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ABSTRACT In recent years, with the construction of intelligent cities, the importance of environmental
sound classification (ESC) research has become increasingly prominent. However, due to the non-stationary
nature of environment sound and the strong interference of ambient noise, the recognition accuracy of ESC
is not high enough. Even with deep learning methods, it is difficult to fully extract features from models
with a single input. Aiming to improve the recognition accuracy of ESC, this paper proposes a two-stream
convolutional neural network (CNN) based on raw audio CNN (RACNN) and logmel CNN (LMCNN).
In this method, a pre-emphasis module is first constructed to deal with raw audio signal. The processed
audio data and logmel data are imported into RACNN and LMCNN, respectively to obtain both of time
and frequency features of audio. In addition, a random-padding method is proposed to patch shorter data
sequences. In such a way, the available data for experiment are greatly increased. Finally, the effectiveness
of the methods has been verified based on UrbanSound8K dataset in experimental part.

INDEX TERMS Environmental sound classification, sound recognition, convolutional neural networks, data
processing, pre-emphasis, two stream model.

I. INTRODUCTION
Speech recognition technology, as one of the representa-
tives of the new generation of information technology, has
become more and more mature. As one of the branches,
the accuracy of speech classification and music classification
has reached a considerable level, even exceeding the ability
of human auditory perception [1], [2]. However, as another
branch of speech recognition, environmental sound classifi-
cation (ESC) still faces many difficulties in various aspects,
such as non-stationary nature of environment sound and the
strong interference of ambient noise [3]. On the other side,
ESC research has an effect on the construction of smart
cities [4]. For example, it could be used to automatically
identify the specific types of sound in environment, such as
children crying [5], animal sound [6] and siren [7]. Hence,
it has caught lots of research attentions.

In early studies, research objects of ESC are mainly
features extracted manually, such as Mel-frequency cep-
stral coefficient (MFCC), linear predicted cepstral coef-
ficient (LPCC), short-term energy and zero-crossing
rate [8]. These features are then classified by machine
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learning methods, such as Support Vector Machine
(SVM), k-nearest neighbors (k-NN) and Gaussian mixture
model (GMM) [9]–[11].

As deep learning method has been adopted in more and
more fields, it is also introduced in ESC research. In this
paper, a two-stream convolutional neural network model
(CNN) is proposed based on deep learning to improve accu-
racy of ESC. In this method, both time domain and frequency
domain features of audio signal are introduced as input signal,
and a pre-emphasis module is constructed at input layer to
improve signal-to-noise ratio (SNR). In addition, in terms of
data pre-processing, this paper proposes a random-padding
method to patch shorter data sequences.

The structure of this paper is arranged as follows. A brief
introduction of related work of ESC based on CNN is given
in Section II. The two-steam CNN method and the data
preprocessing method called random-padding are elaborated
in Section III. The detailed experimental process and results
based on UrbanSound8K dataset are shown in Section IV.

II. RELATED WORK
Deep learning has been widely used in various fields, some
researchers have also begun to introduce this technology into
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research on ESC [11]. As a feedforward neural network with
convolutional computations and deep structures, CNN have
been used in image recognition research [12]. In recent years,
CNN has been frequently used in ESC research [13]–[15].
And the studies can be divided into three categories.

