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ABSTRACT Masses are mammographic nonpalpable signs of breast cancer. These masses could be
detected using screening mammography. This paper proposed a system utilizing orthogonal moment
invariants (OMIs) features for mammographic masses detection and diagnosis. In this work, three sets of
OMIs features were extracted. These OMIs features are Gaussian-Hermite moments (GHMs), Gegenbauer
moments (GeMs), and Legendre moments (LMs). The extracted features are fused and presented to the
particle swarm optimization (PSO) algorithm for feature selection. The classification step is achieved using
the support vector machine (SVM). The proposed system is evaluated using 400 regions, extracted from the
DDSM dataset. The obtained results reveal the promising application of OMIs features for masses detection
and identification. It shows that fusing the OMIs features produces an acceptable detection performance
where the area under the receiver operating characteristics (ROC) curve is Az = 0.969 ± 0.01 and the best
performance of OMIs features is Az = 0.856± 0.053 for characterizing the malignancy of masses.

INDEX TERMS Feature extraction, mammographic mass detection, orthogonal moment invariants, particle
swarm optimization (PSO), support vector machine (SVM), PSO-SVM.

I. INTRODUCTION
Breast cancer is the most frequent cancer among women
worldwide. It is impacting 2.1 million women each year.
In 2018, it is estimated that 627,000 women died from breast
cancer. It is approximately 15% of all cancer deaths among
women [1].

Early detection of breast cancer is the key to reduce mortal-
ity rates. The treatment is easy to handle when breast cancer
detected at an early stage, whereas late detection decreases
treatment options.

Mammography is an effective tool that helps in the
early detection of breast cancer. It has the ability to detect
the abnormality before physical symptoms appear. Regular
screening may help to detect breast cancer in its early stage,
before it is developed into a systemic disease and may even
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invade other body parts. The most common symptom of
breast cancer is a lump or mass in the breast. Mammogram
interpretation is a difficult task even for skilled radiologists
due to the overlapping of subtle signs of breast abnormali-
ties and tissue. Computer Aided Detection/Diagnosis (CAD)
systems were developed to assist the radiologist in pining
out the suspicious regions in mammograms. Therefore, there
is a pushing need for developing CAD systems to identify
and classify mammograms in order to reduce the high miss-
detection rate [2].

The CAD system is consists of four steps, namely, image
segmentation, feature extraction, features selection, and clas-
sification. The image segmentation step is used to identify the
region of interest (ROI). Feature extraction aims to calculate
the features that able to determine whether the ROI is normal
or abnormal. Feature selection is the step that identifies the
high significant features that able to distinguish between
different classes. The classification step is to determine the
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ROI class according to the presented feature vector. The
overall performance of any CAD system is affected by the
achievement obtained from each different step. The feature
extraction step is a significant step in developing CAD sys-
tems; however, the complexity of breast tissues makes it is
difficult to find the prominent features that able to distinguish
between different classes [3], [4].

Several attempts have been done to overcome the chal-
lenging issue of extracting an efficient set of features for
mammogram classification [5]–[8]. The studies indicated that
the feature space of ROIs is vast and complicated because
of the wide diversity of healthy tissues and the abnormali-
ties. The use of excessively many features may degrade the
classification methods’ performance and increase the classi-
fier’s complexity. Therefore, the extraction of features is an
essential task for classifying breast tumors. Moreover, with
the advances in information technology, the problem size and
search space increase exponentially for any image processing
problem.

Dahabi et al. [8] applied the t-test to rank the curvelet
and moment features according to their capabilities [4]. Their
results indicated that curvelet moments are efficient and use-
ful for breast cancer diagnosis.

Gardezi et al. [9] presented a feature extraction method
based on decomposing the mammogram image using a
curvelet. They calculated the grey level co-occurrence
matrix (GLCM) of the curvelet. They reported an accuracy of
88.6%, the sensitivity of 76.53%, and specificity of 91.3%.

