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ABSTRACT In this study, the deformation of circular orthotropic membranes subjected to a central
concentrated force is investigated. An orthotropic membrane equation indicating load-deflection behavior
based on Foppl-von Kdrmdn membrane theory is obtained and the numerical solutions are gotten by using
MATLAB. A variable k, which is the most influential parameter on the load-deflection behavior, is proposed.
In isotropic membrane, the change of material parameters mainly influences the deflection of membranes
subjected to a concentrated force; however, when studying for orthotropic membrane, the shape of membrane
after deformation can be controlled by changing the value of k. Only change in elastic modulus and Poisson’s
ratio, with k constant, mainly influence the deflection of curves, instead of the shape of curves. Then, four
numerical simulations by ABAQUS are conducted and the membrane element M3D4R is used to set up a
finite-element model. By comparing these simulation results with the solutions from orthotropic membrane
equation, it is shown that the orthotropic membrane equation gives a good estimation of load-deflection
behavior.

INDEX TERMS ILoad-deflection curve, orthotropic membrane, central concentrated load, membrane

element M3D4R.

I. INTRODUCTION

Recent interest in membrane structures has created numer-
ous and unique challenges related to many advanced tech-
nologies [1]-[3], such as micro-electro-mechanical systems
(MEMS) and space shuttle. Space mesh reflector (SMR)
antennas are irreplaceable in the field of aerospace because
of its lightweight, high packaging efficiency, and potential to
realize large-scale extension and high surface accuracy [4].
Existing large SMR uses metal meshes as a reflecting sur-
face. The reflectors are often analyzed as membrane due
to its low compressive and bending stiffness [4], [5]. When
working in orbit, the antenna reflector needs to keep an exact
paraboloidal shape, which is directly determined by the ten-
sion on the metal meshes [6]. Therefore, in order to maintain
high surface accuracy, the problem of the large deformation
of a circular membrane under a concentrated force is of great
significance. Fig. 1 shows the schematic the problem. The
research on the membrane structures commenced with the
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FIGURE 1. Schematic of membrane subjected a central concentrated load.

work of Henchy [7], who gave the solution to the large deflec-
tion of the clamped circular membrane under uniform load in
1915. Then Chien [8] and Alekseev [9] had some modifica-
tions on Henchy’s solution. With the use of an intermediate
parameter and a controlled parameter, an exact analytical
solution of the quantitative relation (load vs. deflection) of
the membrane under centrally concentrated load was pro-
posed [10]. The solutions could be used for the measurement
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of mechanical properties of ultra-thin membrane neglecting
the flexural rigidity. Besides, extensive research has been
conducted on other related membrane problems. Wan [11]
derived analytical constitutive relations based on an average
membrane stress approximation and compared the results
with finite-element analysis. It should be pointed out that
they did not confine the thickness and flexural rigidity of
the film to a small range but spanned a wide spectrum.
An experimental study, along with theoretical analysis, was
presented by Ju [12] for characterizing the mechanical prop-
erties and adhesion of a thin polymer membrane, primarily
Young’s modules. Lim [13] explored the deflection of circular
membranes when the membrane material is auxetic and con-
sidered that auxetic membranes exhibited greater flexibility
and stretching (bio) functions in comparison with conven-
tional membranes, at equal Young’s modulus. Jensen [14]
studied the effect of Poisson’s ratio on material deformation;
while, the influence of parameters including sample thick-
ness, indentation depth and indenter size was also analyzed.
The above solutions for circular thin membrane prob-
lems are all in the linear elastic domains and the consti-
tutive equations are mainly based on Foppl-von Kérman
membrane theory. When the deformation and the size of
membrane are of the same order, the solution of the large
deformation mentioned above cannot meet the requirements.
Therefore, recent developments in the theory of non-linear
elasticity were given in the noteworthy survey volume by Fu
and Ogden [15]. Besides, A.P.S. Selvadurai [16] concluded
four different hyper-elastic constitutive models and got the
deflection of rubber membrane based on these models. His
results agreed well with experimental study. The governing
equations of large deformations of 3D hyperelastic solids
are derived by the minimum total potential energy principle,
and the Neo-Hookean model is used for the hyperelastic
character of material [17]. The hybrid nanocomposite plate
deformation is formulated based on classical plate theory and
the contact force between the plate and projectile is estimated
using Hertzian contact law [18]. Pugno [19] developed a
theoretical-numerical approach to simulate the detachment
of an elastic membrane of finite size from a substrate, using
a 3D cohesive law. It was of great success and significance
because the model was validated by analytical results for
simple geometries, and has also been applied in a series of
parametric studies. Their methods can be useful to model a
membrane structures when we take non-linear elasticity into
account. Besides, many scholars studied the vibration control
of membrane. A plate membrane model and a pure membrane
model have been studied respectively to achieve active vibra-
tion control of plate membrane mirrors [20]. A closed-loop
membrane mirror shape control system is set up and a sur-
face shape control method based on an influence function
matrix of the mirror is then investigated [21]. To analyze the
nonlinear dynamic characteristics of the membrane, the theo-
retical and approximate solutions of nonlinear frequencies of
the membrane are obtained, and the discrepancies between
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the two solutions under different vibration amplitudes are
discussed [22].

