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ABSTRACT Recently, with the rapid growth of Deep Learningmodels for solving complicated classification
problems, urban sound classification techniques have been attracted more attention. In this paper, we take
an investigation on how to apply this approach for the transportation domain. Specifically, traffic density
classification based on the road sound datasets, which have been recorded and preprocessed on the urban
road network, is taken into account. In particular, state-of-the-art methods for analyzing and extracting
sound datasets have taken into account for the classification problem of traffic flow. Consequently, this
study focuses on three main processes which are: i) generating image representation for the sequences of
the road sound datasets; ii) proposing a convolutional neural network model for the feature extraction; iii)
adopting a hybrid approach for the classification stage by combining convolutional neural network with other
machine learning models. Regarding the experiment, the road sound dataset has been collected at an urban
asymmetric road with different time periods (e.g., morning and evening) in order to evaluate our proposed
method. Specifically, the implementations show promising results in which the accuracies are able to achieve
from 92% to 95% for classifying traffic densities with different time periods.

INDEX TERMS Intelligent transportation system, traffic density classification, urban sound classification,
deep learning, convolutional neural network.

I. INTRODUCTION
Traffic flow analysis is regarded as an important step for the
development of the Intelligent Transportation System (ITS).
Specifically, understanding the traffic patterns (e.g., volume,
speed, and density) enables the traffic managers to provide
smart services such as dynamic traffic light control [1],
path planning [2], and abnormal detection [3]. Recently,
Deep Learning (DL) models have achieved great success to
overcome the complex problems of road traffic datasets [4].
Specifically, well-known DL models such as Deep Neural
Network (DNN) [5], Recurrent Neural Network (RNN)
[6], Convolutional Neural Network (CNN) [7], and Deep
Reinforcement Learning (DQN) [8], [9] have been adopted
for various applications in ITS as shown in Fig. 1.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chao Chen.

FIGURE 1. The applications of DL models in ITS.

Accordingly, regarding image classification problems,
CNN is the most popular neural network model since
the capability of this model for feature extraction and
classification parts. Fig. 2 depicts an example of a CNN archi-
tecture for MNIST datasets. Specifically, the CNN-based
methods follow a hierarchical architecture to build a trained
model. Subsequently, the output result is defined based
on the fully-connected layer. Consequently, CNN-based
image classification has been applied in various domains.
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FIGURE 2. A CNN architecture to classify handwritten digits.

Reference [10] proposed an improved algorithm for CNN
to assist medical experts for the breast cancer diagnosis
problem. Reference [11] designed a 13-layer CNN for
classifying the image-based fruit category. Reference [12]
presented a CNN-base architecture for environmental sound
classification problems. In the case of the transportation
domain, [13] proposed a new method for large-scale traffic
analysis by developing CNN architecture for traffic image
datasets which are covered from network traffic.

FIGURE 3. An example of measuring traffic volume at an asymmetric
road using VDS.

In this paper, we focus on developing a CNN-basedmethod
for classifying the traffic density problem in which the
input data are recorded and pre-processed from the traffic
sound on the urban roads. Specifically, traffic conditions are
conventionally represented by three patterns such as volume,
speed, and density. Technically, surveillance systems (e.g.,
loop detectors) are set to measure traffic patterns. Fig. 3
shows the traffic volume of an asymmetric road using Vehicle
Detection System (VDS) [14]. However, measuring traffic
condition from surveillance systems have several drawbacks
as follows:
• Surveillance systems are able to measure traffic volume
and speed. However, measuring the traffic density
is difficult since it depends on the spatial-temporal
correlation [15].

• The time intervals depend on the sampling resolution
of the detection devices, which are usually around a
few minutes [13]. However, in several specific cases
(e.g., traffic flow at the complex intersection), narrow
intervals (e.g., few seconds) are required to classify the
density of traffic conditions.

• Classifying detailed traffic patterns (e.g., traffic density
of two directions in the same road) is difficult, which
requires many involved sensors to collect the traffic
data [16].