Jiang et al. [10] proposed a CAD system to define the
masses in digital mammography using scale-invariant shift
transform (SIFT) features. They reported an accuracy of
86.9%. Eltoukhy and Faye [6] applied a statistical method to
maximize the distance between two different mammographic
classes. Their proposed method was applied over wavelet
and curvelet coefficients. The reported results showed an
accuracy of 91.19% classification rate.

Metaheuristic algorithms have been growing for optimiza-
tion problems. These algorithms are driven by simulating the
behaviors of natural phenomena. They have the capabilities
of extracting information from a set of features and often
generate the best features in practice. Therefore, several algo-
rithms have been developed to address optimization prob-
lems. Among them, some metaheuristic search algorithms
with population-based frameworks such as GAs, simulated
annealing (SA), ant colony optimization (ACO), and PSO
[11], [12] have proved adequate capabilities for managing
high-dimensional optimization problems.

Ramos et al. [13] proposed a system to classify mammo-
graphic images as normal or mass. They compared the perfor-
mance of Haralick, wavelet, and ridgelet features. A genetic
algorithm (GA) was employed to select the prominent fea-
tures, and the random forest was used for the classification
task. Their results demonstrated that wavelet-based features
using GA achieved an area under curve (AUC) = 0.90.

Rouhi et al. [14] proposed to use Zernike moment features
to identify the benign mass from malignant. GA is used

as a feature reduction method to improve the accuracy and
decrease the computational cost. They concluded that multi-
layer perceptron (MLP) classifier is promising compared
with the existing methods.

Zyout et al. [7] proposed a false positive reduction algo-
rithm, including the PSOmodel selection, to define an appro-
priate set of features from wavelet and GLCM features. SVM
based classification method is used to determine the class of
the suspicious region. Their results recommended using PSO
to reduce the false-positive rate.

Chen et al. [15] proposed to develop a CAD scheme build-
ing an initial feature pool containing four different groups
of features. Next, a particle swarm optimization (PSO) algo-
rithm was applied to select optimal features so that redun-
dant features can be removed from the feature pool. Finally,
an SVM was used to determine either the case is benign or
malignant.

Other meta-heuristic algorithms have been used to
solve different problems, including mammographic mass
segmentation [16]. Khehra and Pharwaha [17] developed
a comparison study between three different metaheuris-
tic methods, namely GA, PSO, and biogeography based
optimization (BBO), to select an optimal set of features
from 50 features. In their work, they reported a 91% classi-
fication rate is using PSO-SVM. The classification accuracy
rate has been achieved with half of the total features.

From the literature, it is concluded that metaheuristic algo-
rithms have great potential for selecting an optimal subset of
features from a set of features extracted from mammograms.
It has been observed that these biologically motivated meta-
heuristic algorithms perform better than the classical opti-
mization approaches. Themain advantage of these algorithms
is domain-independent nature. Secondly, these algorithms
could find optimal or near-optimal solutions in an ample
search space.

On the other hand, a group of studies focused on the
fusion of texture features of mediolateral oblique (MLO)
and cranial-caudal (CC) views of mammograms to improve
the performance of mammography CADx. Several features
extraction techniques were used including local binary pat-
terns (LBP) [18] and [19], binary Gabor patterns (BGP)
[20], K-Gabor filters [21], gray-level co-occurrence matrix
(GLCM), Law’s texture, GRLCM, and gray level difference
method (GLDM) [22]. The feature vector obtained using
either serial or parallel approach were further engineered and
improved by applying principle component analysis (PCA),
Genetic Algorithm (GA), Particle swarm optimization (PSO),
binary bat algorithm (BBA), binary Firefly algorithm (BFA),
and canonical correlation analysis (CCA). The performance
of LBP fused features was further processed, and the per-
formance improved after applying feature selection based
on Firefly and optimum-path Forest classifier [19]. In [20],
BGP texture features were found more efficient than LBP
features. For classification, classical machine learning algo-
rithms based on K-nearest neighbor, support vector machines
and optimum-path forest classifiers were applied. Reported
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results, from the DDSM (screen-film) and INbreast (digital
full-field) mammography, showed that the fusion of textures
of both mammographic views had improved the performance
compared to pertinent studies.

