. ωki + ωij represents the
sum of nodes iv weights. According to the formula, adding a
new second-order weight to the original network to complete
the network reconstruction.
b. Based on Topological overlap matrix (TOM) [17]

method (denoted by SINE-TOM)

Tωkj =

∑
ωkiωij + ωkj

min
{
mk ,mj

}
+ 1

(2)

where:

mj =
∑

i 6=j
ωji mk =

∑
i 6=k

ωki∑
ωkiωij + ωkj represents the value of the adjacency

matrix associated by node vk with node vj through any node.

FIGURE 3. Network flow chart of SINE algorithm reconstruction.

To compare the performance of different second-order prox-
imity, another method is proposed to measure whether there
is second-order proximity between two unconnected nodes
through constructing TOMmatrix to measure the correlation.
In the network, the correlation of any two nodes is not only
determined by whether they are directly connected or not, but
also includes the node vk in the TOMmatrix value of the node
vi and the node vj through the connection correlation of the
node vk to the node vj.
We expect that the consideration of the second-order prox-

imity effectively complements the sparsity of the first-order
proximity and better preserves the global structure of the
network. Therefore, we propose two different second-order
proximity measures to reconstruct network Fig 3. Firstly,
SINE-1 finds the nodes with the second-order neighborhood
by traversing the network, then filter out the common neigh-
bors. Secondly, according to the formula calculate the new
weight of the second-order nodes. Finally, update the adja-
cency matrix. The time complexity of the SINE-1 method is
large. In order to improve the operation efficiency, we pro-
pose SINE-TOM method, which is base on matrix operation.
SINE-TOM method can improve the calculation efficiency.

B. NETWORK NODES LOW-DIMENSIONAL EMBEDDING
In the content of section 2.1, our work is mainly to reconstruct
the original network with SINE. This section will introduce
the use of the reconstructed network into the existing network
embedding algorithm to obtain the low-dimensional vector
representation of nodes. The following is a brief introduce the
network embedding algorithm for comparison in this paper,
such as LINE, SDNE and Node2vec.

LINE define the second-order proximity, which comple-
ments the first-order proximity and preserves the network
structure. LINE investigate both first-order and second-order
proximity for network embedding. In the process of train-
ing, the first-order and second-order proximity are reserved
respectively, and then the embedding vectors trained for
each vertex by two methods are connected. In order to fuse
the information of first-order and second-order proximity
directly, we propose the SINE method to reconstruct the
original network directly.

SDNE algorithm uses deep network to model the nonlin-
ear between node representations. The whole model can be
divided into two parts: The module of modeling the first level
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proximity supervised by Laplace matrix on the one hand,
on the other hand, the unsupervised deep self encoder models
the second level proximity relationship. Finally, SDNE algo-
rithm takes the deep self encoder middle layer as the network
embedding of nodes.

Node2vec algorithm’s contribution is define a flexible
notion of a node’s network neighborhood. By choosing an
appropriate notion of a neighborhood, Node2vec can learn
representations that organize nodes based on their network
roles and/or communities they belong to. Achieving this by
developing a family of biased random walks, which effi-
ciently explore diverse neighborhoods of a given node. The
resulting algorithm is flexible, giving us control over the
search space through two adjustable parameters, in contrast
to rigid search procedures in prior work and in node classifi-
cation task have significantly improves.

C. EVALUATION MEASURE
In this section, taking the low dimensional vector represen-
tation of nodes as the feature input clustering algorithm,
the following evaluation indexes are selected to evaluate the
quality of clustering results:

1) DAVIES-BOULDIN INDEX (DBI)
DBI, also known as classification accuracy index, is a kind
of index to evaluate the advantages and disadvantages of
clustering algorithm [18]. DBI is the maximum value of the
ratio of the sum of the average distance within two classes
to the center of mass distance. Molecules σi and σj represent
the sum of the average distances from all points in any two
clusters to the center of mass of the cluster.

DBI =
1
N

N∑
i=1

max
j 6=i

(
σi + σj

d
(
ci, cj

)) (3)

N is the number of categories. d
(
ci, cj

)
is the sum of the

distance between the center points of category i and cate-
gory j. If the distance within a class is smaller, the distance
between classes is larger. Then DBI index will be smaller.
In the clustering experiment, if the clustering results are
low proximity between clusters and high proximity within
clusters, then the clustering results will better.