Particularly, with the rapid growth of DL models, analyzing
traffic flow from low-cost video surveillance (CCTV)
systems becomes a promising solution [17]. However, this

approach is still very challenging in terms of improving
accuracies of vehicle detection and tracking processes and
computation time [18]. Therefore, in this paper, the urban
sound classification approach is taken into account for
the traffic density problem. Technically, urban sound clas-
sification is an emergent research topic that focuses on
classifying environmental sounds form different objects (e.g.,
Air Conditioner, Car Horn, Children Playing, and so on).
However, classifying the same objects with different time
intervals (i.e., road sound of traffic flow) requires a specific
structure of the feature extraction task. Hence, CNN-based
methods have been adopted as one of the most promising
models for extracting features in terms of time and frequency
representations [19]. Regarding the sound datasets, we have
collected the traffic sound data at certain points of the
road network (e.g., the same location with the road sensors
for verifying the results of the proposed approach) and
preprocessed the sound excerpts with narrow intervals (i.e.,
4 seconds). Therefore, by analyzing the collected traffic
sound dataset, we are able to fix the enumerated drawbacks
of surveillance systems for measuring traffic conditions.
Specifically, the main contribution of this study is threefold
as follows:

• We present a traffic density classification problem based
on road sound datasets, entitled Road Sound Density
Classification (RSDC). To the best of our knowledge,
this is the first study by applying urban sound classifica-
tion approach for traffic density classification problem.
Specifically, the proposed approach is able to provide
traffic conditions with narrow time intervals, which
enables smart applications for ITS (e.g., dynamic traffic
light control).

• We propose a new CNN architecture for the feature
extraction process in which the model structure is
not too deep and the results are comparable with
well-known pre-trained CNN models (e.g., AlexNet
and VGGNet). Furthermore, deep feature classification
using well-known Machine Learning (ML) models such
as K-Nearest Neighbor(KNN), Support Vector Machine
(SVM), Random Forest (RF), and XGBoost (XGB)
are taken into account to improve the classification
performance.

• Regarding the experiment, a road sound dataset from an
asymmetric road at a certain urban area is considered
to evaluate the proposed approach. Particularly, we have
collected and pre-processed around 14,000 labeled
sound excerpts, entitledRoadSound14k dataset, which is
classified into 6 classes of traffic densities. Specifically,
we defined the traffic densities of urban roads into three
periods of a day which areMorning rush hour,Non-rush
hour, and Evening rush hours (as shown in Fig. 2).
Consequently, the source code and dataset of this study
are published and available to access.1

1https://github.com/BuiKhacHoaiNam/RoadSoundDensity
Classification-RSDC-
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The rest of this paper is structured as follows:
Section 2 presents the background of urban sound classifi-
cation techniques. The methodology of the RSDC problem
is proposed in Section 3. The experiment is presented in
Section 4 in which we collected and pre-processed the road
sound datasets at a certain urban area to evaluate our proposed
method. Section 5 includes the conclusion and future work of
this study.

II. BACKGROUND
Urban sound classification is an emergent research topic
with numerous real-world applications. Specifically, recent
advancements in the field of image classification using DL
models (e.g., CNN) enable the capability to classify the urban
soundwith high accuracy. Fig. 4 illustrates themain processes
for urban sound classification.

FIGURE 4. The main process of the urban sound classification problem.

Particularly, audio samples are processed in the readable
format (e.g.,.wav) with a few seconds of the time duration
(e.g., 4 seconds). Each sample is the amplitude of the
wave (waveform) which is regarded as an input audio
sample. Subsequently, the input data are converted into
time-frequency images, which are pre-processed as the input
of DL models for the classification. Specifically, there
are two well-known methods for the visual representation
process which are Spectrogram and Mel-Frequency Cepstral
Coefficients (MFCC) [20]. Technically, the main difference
between the two methods is that the spectrogram adopts
a linear spaced frequency scale (i.e., Short Time Fourier
Transform (STFT)) and MFCC uses a quasi-logarithmic
spaced frequency scale. For instance, Fig. 5 depicts an output
image of the visual representations process from an input
sound wave of the two methods.

FIGURE 5. The output images by using Mel-Spectrogram and MFCC.

Regarding the urban sound datasets, UrbanSound8K [21]
is a well-known open dataset that has been used for
many studies in this research field [22]–[24]. Specifically,
the dataset contains 8732 labeled sound excerpts in WAV
format from 10 different classes. Consequently, in this study,
our RoadSound14k dataset is preprocessed (e.g., audio files
and meta-data file) following the format of UrbanSound8K
dataset.