Wang et al. [23] fused 20 deep features from CNN with
five texture features, five morphological features, and seven
density features of the 400 mammographic mages. Patil and
Biradar [24] applied a hybrid deep classifier based on a com-
bination of convolutional neural network (CNN) and recur-
rent neural network (RNN) namely (CRNN). They extracted
the Grey level co-occurrence matrix (GLCM) and gray level
run-length matrix (GLRLM) features. Their system produced
an accuracy of 90.59%. The deep convolutional neural net-
works (DCNN), indeed, surprisingly solve many image clas-
sification problems. The fantastic trait of DCNN could be
the seamless approach for feature engineering and pattern
classification.However, the screen-film mammography data,
available for the research community, is limited. We believe
that the use of a classical machine learning approach by
focusing on the feature extraction through cascade fusion and
embedded feature selection remains an adequate approach
for successfully solve the mammography CADe and CADx
tasks.

Eltoukhy et al. [25] utilized exact Gaussian-Hermite
moments with K-NN, random forests and AdaBoost clas-
sifiers. Their system is evaluated using mammographic
image analysis society (MIAS) [26] and image retrieval in
medical applications (IRMA) [27] datasets. The obtained
accuracies are 90.56% for MIAS and 93.27% for IRMA.
The successful utilization of orthogonal Gaussian-Hermite
moments [25] motivated the authors to fuse three kinds of
orthogonal moments, GHMs, LMs, & GeMs, for extract-
ing the fine features from the input images. The orthogonal
moments, GHMs, LMs, & GeMs have the following attrac-
tive characteristics:

1) Thesemoments are orthogonal, whichmeans their abil-
ity to represent digital images with minimum informa-
tion redundancy.

2) These moments are invariant with respect to rotation,
scaling and translation, which enables the computer-
based systems to discriminate between similar images,
whatever their orientation, location and distance to the
camera.

3) These moments are computed with highly accurate
methods that reflect the accuracy of extracted features
from the input images.

4) These moments are robust against the well-known
kinds of noise.

Thus, in this study, we hypothesized that it is possible to
identify and fuse the global and local features computed from
the ROIs of mammographic masses. These moment-based
features could produce a high-performance CADe/CADx.
Besides, applying the PSO could reduce the requirement of an
extensive training dataset as the conventional deep learning
approach. Thus the objective of this study is to analyze the

combination of three moment-based features to find out the
best set of features that have the capability to distinguish
between different mammographic masses, Either normal or
abnormal, and the abnormal class is distinguished into benign
or malignant.

Feature Fusion is applied to combine the advantage of dif-
ferent moments features and enable the extraction of coarse
and fine features from the input images. The idea is to com-
bine the substantial information of several moment features
to ensure that no details are lost. Hence, extracting different
texture descriptors from each image will produce a good
representation of the processing image.We proposed combin-
ing three-moment features to investigate the performance of
their combination because of the increasing need to integrate
different moments features. In the following we summarize
the contributions of this work:

1) We exploit the behavior of three distinct moments
features for breast mass detection CADe and breast
mass diagnosis CADx, where each feature type has its
characteristics. A further goal of an advanced fusion
method is to increase the classification accuracy rate
by combining different features sets.

2) A more comprehensive system based on diverse char-
acteristics of various moment features produced. The
obtained results encourage the claim that combing dis-
tinct features will gain the advantage of each type and
remove their drawbacks.

3) Extracting and identifying an adequate set of features
that have high capability to distinguish between the
different mammographic images’ types, either mass or
normal, and then benign or malignant.

4) We are applying embedded feature selection using
PSO-SVM to accomplish: hyper-parameter selection,
feature dimensionality reduction, and SVM-classifier
parameter-tuning and performance optimization.