In first category method, the network is trained by
raw audio signal. Dai et al. [16] proposed a 1D-CNN
with 34 weight layers. Compared with shallow neural net-
works, deeper networks can achieve better results due to
the expansion of the receptive field. Abdoli et al. [17]
proposed an end-to-end approach for ESC based on a
1D-CNN. The advantage of this method is that the process
to manually extract features is cancelled. However, 1D-CNN
extracts features at the global level without considering the
temporal structure and frequency feature of environmental
sounds [3]. In second category method, the network is trained
by features extracted from raw signal, such as spectrogram
and MFCC. In lots of studies, MFCC is used as input data
to train classification model. However, due to discrete cosine
transform (DCT), adopted to extract coefficient features in
MFCC, will lead to a lack of structural information of
audio signal, MFCC does not perform well for deep learning
models [15]–[17]. On the contrary, logmel-CNN (LMCNN)
model adopted logmel spectrogram feature is used well.
Piczak [18] proposed a type of CNN model with logmel
feature extracted from raw audio signal. Zhang et al. [15] used
Mixup method combined logmel and gammatone spectro-
gram features to improve classification performance. In third
category method, the network is trained by multiple input
data. Tran and Tsai [7] used raw waveform and a combined
feature formed by MFCC and logmel spectrogram as input
data and proposed a SirenNet for siren-sound-based emer-
gency vehicle detection. Li et al. [19] proposed an ensemble
model, in which RawNet and MelNet are used individually.
And the Dempster-Shafer (DS) method was then adopted
to combine the training results. Su et al. [20] proposed a
TSCNN-DSmodel and the performance of themodel is pretty
good on the UrbanSound8K dataset, but the input data of
the model is too complex, which requires many features to
be combined and the two stream network is fused by DS
evidence theory. Furthermore [21] described a multi-stream
CNN with temporal attention and decision fusion for ESC.
However, the multi-stream CNN not only has complex struc-
ture, but also combines the original signal and the short-time
Fourier transform, which leads to a large amount of data and
requires a high level of hardware. Hence, the advantage of
this method is that it can combine time domain and frequency
domain features of audio signal, thereby compensating for
the shortcomings of the single-input model. It should be
mentioned that the method proposed in this paper belongs to
the third category.

III. METHOD
The deep learning models represented by the CNN and Long
Short-Term Memory (LSTM) have been widely used in the
field of audio processing [22]–[24]. However, we only chose

TABLE 1. The recognition accuracy comparison of CNN based on different
features.

the CNN to construct the basic model of ESC, because the
CNN has a many advantages over LSTM in ESC tasks. First,
the ESC task emphasizes the types of sounds in the current
environment and does not need to pay special attention to
the sounds in the past period, the most obvious advantage of
LSTM technology is not applicable here. Second, the CNN
can obtain the time-frequency characteristics of sound signals
by using data such as the acoustic spectrum as the input,
which is difficult for LSTM to achieve.

It has been demonstrated that a model combining types
of features of data has better performance [19]–[21]. Hence,
a two-stream CNNmethod combining RACNN and LMCNN
is proposed in this paper. In such a way, both the time
domain and the frequency domain features of signal are
considered. In addition, a random-padding method is also
proposed to solve the inconsistent sample length problem of
UrbanSound8K dataset.

A. SELECTING THE APPROPRIATE INPUT DATA
Compared with speech, environment sound event (ESE) is a
kind of background sound, which is often mixed with various
background noises, so it is more difficult to be identified.
As known, the MFCC is used to solve automatic speech
recognition (ASR) problem, and it do has a better perfor-
mance for artificial audio recognition [25]. So, we decided to
introduce MFCC to deal with ESC problem. Further, to solve
the coordination problem between MFCC and deep learning
network, a conversion step is needed to transformMFCC into
logmel. In addition, a simple comparison experiment is car-
ried out with the logmel and other popular audio features. And
the experimental results are shown in Table 1. The waveform
is the raw audio wave saved as a greyscale picture, and the
constant Q transform (CQT) is a time-frequency transform
algorithm often used in music signals. Obviously, the logmel
is superior to other common feature algorithms.

Obviously, we can not only rely on the logmel feature for
learning but also need to use other information to make up
for the deficiency of the logmel feature information, which
may be necessary for further development of the ESC task.
The fast Fourier transform (FFT) is used in the process of
extracting logmel features. In it, the time-domain signal is
converted into a frequency-domain signal. Therefore, the log-
mel feature inevitably lacks relevant important features such
as the time domain. The most direct method is to analyse the
original signal. Finally, we use a two-stream CNN with the
raw audio signal and logmel as the input data.
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Algorithm 1 Random-Padding
Input: yn:raw audio; freq:sampling frequency;
Output: Ypad :after the random-padding of the raw audio;
1: n← len(yn); nall ← 4 ∗ freq;
2: nlack ← nall − yn; t ← yn/freq;
3: if t > 0 and t ≤ 2 then
4: k ← ceil(nlack/n);
5: Ypad ← copy the yn k times;
6: return Ypad [: nall]
7: else
8: point ← random.choice(1 : (yn − nlack ));
9: Ypad ← yn[point : point + nlack ];
10: return Ypad
11: end if