For the feature extraction and classification process,
CNN architectures have proved the capability for the sound
classification problem [25]. Specifically, several popular
CNN architectures such as AlexNet, VGG, Inception, and
ResNet have shown promising performances for the sound
classification applications [26]. However, themost concern of
adopting those aforementioned models is the computational
cost. Specifically, the deep network structures of pre-trained
CNN models are proposed to deal with the large size of
input images (e.g., 224 × 224), which is not necessary in
some cases of the sound classification problem. In the case of
classification stage, recent studies focus on a hybrid approach
that combines pre-trained CNN models for feature extraction
and the conventional algorithms (e.g., SVM and KNN) for
improving the performance of classification [27], [28].

III. ROAD SOUND DATASET-BASED TRAFFIC DENSITY
CLASSIFICATION
This study proposes a traffic density classification approach
using road sound datasets. Specifically, with inputs are audio
samples of a few seconds of time duration, the objective is
to determine which traffic condition they belong to with a
corresponding classification accuracy score.

A. PROBLEM DESCRIPTION
Supporting C = {c1, c2, . . . cn} denotes a set of traffic
condition labels a certain road, which is defined based
on the time intervals of a day (e.g., Morning rush hour,
Non-rush hour, and Evening rush hour). The traffic density
classification problem is regarded as a supervised learning
problem in which given a training set X = {(xi,Yi | 1 ≤
i ≤ m)}, where Yi ⊂ C, the objective is to learn a multi-label
classifier from X to predict labels of new audio samples.
Specifically, the classification problem using CNN model
with parameter 2 can be formulated as follows:

F(X | 2) = fn(. . . f2(f1(X | θ1) | θ2) | θn) (1)

where fj(X | θi) (j ∈ n) represents the layer jth of the network
with total number of layer n.

B. METHODOLOGY
Fig. 6 demonstrates the pipeline of the proposed method
for the RSDC problem. Specifically, the method includes
three main processes which are image representation using
time-frequency spectrogram, deep feature extraction using
a new CNN architecture, and classification stage using
well-known ML algorithms. More detail of the processes are
sequentially described as follows:
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FIGURE 6. System architecture for the RSDC problem.

1) IMAGE REPRESENTATION
As mentioned above, log-mel spectrogram and MFCC are
popular methods which have widely adopted for sound
recognition. Therefore, in this study, two aforementioned
methods are taken into account for the time-frequency rep-
resentations [20]. Technically, the methods can be executed
by using Librosa library [29]. Specifically, the main steps of
this process are expressed as follows:
• Determining the window size (n_fft = 2048) and hop
length (hop_length = 512).

• Computing STFT to transform from time domain to
frequency domain which is formulated as follows:

X (τ, ω) =
∫
∞

−∞

x(i)ω(i− τ )e−jωidi (2)

where x(i) and ω(τ ) represent the input sample and
Hanning window, respectively.

• Generating Mel-scale spectrogram by determining
Mel-scale value (n_mels = 40), converting sound
intensity to log amplitude (mel_db) and normalizing
the mel_db values (normalized_mel ∈ [−1,1] ). In the
case of MFCC, Discrete Cosine Transform (DCT) is
adopted to the logarithm of Mel-spectrogram features
and generated the compressed representation of Mel-
frequencies.

Consequently, the dataset is a set of spectrogram images in
which each image represents an audio sample. For instance,
Fig. 7 illustrates the sequential results of this process from an
input sample.

2) CNN MODEL
The next process is to develop a CNN model with the
generated dataset for making the predictions. In this study,
instead of adopting well-known CNN architecture such

FIGURE 7. The results of visual representation process using log-Mel
spectrogram and MFCC methods.

as VGG or ResNet for training the road sound dataset,
we develop and implement our own CNN model for the
feature extraction. Fig. 8 shows the model structure of
our proposed method. Accordingly, the proposed archi-
tecture comprises 5 convolutional layers interleaving with
4 max-pooling operations and 1 fully connected layers.
Specifically, a convolutional layer can be expressed as
follows:

fi(Xi | θi) = h(W ∗ Xi + b) (3)

where W represents the collection of M 3-D kernels (filters).
b and h(.) refer to the bias term and activation function,
respectively. Regarding the activation function, redirected
linear unit (ReLU) is adopted with the convolutional layers,
which is formulated as follows:

h(x) = max(0, x) (4)

Furthermore, instead of using the max-pooling in the last
layer and flattened, we adopt the Global Average Pool-
ing (GAP) to deal with the overfitting problem by reducing
the number of parameters [30]. Therefore, only two fully con-
nected layer (Dense) is applied in our proposed architecture.
Specifically, the detailed architecture is described as follows:
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FIGURE 8. Proposed CNN architecture with Softmax for the classification.