Orthogonal moments in cartesian coordinates such as LMs,
GeMs, and GHMs are defined by multiplying two basis func-
tions in the x- and y-directions. The x-direction basis func-
tions of LMs, GeMs and GHMs are computed for different
orders, 0, 1, 2, 3, 4, & 5. For simplicity, the computed basis
functions for the order 5 are plotted and displayed in the Fig-
ure (1.a), (1.b) and (1.c), respectively, while the fused basis
functions are plotted and displayed in figure (1.d). The plotted
curves clearly show that both LMs and GeMs are very close
and oscillates at a lower frequency and uniformly distributed
over the interval (−1 ≤ x ≤ 1) while the GHMs are oscillates
at higher frequencies and non-uniformly distributed over the
same interval.

This paper proposes a system to identify the mammo-
graphic mass from the normal regions, and then distinguish
the benign frommalignant regions. Particularly, the proposed
approach takes advantage of combining the theory of orthog-
onal moments with the power of the parameter selection
based on PSO-SVM algorithms. Three sets of OMIs features,
GHMs, GeMs, and LMs, are extracted where the extracted
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FIGURE 1. The basis functions of the orthogonal moments in cartesian coordinates.

features are presented to an SVM classifier. The proposed
system is evaluated using 400 regions obtained from the
DDSM dataset [28]. To the best of the authors’ knowledge,
there is no previous study has applied orthogonal moments
feature and PSO-SVM for implementing the detection and
diagnosis tasks of mammographic masses.

The rest of this paper is organized as follows. Section II
briefly presents the preliminaries of OMIs for feature extrac-
tion. Section III discusses the PSO-SVM algorithm. Section
IV explains the proposed CAD system. The results are pre-
sented and discussed in SectionV. Finally, the presentedwork
is concluded in Section VI.

II. ORTHOGONAL MOMENT INVARIANTS
This section presents the preliminaries of proposed orthogo-
nal moment invariants (OMIs) features. Since the images of
the DDSM dataset are captured and rasterized using Carte-
sian pixels, orthogonal moments in Cartesian coordinates
are preferable where no need for coordinate conversion nor
image mapping. Orthogonal moments in Cartesian coordi-
nates of order (n+ m) are:

An,m =
1

CnCm

∫ 1

−1

∫ 1

−1
f (x, y)Pn(x)Pm(y)w(x)w(y)dxdy (1)

where n ≥ 0, m ≥ 0; Cn and Cm are the normaliza-
tion factors; Pn(x) and Pm(y) are the orthogonal polynomial
functions; w(x) and w(y) are the weight function in x− and
y− directions, respectively. Table 1 gives a concise and

explicit mathematical formula for the utilized three orthog-
onal moments.

Where 0(·) and σ are gamma function and the standard
deviation and b n2c is:

b
n
2
c =


(n+ 1)

2
for odd n

n
2
, for even n

(2)

For moment order, Max, the total number of independent
moments is:

Total =
(Max + 1)(Max + 2)

2
(3)

TheGegenbauer polynomials are generic polynomials with
the scaling parameter α > −0.5. Chebyshev polynomials of
the second kind and Legendre polynomials are special cases
of Gegenbauer polynomials when α = 0.5 and α = 1,
respectively. Pawlak [29] shows that the scaling parameter
enabled Gegenbauer moments to extract both local and global
features of an image.

A. ACCURATE COMPUTATION OF ORTHOGONAL
MOMENTS
Orthogonal moments as defined in Table 1 are computed
accurately by using the following form:

Anm =
1

CnCm

M∑
i=1

N∑
j=1

Tnm(xi, yj)f (xi, yj) (4)
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TABLE 1. Mathematical formulae for the utilized three orthogonal moments.

where

Tnm(xi, yj) =
∫ xi+

1xi
2

xi−
1xi
2

∫ yj+
1yj
2

yj−
1yj
2

Pn(xi)Pm(yj)w(xi)w(yj)dxdy

(5)