B. RANDOM-PADDING METHOD
As a public dataset, the UrbanSound8K [26] is commonly
used in ESC researches. This dataset contains 8732 labelled
sound excerpts (< = 4s) of urban sounds from 10 classes.
1798 of them are less than 4s, accounting for 20.59% of
the total number of samples. It is a large waste to directly
exclude these samples when preprocessing the data. In fact,
there are already some methods, such as cubic spline inter-
polation, zero-padding, are designed to patch data. How-
ever, the duration of some samples are less than 1s or even
less than 0.2s. Obviously, cubic spline interpolation is not
applicable to such samples. Hence, a simple and effective
data patching strategy called random-padding method is pro-
posed, describled as follows. (Its pseudocode is shown in
Algorithm 1):

1. For the sample duration, where 0 < t ≤ 2s, it copies the
entire sample to patch sample data until the sample length
reaches 4 seconds. The copied sound will eventually be trun-
cated at a random point.

2. For the sample duration, where 2s < t < 4s, it selects a
random data segment which can patch the duration of original
simple data to make it reach 4 seconds at once.

There is a random point cut off in the sound in the above
two padding situations, so we call this method random-
padding. The advantage of this method is that it simultane-
ously retains 20.59% of the sample, and ensures the timing
of the completed data. Figure 1. is the comparison diagram
between the zero-padding and the random-padding: (a) is
the raw data diagram after the zero-padding method, (b) is
the raw data diagram after the random-padding method,
(c) is the logmel diagram after the zero-padding method
and (d) is the logmel diagram after the random-padding
method.

C. PRE-EMPHASIS MODULE
Pre-emphasis is a widely used method for audio pre-
processing [28]. The formula for the pre-emphasis is rep-
resented as y(n) = x(n) − α ∗ x(n − 1), where x is the
original signal, y is the signal after pre-emphasis, and α is
the pre-emphasis coefficient (0.9 < α < 1). This paper sets

FIGURE 1. The comparison of the input data between zero-padding and
random-padding. (a) and (c) are the raw data and logmel graph after
zero-padding respectively, and (b) and (d) are the raw data and logmel
graph after random-padding, respectively.

FIGURE 2. Pre-emphasis module. The raw audio data pass through the
first two convolution layers that are initialized with weights. These two
layers jointly constitute the pre-emphasis module and participate in the
tuning with the whole network.

α to 0.97. In fact, there is no uniform selection criteria for
this coefficient. In order to compare the effect among the
proposed method and the other methods, the value of α is
set according to [27], [28]. As described in many studies,
0.94 and 0.97 are commonly used. After a simple comparison
experiment, 0.97 is selected for α according to the results,
shown in Table 2 and the coefficient of 0.97 is better than
0.94 in the CNN+BN. In [27], a pre-emphasis layer is pro-
posed for speaker verification. And in this paper, the pre-
emphasis layer is also be used in the neural network. The first
part of the proposed pre-emphasis module is a convolutional
layer with a kernel length of 2, and the initial weights of
the layer are set to −0.97 and 1. Compared to pre-emphasis
layer, a convolutional layer with a kernel length of 2 and
initial weight of 1 is added, as shown in Figure 2, the two
convolutional layers together form a pre-emphasis module.
The pre-emphasis module will participate in the tuning of
the entire network as the first part of the hidden layer in the
RACNN.
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FIGURE 3. All samples of UrbanSound8K dataset (the light blue bars
represent the samples <4s, the dark blue bars represent the
samples = 4s).

TABLE 2. Initial weights (pre-emphasis coefficient) comparison of the
pre-emphasis module.