2) SILHOUETTE COEFFICIENT (SC)
SC index is an evaluation method of clustering effect. It was
first proposed by Peter [19] in 1986. The contour coefficient
is applicable to cases where the actual category information
is unknown. For a single node vi, let a is the average distance
from other nodes in the same category, and b is the average
distance from nodes in different categories closest to it. The
Silhouette Coefficient is defined as:

s =
b− a

max(a, b)
(4)

The value range of the Silhouette Coefficient is [−1, 1].
The more similar node are closer, the more different classes
node are father, then Silhouette Coefficient is higher.

3) CALINSKI-HARABAZ INDEX (CH)
CH index [20] is also called variance ratio standard, which
is defined as the ratio of the average value of dispersion in
clusters to the dispersion between clusters. In the case of
unknown real group label, CH value is used as an index of
evaluation model.

Calculating the square sum of the distance between each
point and the center of the class to measure the compactness
within the class and the square sum of the distances between
various kinds of center points and data set center points to
measure the separation degree of data set. The CH index is
obtained by the ratio of separation degree and compactness.

s (k) =
Tr (BK )
Tr (wk)

×
N − m
k − 1

(5)

N is the number of samples in the training set, m is the
number of categories, Bk is the covariance matrix between
categories, wk is the covariance matrix of data within cate-
gories, and Tr is the trace of the matrix.

The denominator wk indicates that the covariance of the
data within the category as smaller as better, the numerator Bk
indicates that the covariance between the categories as larger
as better. Therefore, CH value as higher as better.

III. EXPERIMENTAL RESULTS
A. DATA SOURCE
In order to evaluate the performance of SINE, we apply SINE
to three real networks-the social network data set karate [21]
(karate club network), the Dolphins network [22] and the
football network [23]. Karate network is a social network
constructed by observing a Karate club in an American uni-
versity. The network consists of 34 nodes and 78 edges,
and the number of community division is 2. The Dolphins
network, which is an undirected network with 62 nodes and
159 edges. The nodes represent dolphins, while the edges
represent frequent contact between dolphins. The Dolphins
network is divided into two communities. The Football net-
work consists of 115 nodes and 616 edges, the node in the
network represents the football team, and the edge in the
network represents a game between two teams. 115 college
student teams are divided into 12 leagues, which can be
expressed as the real community structure of the network.
Refer to TABLE3 for data details.

B. NETWORK RECONSTRUCTION
Based on SINE-1 and SINE-TOM, we reconstructed the real
network by calculating the second-order proximity of the
vectors in the network Fig 4. From figure, it is shown that
the nodes are arranged more closely, the network edges are
obviously dense, and the community division results are more
obvious after the reconstruction of the network by SINE.

C. CLUSTERING TASK
In this section, we make an experimental analysis of SINE
algorithm and evaluate it with clustering algorithm. We com-
pare SINE with several existing network representation
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TABLE 3. Characteristics of three network data sets.

FIGURE 4. Reconstruction Network based on SINE algorithm. (a), (b) and (c) describe the original
and reconstructed networks of football, dolphins and karate respectively.

FIGURE 5. Histogram of cluster evaluation coefficient of karate network.

learning methods, Node2vec, LINE and SDNE. Firstly,
we input the reconstructed real network into the existing net-
work embedding algorithm. Secondly, use the multidimen-
sional feature representation of nodes as the input parameters
to cluster with k-Means method. Finally, the experimental
results are analyzed according to the evaluation index of k-
means algorithm. Due to the length of the thesis, we only
give the karate network column chart in this paper, and other
experimental network will be analyzed in supplementary
materials (Supplementary materials 1).

The clustering effect of the reconstructed karate network
brought into the node2vec algorithm (parameters are set as

p = 0.25, q = 0.25), and compares it with the clustering
effect of the original network brought into the node2vec
algorithm to make a histogram Fig 5. In the experiment,
the dimensions of vector is 2, and the number of clusters
is 2, 3, 4, 5, 8 respectively. According to the three clustering
evaluation indexes in section 2.3, we can clearly see that
for the three clustering evaluation coefficients CH, DBI, SC,
SINE is better than Node2vec algorithm.

The original karate network is brought into the LINE
network embedding, and the reconstructed karate network
is brought into the Node2vec (parameters are set as p =
0.25, q = 0.25) to obtain the node feature representation,
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FIGURE 6. Comparison of clustering evaluation coefficients.