Double integration represented by equation (5) could be
evaluated separately. For a digital image of size M × N , the
points (xi, yj) ∈ [−1, 1] × [−1, 1] are:

xi =
−2+ (2i− 1)

2
1x; yj =

−2+ (2j− 1)
2

1y; (6)

The constant steps are 1x = 1xi = 2
M and 1y =

1yj = 2
N , where i = 1, 2, 3, . . . . . . . . . . . . .M , j =

1, 2, 3, . . . . . . . . . . . . .N .
Equation (4) could be rewritten as follows:

Anm =
1

CnCm

M∑
i=1

N∑
j=1

IX (xi)IY (yj)f (xi, yj) (7)

where the kernels are defined as follows:

IX (xi) =
∫ xi+

1xi
2

xi−
1xi
2

Pn(xi)w(xi)dx (8)

IX (yj) =
∫ yj+

1yj
2

yj−
1yj
2

Pm(yj)w(yj)dy (9)

Representing the orthogonal polynomials and the weight
functions,Pn(yj),Pm(xi),w(xi) andw(yj). Using Table 1 yields
six kernels in x− and y− directions for computing GHMs,
GeMs and LMs, respectively. The kernels, IXn(xi) and
IYm(yj), are exactly computed by using the principle of Calcu-
lus. Details for this computational approach for the three sets
of orthogonal moments are presented in LMs [30], GeMs [31]
and GHMs [32].

Based on the extreme importance of the invariance to
rotation, scaling and translation (RST) in pattern recogni-
tion applications. Highly accurate methods were proposed
for Legendre moment invariants (LMIs) [33], [34], Gegen-
bauermoment invariants (GeMIs) [35] andGaussian-Hermite
moment invariants (GHMIs) [36]. Easily use of the OMIs,
required converting the 2D matrices of the three kinds of
moment invariants into 1D vectors which achieved by the
pseudo-code [37].

Each one of the orthogonal moments, LMs, GeMs &
GHMs, are used individually to extract the features from the
input images. Based on equation (3), the total number of
the extracted features is the same where the length of each
feature vector is Total. The fusion of the features is carried
by combining the feature vectors of three moments for each
ROI. The extracted features are fused in one feature vector of
the length, 3× Total.

III. PSO-SVM ALGORITHM
Feature engineering aiming at extracting a few but discrim-
inative features, which is the essential components of any
machine learning algorithms, including SVMs. To improve
the generalization capacity of the non-linear SVM classifier,
hyper-parameters need to be optimized. The SVM hyper-
parameters include the input features, the kernel type and its
control parameters. The straightforward and optimal solution
is through the exhaustive or even the grid search to find
the optimal parameters. However, such search methods are
impractical and the computational complexity is extreme.
A suboptimal but efficient alternative of the grid search and
exhaustive search is themetaheuristic algorithms such as PSO
and GA. Among these algorithms, PSO has been shown to be
very efficient with many features; simple structure, easiest to
implement, and its ability to avoid local minima. Since PSO
algorithm was introduced by Eberhart and Kennedy in 1995,
many studies have reported various PSO modifications and
successfully used it [7], [38].

Particle Swarm Optimization (PSO) is a biology-inspired
metaheuristic search approach. The critical concept of PSO
is the swarm intelligence in which members of the swarm
collaborate to solve the optimization problem. Each member
(candidate solution or particle) of the population belongs to
the multidimensional parameter space of the objective func-
tion of the problem. PSO algorithm, in particular, accomplish
the global optimization task by utilizing both local fitness
of individual particles and the experience and fitness so far
achieved by the entire population. The fitness of each particle
is continuously (each step of the search process) evaluated
and its characteristics are updated using the best experience
achieved so far by other members in the swarm. Unlike
genetic algorithms, PSO uses a velocity operator rather than
the cross-over andmutation to control and update the location
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and search direction of each particle. Also, use a large popu-
lation helps PSO to escape from local minima. For a better
generalization capacity and higher classification accuracy,
both classifier’s parameters and hyper-parameters (kernel
function and feature spaces) need to be optimized. For this
purpose, we adopted the PSO-SVM algorithm, an embedded
feature selection and model selection approach from [7]. The
classifier type and the feature extraction methods determine
the dimensionality of the PSO search space to be used for
optimizing the performance of PSO-SVM algorithm. The
procedure describing the proposed PSO-SVM is presented in
Algorithm 1.