D. TWO-STREAM CNN
The network structure of the method proposed in this paper
(Figure 4) is a two-stream CNN combining the RACNN and
LMCNN. In the RACNNpart, the input data are the raw audio
signal. After the pre-emphasis module, the kernel length of
the first layer convolution is set to 60 for corresponding to the
logmel dimension of the sound signal. In addition, in order to
increase the receptive field of the RACNN, 8 convolutional
layers with kernel sizes of 3 and strides of 1 are added.
The convolution layers and pooling layers are combined in a
manner similar to the VGG, and a total of 11 layers are used
in the RACNN. In the LMCNN part, 4 convolutional layers
and a pooling layer are set after each layer convolution. The
input data is logmel matrix, and the number of convolution
kernels is sequentially increased, with a kernel size is 3*3 and
stride is 1. And the fully connected layer is used to unify the
format of network feature vector of two-streamCNN. Finally,
the model uses ‘‘addition’’ to fuse the two stream feature
maps to the ‘‘softmax’’ classifier to output the classification
result. In addition, batch normalization (BN) and global aver-
age pooling are used in front of the fully connected layer of
each stream CNN to reduce the number of parameters, which
are not marked in the figure.

IV. EXPERIMENT
This part focuses on the analysis of the experimental
results of the random-padding method, the pre-emphasis

TABLE 3. Comparison of random-padding and zero-padding among
different models.

TABLE 4. Comparison of two pre-emphasis methods.

module and the two stream CNN model. Figure 5 shows
the final flowchart of the experiment. Due to hardware lim-
itations, we down-sampled the raw audio data are firstly
down-sampled and then used to generate corresponding
one-dimensional audio data and artificial logmel features by
random-padding strategy. The one-dimensional audio data is
input data for RACNN in combination with the pre-emphasis
module, and the logmel feature is input data for LMCNN.
In such a way, the fully connected layers of the two are added
to output the classification result.

A. DATA PRE-PROCESSING
The hardware platform in this paper uses an Intel Core i5
9400FCPU, anNVIDIAGTX1660GPU and 16GB of RAM,
and Keras2.2 as the development environment. The Urban-
Sound8K dataset is divided into 10 sound classes, which are
air conditioner (AC), car horn (CH), children playing (CP),
dog bark (DB), drilling (Dr), engine idling (EI), gunshot
(GS), jackhammer (Ja), siren (Si) and street music (SM).
The Librosa audio processing library was used to read the
original sample with a sample rate of 11025 Hz, and then
UrbanSound8K dataset was converted into 8732 sampled data
with a length of 4s with a total of approximately 9.7 h via
the random-padding method. The number of channels of the
logmel spectrogram is 60, the length of the FFT window is
2048, and the frame shift is 1024. The final extracted logmel
matrix size is 60*44.

B. EXPERIMENT AND RESULTS
1) COMPARISON BETWEEN RANDOM-PADDING AND
ZERO-PADDING
To verify the availability of the random-padding method
proposed in this paper, the experiment will be compared
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FIGURE 4. The model of a two-stream CNN.

FIGURE 5. Diagram for the whole design and signal processing.

TABLE 5. Ablation experiments of the pre-emphasis modules (TS-CNN is
a two-stream CNN without a pre-emphasis module).

TABLE 6. Comparison between the proposed two-stream CNN and other
models.

to the most commonly used zero-padding method. In this
experiment, the ratio of the training set to the test set is close
to 8:2. To further prove the random-padding method, we also

used the samples less than 4s as an independent dataset for
experiments. It should be noted here that the samples less
than 4s are extremely unevenly distributed in each category
(the sample size is shown in the Figure 3). To avoid the
impact of sample imbalance as much as possible, we have
not selected the three categories air conditioner, children
playing and street music, and the remaining 7 categories
have a total of 1709 samples. Table 3 shows the comparison
results. The 1D-CNN is a simple 7-layer one dimensional
CNN based on the raw signal, and the 2D-CNN is a 4-layer
two dimensional CNN based on the logmel. It can be seen
that the accuracy of the random-padding method proposed
in this paper is improved to different degrees compared with
the zero-padding method. In particular, the random-padding
method results in a large improvement in the 1D-CNN, but
in the 2D-CNN, the accuracy improvement is not as obvious.
The reason may be that the use of the zero-padding method
destroys the time-order character of the signal and the 1D-
CNN is sensitive to it. Therefore, random-padding results in
an obvious improvement for the 1D-CNN, especially in the
1D-CNN model on a less than 4s dataset, which is approxi-
mately 2.07% better than the zero-padding and that’s enough
to see that our method works.
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TABLE 7. The recognition accuracy of each category and the analysis of their audio features. The values for these features come from the average of all
samples equal to 4s.