FIGURE 7. Comparison of SDNE clustering effect.

FIGURE 8. SINE clustering effect chart.

which is respectively applied to the clustering task. The com-
parison chart of clustering evaluation coefficient obtained
Fig 6. LINE also considers the first-order proximity and
second-order proximity of network nodes, but they are trained
separately. From the three clustering evaluation coefficients,
the effect of using SINE to reconstruct the network and then
bringing into Node2vec to get the characteristic representa-
tion of nodes is better than that of LINE.

The original karate network is brought into Node2vec,
the reconstructed karate network is brought into SDNE, and
cluster the nodes based on these feature Fig 7. Comparing two
clustering results, we can see clearly that the clustering effect
of the node obtained by SINE algorithm is better than SDNE.

The original karate network is brought into Node2vec,
the reconstructed karate network is brought into SDNE, and
cluster the nodes based on these feature Fig 7. Comparing two
clustering results, we can see clearly that the clustering effect
of the node obtained by SINE algorithm is better than SDNE.

In order to visually observe the effect of the learned node
vector on clustering, we reconstruct karate network bring into
Node2vec to obtain two features representation of the nodes
which are input k-means clustering to get the karate clustering
rendering Fig 8. It is shown that Two types of nodes are
obviously clustered into two types.

The points represent the nodes, and the horizontal and
vertical coordinates represent the two-dimensional features
respectively.

To show the impact of different embedded dimensions
on the results, three experimental networks are input into
the existing network representation learning method with
different embedded dimensions, test the clustering effect
of different network learning algorithms under the real
community clustering numbers Fig 9. Parameter setting
d = 2, 4, 6, 8. Node2vec: p = 0.25, q = 0.25, the cluster
numbers of karate, dolphin and football are 2, 2 and 12
respectively.
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FIGURE 9. Clustering effect comparison with different embedded dimension.

TABLE 4. Comparison table of network clustering methods.

Changing the dimension of node embedding vector, SINE
algorithm has better performance than other methods for
karate network when d = 2, while better in football and
dolphin networks when d = 4.
In the above of clustering experiments, we set the dimen-

sion of network embedding as d = 2, and we can also get
different experimental results by changing the dimension of
network embedding to compare with other algorithms. Set
d = 4, the number of karate and football network data clus-
ters is 2 and football network data clusters is 12, the results is
shown in TABLE 4.

In order to evaluate the effect of different node embedded
dimension (d) on different network embedding algorithms
applied to clustering tasks, we experimented with three data
sets: karate, football and dolphins networks to change the
network embedding dimension. In karate network, SINE-1
and SINE-TOM have the same performance, which was

better than LINE and SDNE network embedding algorithm.
In a word, for football network, the clustering effect of SINE
algorithm is the best. For dolphin network, the clustering
effect of SINE-TOM is better than other algorithms.

The experimental results show that the network embedding
algorithm represents nodes as low-dimensional dense vectors
in different dimensions, and the performance of clustering
tasks also depends on the dimension of network embedding.

IV. DISCUSSION
In order to better integrate network structure for vec-
tor representation of nodes, we propose SINE algorithm.
Firstly, the algorithm reconstructs the original network into
combining the first-order proximity and the second-order
proximity network, to preserves both the local and global
network structures. Secondly, the reconstructed network
graph is input into the existing network embedding algorithm
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to get the low-dimensional vector representation of network
nodes. Finally, the input of k-Means clustering algorithm
is node feature. The experimental results show that when
d = 2, the clustering effect of SINE algorithm is better than
other network embedding algorithms. It shows that use SINE
algorithm to restructure network, apply to large-scale network
compression dimension to retain the structural characteris-
tics of the network as much as possible. However, from the
experimental value of SINE-1 and SINE-TOM, the effect is
slightly different. It may be that the two methods proposed
to calculate the weights between the second-order proximity
nodes are different, so the calculated weights are different.

This paper presented a novel network embedding method
called the SINE. It proposes two methods to reconstruct the
network that preserve both the first-order and second-order
proximity, which are complementary to each other. In the
future, we plan to investigate the application of this method in
large scale network and the suitability of learning algorithms
for different types of network embedding. We plan to study
the application of SINE in large-scale network data, and
complete the reconstruction of large-scale different types of
network data with short time complexity.
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