The references mentioned above mainly studied the
isotropic membrane. As for the orthotropic membrane, much
work had also been completed. The stochastic dynamic
response and reliability analysis of membrane structure under
impact load obeying Gaussian distribution was investigated
by Li [23]. Banichuk [24] derived the analytical solution
originally to develop for isotropic axially moving plates and
then extended it to general orthotropic case. Jesus [25] pre-
sented a formulation for the geometrically nonlinear analysis
of orthotropic membrane structures and an algorithm for
modeling the wrinkling behavior of membrane structures.
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FIGURE 2. Effect of Poisson’s ratio on load-deflection behavior for
circular isotropic membrane.

According to the summary of literature above, the results
show that isotropic circular membrane always presented a
‘saddle-like’ deformation after subjected to a concentrated
force (see Fig. 1); meanwhile, the results from the solu-
tions of Sun [10] revealed that changes in Poisson’s ratio of
membrane only influences the curves’ deflection, but not its
shape as is shown in Fig. 2. Because the circular membrane
is centrosymmetric, for simplification, for simplification, all
the load-deflection curves in this paper only presents half
the membrane. However, an ideal domed deformation shown
in Fig. 1, which can [26] overcome some problems such
as aircraft wings, car doors, is desired and it can also help
simplify many other engineering structures. Unfortunately,
the work which focused on orthotropic membrane almost
not studied the load-deflection behavior subjected to such
a central load as shown Fig. 1. Therefore, motivated by the
preceding analyses, this kind of static problem on orthotropic
membrane are studied in this paper.

A new analytical method is proposed for determining the
deflection of orthotropic membrane subjected to a concen-
trated force in the center of the membrane. Based on the work
of Sun [10], we have obtained the orthotropic membrane
equation and gotten the numerical solution using MATLAB.
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FIGURE 3. Deformation of model using shell element subjected a central concentrated load.
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FIGURE 4. Comparison of load-deflection curves between analytical solution and ABAQUS model.

TABLE 1. The parameters during calculations with the change of k.

k F(N) v, v, E (MPa) E,(MPa) Z|_, dZ | dx|_, A

1 0.7854 03 0.3 300 300 0.1857843 120.7597 7.7e-5
0.67 07854 03 0.2 300 200 0.3031856  181.9113 1.1e-4
0.33 0.7854 0.3 041 300 100 0.7094480 390.1964 1.7e-5
0.03 0.7854 0.3 0.01 300 10 10.129830 5115.564 5.3e-5
0.0003 0.7854 0.3 0.0001 300 0.1 1123.8060 561959.2 1.3e-5

A variable k, which is the most influential parameter on
the load-deflection behavior, is proposed. The value of k
combines the action of Poisson’s ration and elastic mod-
ulus. When studying orthotropic membrane, the deforma-
tion of membrane can be controlled by adjusting the value
of k. Besides, some numerical simulations by ABAQUS
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are conducted using membrane element M3D4R, which
are compared with the solution of orthotropic membrane
equation.

This paper is structured as follows. In section 2, the
orthotropic membrane equation is obtained. In section 3,
a membrane model is set up within the platform ABAQUS
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FIGURE 5. Effect of k on load-deflection behavior for circular orthotropic
membrane.

applying the membrane element M3D4R. In section 4, several
numerical examples are performed and the effect of model
parameters on load-deflection curves is discussed.