IV. THE PROPOSED CAD SYSTEM
This section presented a description of the proposed CAD
system. This work is primly applies the OMIs features, first,
for classifying a mammographic region into normal and
abnormal classes by characterizing the presence of masses
in the ROI, and second, for classifying an abnormal region
into benign or malignant. The CAD system is consists of four
steps, segmentation, feature extraction, features selection,
and classification.

In this work, the image segmentation is achieved manually
using the given center of the suspicious region as given in
the dataset by the radiologists. Extracting and identifying
adequate features is a vital step to achieve a high classification
performance. For each ROI, three sets of OMIs features were
extracted. Each one of the orthogonal moments, LMs, GeMs
& GHMs, are used individually to extract the features from
the input ROI. The total number of the extracted features for
each ROI is 231 features. The fusion of the features is carried
by combining the feature vectors of three moments for each
ROI. The extracted features are fused in one feature vector of
length 693 features.

The extracted features are input to an SVM classifier.
Common data partitioning and cross-validation procedures
are applied to the validation datasets to obtain training and
testing sets that will be used to evaluate the discriminative
power of the moment based features.

To further improve the overall performance of the proposed
CAD system, we used the PSO-SVM embedded feature
selection approach, for both determining the most important
features and also for tuning the parameters of the SVM clas-
sifier. As for the settings of the PSO algorithm, we followed
the work in [7]. The proposed PSO-SVM parameter selec-
tion, OMIs features extraction, and SVM based classification
methods were all compiled in MATLAB. Figure 2, illustrates
the steps of the proposed CADe/CADx system.

A. PSO-SVM SETUP
In this work, the PSO-SVM settings include the fitness crite-
rion based on the Az-value of the ROC curve, the swarm size
is set to 100 particles structured as described in Section III,
and the maximum number of iteration of 50. Further, the pop-
ulation of the swarm is initialized assuming that each param-
eter belongs to a random variable that is uniformly distributed

Algorithm 1 PSO-SVM Algorithm
1: Initialize population of dimension L = N + 2 is rep-

resented as P = [P1,P2, . . . ,PM ]T with size M . The
dimension N + 2 consists of the N features to be opti-
mized and the two dimensions are used for tuning the
classifier parameters γ and C . Also T denotes the trans-
pose operator;

2: Set two random numbers g1, g2 generated among [0 1],
an inertia weight ω, and parameters c1, c2;

3: Initialize positions Px = [Px,1,Px,2, . . . ,Px,L] T of each
particle Px where x = 1, 2, . . . ,M of population;

4: Initialize velocity Vx = [Vx,1,Vx,2, . . . ,Vx,L] of each
particle Vx where x = 1, 2, . . . ,M of population;

5: Evaluating the fitness of each particle F iP = f (Pix),∀x,
and get the best particle of population up to iteration i;

6: Set iteration count i = 1;
7: Comparing the fitness values and select the local best

particle Lbest iP = Pix , and global best particle Gbest i =
Pi;

8: Compute an inertia weight ω;
9: Update of each particle the position and velocity

V i+1
x,y = ω × V

i
x,y + c1g1(Lbest

i
x,y − P

i
x,y)

+c2g2(Gbest iy − P
i
x,y) (10)

Pi+1x,y = Pix,y + V
i+1
x,y (11)

where the index x = 1, 2, . . . ,M and the index y =
1, 2, . . . ,L.