FIGURE 6. Confusion matrix of the proposed two-stream CNN on the
UrbanSound8K dataset.

2) PRE-EMPHASIS MODULE EMDEDDED IN THE CNN
In this section, the pre-emphasis module is compared with the
pre-emphasis layer proposed in [27], and the ESC10 dataset
is also used in the experiment. Both the ESC10 and Urban-
Sound8K dataseta have 10 classes, but the sample size is
much smaller in the former than in the latter, at only 400. The
division of the training set and test set is the same as in the
previous section. The comparative results of the experiment
are shown in Table 4. It can be seen that the pre-emphasis
module proposed in this paper is superior to the pre-emphasis
layer in the ESC10 and UrbanSound8K datasets. This shows
that our work can improve the performance of the model.
Adding a convolutional layer with a kernel length of 1
and an initial value of 1 can better regulate the network
than only one pre-emphasis layer. Meanwhile, the parame-
ters of the network model hardly increase. Finally, ablation
experiments were conducted on the pre-emphasis module
and the performance of the model after the introduction of
the pre-emphasis module was improved on both datasets
(Table 5).

3) EXPERIMENT OF THE WHOLE NETWORK MODEL
In this part the performance of two-stream CNN is verified.
The initial learning rate is set to 0.01, and the learning
rate attenuation strategy is adopted. The learning rate is
reduced to 0.1 times what it was in the 20th and 80th epochs,
and the learning rate is reduced to 0.5 times what it was
in the 50th epoch. A total of 110 epochs are conducted.
The optimization function adopts the stochastic gradient

FIGURE 7. The training curves of the accuracy and loss of the proposed
two-stream CNN on the UrbanSound8K dataset.

descent method with momentum of 0.9. In this experiment,
the 10-fold cross-validation method was used. First,
the 8732 sample data were scrambled, and then divided into
nine folds with 875 samples and one fold with 857 samples.
The mean value of the 10-fold cross-validation is 95.7%
and the the accuracy of the optimal model reached 96.07%.
Table 6 compares the two-streamCNNmodel to other models
on the UrbanSound8K dataset. It can be seen that the model
proposed in this paper is superior to the model proposed by
most other studies due to the higher recognition accuracy
compared to Boddapati et al. [4] using the Spectrogram,
MFCC and CRP combined features on GoogLeNet. The
following uses typical experimental data for analysis. As seen
from Table 7, gunshot, engine idling and siren sounds have
better performance, and their recognition accuracy is over
97.5%, while children playing and street music had lower
recognition rates. Here, we can roughly determine that sound
pairs with larger autocorrelation coefficients and RMSs
(root mean squares) can achieve better recognition accuracy.
It means that the environment sound events, such as gun
shot, siren and engine idling, are more recognizable due to
the characteristics of obvious periodicity and large amplitude
fluctuation. Figures 6 and 7 show a typical confusion matrix
and training curve, respectively. It can be seen that due to
the large learning rate used in the first 20 epochs, the loss
keeps oscillating and decreases rapidly. After the 20th epoch,
the model reduces the learning rate, becomes stable and seeks
the optimal solution.
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V. CONCLUSION
In this paper, a two-stream CNN model is proposed, which
combines the RACNN and LMCNN. The two stream CNN
uses the raw audio data and logmel matrix as input data,
respectively. In such a way, the time-frequency characteristics
of environment sound signals can be fully extracted. In terms
of data preprocessing, this paper proposes a random-padding
method to patch the uneven data samples. Hence, the avail-
able data for experiment are greatly increased. According
to the comparison results with the zero-padding method,
the advantage of random-padding method is confirmed.
In terms of network structure, the pre-emphasis module
is added to the convolution part of the RACNN. Hence,
the network can be improved due to a better SNR of the
signal. Finally, according to the experiment results, a high
recognition accuracy of 95.7% is achieved based on the
10-fold UrbanSound8K dataset. In our future work, other
newly developed models, e.g. [24] and [29], will be consid-
ered to explore the better recognation method in the field of
ESC.
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