Il. THE ORTHOTROPIC MEMBRANE EQUATION

AND ITS SOLUTION

Suppose we take a piece of the circular membrane of radius
r with r < R, as shown in Fig. 1.

U, u3
+0.000e+00
-7.077e-01
-1.415e+00
-2.123e+00
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-6.998e+00
-7.776e+00
-8.553e+00
-9.331e+00

The paper studies the static problem of equilibrium of a
membrane under concentrated force Py and membrane force
o,h acted on the boundary. We assume that the membranes
were sufficiently thin to neglect the normal stress and trans-
verse shear strain. In addition, when undertaking the external
normal load, the bending moment is not under consideration.
Therefore, there are two vertical forces, the Py and the total
vertical force 2mrho, sin 6, which is produced by the mem-
brane force o, A, in which £ is the thickness of the membrane,
and @ is the angle.

As shown in Fig. 1, considering the equilibrium of vertical
force and equilibrium condition in the plane of the mem-
brane [10], we have the following equations.
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FIGURE 6. Comparison of load-deflection curves resulted from membrane equations and ABAQUS model.
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where o4 is the radial membrane force, o;4 is the circum-
ferential membrane force, ¢, is the radial strain, &; is the
circumferential strain, u (r) is the radial displacement and
w (r) is the transversal displacement.

The relation between the stress and the strain of orthotropic
membrane are

E,
e a— (er + veer)
Ett r 4)
0 = ——— (& + vr&r)
1 — vy,

in which E, is radial Young’s modulus; E; is circumferential
Young’s modulus; v, is radial Poisson’s ratio; v; is circum-
ferential Poisson’s ratio. Substituting Eq. (3) into Eq. (4),
we have

A E.h du+1 dw 2+ u
oy == ——— _— - —_— Vs —
T 1= \dr 2 \dr "r

n E:h u n du n v [dw 2
o = —— | — vV, — — | —
T v e Tdr T 2 \ar
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By combination of Eq. (5) and Eq. (2), we have

(roy) — 22
= ——(ro,) —
E dr " E,

Substitute Eq. (6) into the first expression of Eq. (5), then

1 d 1d(2 )+ 11 1 (dw\?
—_—— 7. —|—-——r‘o —_—— |0, = = J—
E; dr| rdr " E, E "2 \ar

u
r
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‘= ﬁ Si‘l - Ethzar
- "o 2 )
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S = mar
po Doy v @®)
 Eht-Am’ ok
Meanwhile, we get
d d dx 2rd
= )

dr —dx dr  &dx
Substitute Eq. (8) and Eq. (9) into Eq. (7), we have

5 2
PO e [2 ] e (WY 2o 0

dx?

X X X
Then
d* (xS dw \?
d705r) g2 xS0 — xSl +2x2(— ) =0 (1)
dx? dx
Substitute Eq. (8) into Eq. (1), we obtain
aw
xS,1— = —P (12)
dx

Again, some variables are introduced here

xS =24 Sr2 E; Vy
, k=—=—=— 13
xSpp =23 } S Er v (13)
Substitute Eq. (13) into Eq. (11), we have
d>(z 1—k P?
@, -k, P _
S 27} (14a,b)
aw ’
Z,— =—P
dx

Therefore, we get the orthotropic membrane equation
Eq. (14) and the boundary condition under which the equa-
tions could be solved are

=0 atx=0;

=0 andW=0 atx=1; (15a, b, ¢)

RN N N

Then, by solving Eq. 14(a, b), a sequence of load-deflection
curves can be obtained. It is obvious that k is the key factor
to the results of the equations. So, we will focus on the effect
of k on equations results in following sections. However, for
such nonlinear second-order differential equations, it is hard
to get their analytical solutions. Therefore, we will try to solve
it using ODE45 method in MATLAB in section 4.
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TABLE 2. The parameters during calculations with the change of elastic modulus.

F(N) v, v, E, (MPa)

k

Et

(MPa) Z | dZ / dx - A

x=0

300
150
30
3
0.3

0.67
0.67
0.67
0.67
0.67

0.7854
0.7854
0.7854
0.7854
0.7854

0.3
0.3
0.3
0.3
0.3

0.2
0.2
0.2
0.2
0.2

200
100

20
2

0.2

181.9113
288.7662
844.3576
3919.161
18191.13

1.1e-4
8.9e-5
8.0e-5
7.6e-4
1.1e-5

0.3031856
0.481277
1.407262
6.531935
30.31855

U, U3
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U, U3
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-3.316e+00
-6.631e+00
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FIGURE 8. Comparison of load-deflection curves resulted from membrane equations and ABAQUS model.