• Layer 1: Filters=32; Kernel=(3,3); Activation=ReLU;
Max pooling = (2,2).

• Layer 2: Filters=64; Kernel=(3,3); Activation=ReLU;
Max pooling = (2,2).

• Layer 3: Filters=128; Kernel=(3,3); Activation =
ReLU; Max pooling = (2,2).

• Layer 4: Filters=256; Kernel=(3,3); Activation =
ReLU; Max pooling = (2,2).

• Layer 5: Filters=512; Kernel=(3,3); Activation =
ReLU.

3) CLASSIFICATION STAGE
Softmax function with the cross-entropy (loss function) is
generally utilized in CNNs for the multiclass classification
with a posterior probability output in which the function can
be computed as follows:

fi(z) =
ezi∑C
j e

zj
(5)

where zi represent the scores that are inferred by the net of
each class in C. Therefore, the loss function uses the form of
cross-entropy (CE) loss is formulated as follows:

LossCE = −log(
ezp∑C
j e

zj
) (6)

where zp represents the model score for the positive class.
Recent studies take an investigation on a hybrid approach that
combines CNN for feature extraction and other ML models
instead of using softmax function for the classification

process [31]–[33]. Consequently, in this study, we take into
account several standard ML models in literature for the
classification process and using Softmax as the based line
method for the classification. Specifically, the algorithms for
the classification are described as follows:
• KNN: is regarded as one of the simplest classifiers in
which the algorithm requires two main parameters (i.e.,
distance metric and the value of neighbors) [28].

• SVM: is a kind of linear classifier that is able to extract
data in the form of N-dimensional vectors. Specifically,
the objective of this algorithm is to find the optimal
solution for the simple linear mapping [34].

• RF: is an ensemble learning algorithm using tree-type
classifiers in which the number of trees is the most
important parameter [35].

• XGBoots: is another decision tree ensembles method.
Specifically, in this algorithm, individual trees are
generated by using multiple cores, and data is organized
for minimizing the lookup time in order to reduce
the training time and improve the accuracy of the
classification [36].

IV. EXPERIMENT
A. DATA DESCRIPTION
For the experiment, RoadSound14k dataset is collected on
the main road of an urban area. Particularly, in order
to learn more detail of the traffic pattern, the data is
recorded and pre-processed at an asymmetric road as shown
in Fig. 3. Furthermore, traffic conditions in each direction are
determined into three classes which are Morning rush hour,
Non-rush hour, and Evening rush hour. Consequently, there
are 6 classes of the traffic condition in this study which are
explained in more detail in the Tab. 1.

TABLE 1. RoadSound14k dataset.

Specifically, the RoadSound14k dataset contains 14255
audio samples in which the time duration in each file is
around 4 seconds. The audio files are recorded with 48 kHz
and the number of samples is different in each class. For the
training model, we divide the dataset with 70% data to train
(training data), 10% of the validation set, and 20% for testing
data.

B. EXPERIMENTAL SETUP
Tab. 2 illustrates the parameter that we use for the experiment.
Specifically, for the image representation process, the value
of window size and hop size are 2047 and 512, respectively.
The size of input images for the CNN model is 40× 173.
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FIGURE 9. The comparison results between two image representation methods.

TABLE 2. Experiment parameters.

Regarding the training process for feature extraction using
the proposed CNN model, we adopt Adam optimization [37]
with the number of the batch size is 64. The initial learning
rate starts with 1e−3 (minimum 1e−6) with 200 epochs.
Dropout (Default= 0.5) was applied during the training pro-
cess in each layer to reduce the overfitting [38]. Furthermore,
Early stopping is performed by monitoring the validation
error. The network is executed in Python with Tensorflow as
the back-end [39] and works well by a PCwith Core i7 16-GB
CPU and 32GB GPU memories in which we used the GPU
for acceleration.