Ill. NUMERICAL SIMULATION USING ABAQUS

A. FINITE-ELEMENT MODEL

In sequential analysis, a 3D model of circular membrane is
set up in ABAQUS/standard with the geometrical parameters
as: R = 500mm, h = 1mm. When studying membrane, many
scholars modeled in ABAQUS using shell element [27], [28],
such as S4R, S8R5. However, shell elements (S4R) cannot
give a nice simulation to real deformation of circular mem-
brane subjected to a load at central point shown as Fig. 3.
Therefore, membrane element M3D4R (4-node quadrilateral
membrane, reduced integration, hourglass control) was used
in ABAQUS with mesh size 1-20 resulting in 4341 nodes
and 4270 elements for the whole domain. Membrane ele-
ments are surface elements that transmit in-plane forces only
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(no moments) and have no bending stiffness. Therefore, out-
of-plane deformation can lead to instabilities in a static anal-
ysis and a dynamic explicit step is applied to solve problems
in this paper.

B. VERIFICATION OF THE ABAQUS MODEL

To check the accuracy of the ABAQUS model, a compar-
ison of results between known analytical solution [10] and
numerical simulation was carried out, in which a numerical
example of isotropic membrane was used. The solution from
membrane equation in this paper was also embed in the com-
parison. Material parameters for the membrane were taken
as E = 300MPa, v = 0.3. A concentrated force of 7.85N
was applied on the center of the membrane, during which
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TABLE 3. The parameters during calculations with the change of Poisson’s ratio.

i FIN) v, v, E(MPa)  E(MPa)  Z|_, dZldy_, A
0.67 0.7854 03 0.2 300 200 0.3031856 181.9113 1.1e-4
0.67 0.7854 0.15 041 300 200 0.324484 178.4664 2.8e-5
0.67 0.7854 0.03 0.02 300 200 0.344687 175.7903 8.4e-4
0.03 0.7854 0.3 0.01 300 10 10.12979 5115.549 3.2e-4
0.03 0.7854 0.15 0.005 300 10 10.21519 5133.137 6.1e-4
0.03 0.7854 0.03 0.001 300 10 10.28810 5149.194 6.3e-4
the uniform pressure is about 0.1MPa. It is noteworthy that
in order to overcome the central mesh distortion, a circular = 0 /
local uniform pressure with » = R/100 = 5Smm was used to £ e o
approximate a concentrated force. It is shown that in Fig. 4, Zé,z _ N,‘;’ d
the curves obtained by membrane equation and numerical g .3 7
method agree well, that is to say, the ABAQUS model can %74_ 2
work well. S ) S
£ 37
IV. NUMERICAL SIMULATION USING ABAQUS 377 R e A8
In this part, a comparison between membrane equation and ° ,';;' L e
numerical simulations was carried out to identify the effects v o
of Poisson’s ratio, elastic modules and thickness on load- . . . . .
deflection response for orthotropic membrane. 00 oz 0406 08 o
Dimensionless position X
(2)
A. EFFECT OF k ON THE LOAD-DEFLECTION CURVES 21
MATLAB is a computer program that provides the user _
with a convenient environment for performing many types E o o
of calculations. One of the most popular codes in MATLAB E o
used to solve differential equation is ODE45, which is mainly 52 /v'
used for solving engineering applications [29]. Therefore, & . o
ODE45 was used to solve the membrane equation in this 5 -4 Rt
paper. f%— yd ’
During the process to solve the membrane equation, the key £ -6 R
factor is to determine the initial value of differential equation © e e o
from Eq. (15). With the help of substituting Eq. (8) and (13) -8 //
into Eq. (6) to eliminate xS, and xS,2, we can obtain from : . . ; .
0.0 0.2 0.4 0.6 0.8 1.0
Eq' (15) Dimensionless position X
dzi (1 +kv,) Zy ®
2 d_ - =0 FIGURE 9. (a) Effect of Poisson’s ratio on load-deflection behavior when
X k=0 X x=0 (16a, b) k = 0.67. (b) Effect of Poisson’s ratio on load-deflection behavior when k
5 dZ] (1 + kl)r)Zl _0 i = 0.001.
dx x=1 X x=1

When solving membrane equations, the trial and error method
is used to find the initial values that meet the Eq. (15).
Introduce a variable to monitor calculation error A.

A=(2 _ (1 4+kvy) Zy )
x=0

X
_ (1 +kv.) Zy
VOLUME 8, 2020

dz,
dx

x=0

+(2

dz,

dx X

) (17)
x=1

x=1

Table 1 shows the parameters during the calculation with the
change of k.

Fig. 5 shows the load-deflection curves as the value of k
increases. Generally, radial Young’s modulus E, is larger than
circumferential Young’s modulus E; in existing orthotropic
membrane [30]; therefore, we make k not be over 1 due to
Eq. (13) in this paper. As we can see, when subjected to
a constant force, firstly, the load-deflection curve gradually
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-4.541e+00
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u3

U, U3
-1.514e+00
-2.271e+00
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FIGURE 10. Comparison of load-deflection curves resulted from membrane equations and ABAQUS model.

TABLE 4. The parameters during calculations with the change of thickness h.

P F(N) v. v, E,(MPa) E,(MPa) Z|_, dZ | dx|_, A

1 0.7854 0.3 0.2 300 200 0.3031856  181.9113 1.1e-4
0.50 0.7854 0.3 0.2 300 200 1.9251082 1155.064 1.1e-4
0.20 0.7854 0.3 0.2 300 200 22.162997 13297.79 4.4e-4
010 07854 0.3 0.2 300 200 140.72627  84435.75 8.9e-5
0.05 0.7854 0.3 0.2 300 200 893.55609 536133.6 9.2e-4

approaches a straight line and the absolute value of the cur-
vature approaches zero as k decreases. The process of change
is not linear and from the time when k = 0.03, the change
became apparent. Compared with an isotropic membrane,
that is to say, we can control the shape of a membrane after
deformation by changing the value of k. However, even the
value of k is very close to zero, the sign of curves’ curvature
will not alter.

Second, the deflection of curves gradually increases when
the value of k starts to change; however, the increase is
not apparent. We can see from Fig. 2 that the decrease
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of Poisson’s ratio can result in the increased deflection in
isotropic membranes. Therefore, the increased deflection
here for orthotropic membranes maybe result from the com-
bined action of Poisson’s ration and circumferential Young’s
modulus.

For the finite-element approach, Fig. 6 shows the compar-
ison of load-deflection curves between membrane equation
and the numerical method. In these cases, the circular mem-
brane has a constant thickness 7 = 1mm, radius R = 500mm.
Different values of Radial Poisson’s ratio v,, circumferential
Poisson’s ratio v;, k used here can be obtained from Table 1.
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As shown in Fig. 6, the load-deflection curves between
membrane equation and numerical simulations in ABAQUS
agree well except for the area near circular membrane center.
This is due to the introduction of a circular local uniform
pressure on the membrane center which substitutes the con-
centrated force.

B. EFFECT OF ELASTIC MODULUS ON THE
LOAD-DEFLECTION CURVES

Fig. 7(a) shows the comparison of load-deflection curves
as elastic modulus of circular membranes decrease. From
Fig.7(a), it can be seen that Poisson’s ratios are kept
unchanged; therefore, the value of k keeps constant. Table 2
depicts the parameters during the calculation with the change
of elastic modulus.

As one can see from Fig. 7(a), the deflection of load-
deflection curves increases apparently as elastic modulus
decreases; however, the shape of a membrane after defor-
mation seems unchanged, even the deflection increases to
82mm. The role of elastic modulus in orthotropic membrane
is similar to that of Poisson’s ratio in isotropic membrane. The
changing elastic modules, without the change of k, mainly
influence the deflection of curves. Fig. 7(b) shows the deflec-
tion at the central point of circular membranes as the elastic
modulus increase. The deflection decreases intensely in the
low-elastic-modules material parameters and then the drop
becomes gentle in high-elastic-modules material parameters.
Compared with Fig. 5, we can conclude that radial Young’s
modulus E,, not circumferential Young’s modulus E;, is the
key factor to decide the deflection of curves.

For the finite-element approach, the load-deflection curves
resulted from membrane equation and the numerical method
are compared in Fig. 8. In these cases, the circular membrane
also has a constant thickness 2 = 1mm, radius R = 500mm.
Radial Poisson’s ratio v, circumferential Poisson’s ratio vy,
different k£ value used here can be obtained from Table 2.