For the evaluation, predicted results are compared with
the testing data to evaluate the performance metrics. Fur-
thermore, the evaluation criteria include accuracy, precision,
recall, and F1-score, by using the confusion matrix, which is
sequentially calculated as follows:

Accurancy =
TP+ TN

TP+ TN + FP+ FN
(7)

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1 = 2×
Precision× Recall
Prescision+ Recall

(10)

where TP, TN, FP, FN refer to the terms used in the confusion
matrix which are True Positive, True Negative, False Positive
and False Negative, respectively.

C. RESULT ANALYSIS
1) THE RESULT OF TIME-FREQUENCY REPRESENTATION
In order to evaluate the effectiveness of the proposed
approach, three implementations are taken into accounts such
as the effectiveness of the visual representation, the CNN
architecture for feature extraction, and the classification
stage. Fig. 9 shows the results with the proposed CNN using
softmax for the classification of the two image representation
methods. As shown in the figures, using MFCC outperforms
the log-Mel-spectrogram method. Specifically, the log-Mel
spectrogram features involve highly correlation which is
the cause of reducing the performance in some specific
models. Moreover, in the case of MFCC, we remain the
Mel-coefficients without dropping (nmfcc = 40) since this
study using neural networks for feature extraction. Therefore,
for the rest of the evaluation, we utilize the MFCC method
for the image representation process to deal with the RSDC
problem.

2) THE RESULT OF CNN ARCHITECTURE
In order to evaluate the effectiveness of the proposed CNN
model for the feature extraction process. We compare the
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TABLE 3. Comparison results among CNN architectures.

proposed architecture with well-known CNN architecture
such as AlexNet, VGG-16, andVGG-19 in which the softmax
is used for the classification. Tab. 3 shows the results
with different evaluation critical. Accordingly, our proposed
CNN architecture is able to achieve a better result on the
RoadSound14k dataset with the least time-consuming of the
training process. Specifically, Fig. 10 shows the classification
result with Softmax algorithm for RoadSound14k dataset
using our approach.

3) THE RESULT OF CLASSIFICATION ALGORITHMS
As we mentioned above, in the classification stage, several
well-known ML models are taken into account to improve
the performance of accuracy. Consequently, Fig. 11 illustrates

FIGURE 10. The prediction results using the proposed CNN model with
softmax for the classification.

the performance by adopting other ML models for the
classification instead of using the Softmax algorithm. In
this regard, the proposed CNN architecture is utilized as

FIGURE 11. The classification results using different ML models.
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the pre-trained model for feature extraction. As results,
using the hybrid CNN-KNN model is slightly better than
other methods such as CNN, CNN-SVM, CNN-RF, and
CNN-XGboot in terms of training the RoadSound14k dataset.
However, the drawback of KNN is time-consuming in which
the algorithm costs around 40 times for training the features
comparing with the XGboot algorithm. Specifically, KNN is
robust and effective in terms of training the noisy and large
number of input data. Nevertheless, we need to compute the
distance of all training samples which is the cause of high
computation time.More detail of this issue is shown in Tab. 4.

TABLE 4. Accuracy results (%) of different algorithms for the
classification stage.

Consequently, the detailed result in each class of the
proposed approach for the RSDC problem is shown in Tab. 5.
Specifically, the MFCC method is adopted for the image
presentation process. Then, the proposed CNN architecture
with 5 convolutional layers is executed as the pre-trained
model for the feature extraction. Sequentially, the KNN
algorithm is applied in the classification stage to improve the
performance of the classification process.

TABLE 5. Classification results for the RSDC problem of the proposed
CNN-KNN model.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a new approach for traffic density
classification using the road sound datasets, entitled RSDC
problem, which is inspired by the recent advances of urban
sound classification problem using CNN-based methods.
Specifically, traffic sound data is collected on the main
roads with different time intervals for the classification of
the traffic conditions. Particularly, a new CNN architecture
including 5 convolutional layers is proposed for the feature
extraction process. Then, several well-known ML models
are implemented in order to improve the performance of
accuracy. The experiment indicates the promising results of

our method for traffic condition classification using road
sound datasets.

From our point of view, there are two issues that we are
taking into account regarding the future work of this study:
i) increasing the size of the RoadSound14k dataset which
involves various traffic patterns (e.g., daily, weekend, and
weather conditions); ii) applying the proposed method for
smart applications of transportation (e.g, dynamic traffic light
control). Specifically, analyzing traffic density using road
sound datasets is able to provide the traffic condition in a short
time (few seconds) which can be applied for the dynamic
traffic light control to improve the traffic flow in complex
areas.
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