Fig. 8 reveals the differences of load-deflection curves
from membrane equation and numerical simulations in
ABAQUS. Also, the results agree poorly in the area near the
center of circular membrane. In order to neglect the influence
of shear modulus G, G = 0.1MPa was set when simulating
in ABAQUS.

C. EFFECT OF POISSON'’S RATIO ON THE
LOAD-DEFLECTION CURVES

Fig. 9(a) and Fig. 9(b) depict the changes of load-deflection
curves as Poisson’s ratio of circular membranes decreases.
In Fig. 9(a) and Fig. 9(b), elastic modulus is unchanged
during the whole simulation and the value of k& keeps con-
stant, respectively. Table 3 gives the parameters during the
calculation.

One can observe that the deflection of load-deflection
curves slightly increase as the Poisson’s ratio decreases when
E; = 200MPa; meanwhile, the deflection nearly keeps
unchanged with different Poisson’ ratio when E; = 10MPa.
In addition, the curvature after deformation almost keeps
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FIGURE 11. (a) Effect of thickness h on load-deflection behavior.
(b) Effect of thickness h on the deflection of central point.

unchanged in Fig. 9(a). It is similar with the isotropic mem-
branes in which the Poisson’ ratio can have a slight effect on
the deflection. Overall, only by adjusting the Poisson’s ratio
will not the load-deflection curves obtain significant change
if the value of k almost keeps constant.

As for the results from ABAQUS, load-deflection results
from membrane equation and the numerical method are com-
pared in Fig. 10. The circular membrane has a constant
thickness h = 1mm, radius R = 500mm. Other material
parameters used here are given in Table 3.

From Fig. 10, one can obtain the differences between
load-deflection results from membrane equation and the ones
from numerical simulations. The results have nice overlap in
the area near the central point of circular membrane; mean-
while, it behaves well on the rest of the curve.

D. EFFECT OF THICKNESS h ON THE

LOAD-DEFLECTION CURVES

The influence of thickness 4 on the load-deflection behavior
are compared in Fig. 11(a) and the Poisson’s ratio and elastic
modulus are kept constant. The parameters during the calcu-
lation with the change of thickness & can be found in Table 4.
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FIGURE 12. Comparison of load-deflection curves resulted from membrane equations and ABAQUS model.

Shown as Fig. 11(a), compared to elastic modules, the
thickness / plays the similar role about the effect on the
deformation of circular membrane. The decrease of thickness
results in the increase of deflection; however, it has little
effect on the shape of a membrane after deformation. It can
be understood easily because we can see that both elastic
modulus and thickness & mainly influence the parameter P
from Eq. (8). The deflection at the central point of circular
membranes with respect to increasing thickness are summa-
rized in Fig. 11(b). it is obvious that the rate of deflection’s
decline gradually becomes gentle as thickness increases.

ABAQUS applies the similar parameters with those in
above sections except the thickness. Other materials parame-
ters can be obtained in Table 4. It can be observed in Fig. 12.
that the load-deflection curves from membrane equation and
ABAQUS simulation agree well in overall; however, apparent
differences in the area near the center of membrane can still
be seen.

V. CONCLUSIONS

In this paper, the deformation of circular orthotropic mem-
branes subjected to a concentrated force is investigated.
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Based on the work of Sun [10], we have obtained the
orthotropic membrane equation and gotten the numerical
solution using MATLAB. The results show that the value
of k from Eq. (13) is the most influential parameter on
the load-deflection behavior. The load-deflection curve grad-
ually approaches a straight line when k is close to zero.
Only change in elastic modulus and Poisson’s ratio, with k
constant, mainly influence the deflection of curves, instead
of the shape of curves. The effect of thickness & on the
load-deflection curve was also studied. The results show that
the decrease of thickness & will result in the increase of
deflection; however, it almost does not influence the shape
of a membrane.

Besides, some numerical simulations by ABAQUS are
conducted, which are compared with the solution from
orthotropic membrane equation. All the curves, including
different elastic modulus, Poisson’s ratio and thickness agree
well except the area near the center of membranes. The results
show that the orthotropic membrane equation in this paper
gives a good estimation of load-deflection behavior and can
be accepted as a useful estimation of load-deflection curves
for thin membrane.
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