10: Evaluate updated fitness F i+1x = f (Pi+1x ),∀x (of each
particle) and get the best particle;

11: Update Lbest ∀ x (of each particle)

If F i+1x < F ix then Lbest
i+1
x = Pi+1x ;

else Lbest i+1x = Lbest ix;

12: Update Gbest

If F i+1b1 < F ib then set b

= b1 and Gbest i+1 = Lbest i+1b1 ;

else Gbest i+1 = Gbest i;

13: If i < max of iteration then i = i+1 and go to step 7; else
go to step 14;

14: Get optimum solution: print the outputs of generation as
Gbest i;

15: Retrain SVM with optimum parameters and features;
then identify unknown samples on testing dataset.

in the corresponding search space. As for the control parame-
ter PSO parameters controlling the search process: c1 and c2
were both set to 2, inertia ω monotonically decreased from
1.2 to 0.4 as the number of iterations increased. The PSO
search process was terminated either if the maximum number
of iterations of 50 was reached or perfect Az-value achieved.
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FIGURE 2. The proposed CADe/CADx system steps.

B. PERFORMANCE EVALUATION
For evaluating the discriminating ability of theOMIs features,
each dataset was randomly partitioned into training and test-
ing sets. With the two-third of the dataset used for training

and the remaining one-third was held for testing. To achieve
a better generalization capacity of the C-SVM classifier,
10-fold cross-validation was further applied to the training
set to accomplish SVM learning and parameters optimization.
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Namely, the cross-validation and heuristic search were used
to tune the classifier regularization C constant and the radial
basis function control parameter γ .
With the use of the SVMclassifier for solving the two-class

classification problem, the classifier’s decision value (or the
class membership) was used to produce the receiver operating
characteristics curve (ROC). The area under the ROC curve
or Az-value was estimated. Additionally, we included, for
each ROC curve, the corresponding accuracy, false-positive
fraction (FPF), and false-negative fraction (FNF). For the
final evaluation, we used the average of all trials of the cross-
validation and testing stages.

V. EXPERIMENTAL RESULTS AND DISCUSSION
For evaluating and obtaing the results of the applying the
proposed OMIs features to distinguish between abnormal
and normal classes (CADe or detection) and to differen-
tiate malignant from benign classes (CADx or diagnosis),
we used a set of mammographic regions of interest (ROIs)
extracted from the digital dataset for screening mammogra-
phy (DDSM) [28]. The follwing subsection is briefly describe
the used validation datasets.

A. MAMMOGRAPHY DATASETS (DDSM)
The DDSM dataset is the largest, public and free mammog-
raphy dataset, which is commonly used by the mammogra-
phy image analysis research community. Two ROI datasets,
as described in Table 2, named detection and diagnosis sets
were formed. The dataset used for validating the detec-
tion task contained 200 ROIs depicting annotated masses
and 200 regions representing normal breast parenchyma.
Each case, in the DDSM dataset, includes radiologists anno-
tation (a chain code representing the radiologist delineation of
the abnormality), which we have used to extract a rectangular
patch containing the mass in the center.

On the other hand, normal suspicious regions, each of
size 512 × 512 related to normal breast parenchyma, were
manually extracted, form normal mammograms, such that
a selected ROI does not overlap with pectoral muscle or
radiographic background. Moreover, for normal regions were
obtained from Normal 11 and Normal 09 volumes of the
DDSM dataset. The sample of the regions used are shown
in Figure 3. We excluded normal ROIs and formed another
dataset, CADx dataset, from the 200 abnormal (100 benign
and 100 malignant) ROIs to apply the proposed features to
classify benign and malignant masses. The summary of the
regions in the detection and diagnosis datasets are described
in Table 2.

B. RESULTS OF THE PROPOSED CADe SYSTEM
Three different OMIs features were first used for imple-
menting the CADe system (i.e. classification of abnor-
mal and normal regions). In other words, we have applied
the different feature sets, namely, GeMs-features, GHMs-
features, and LMs-feature for distinguishing between nor-
mal breast parenchyma related ROIs and mass depicting

TABLE 2. Description of the ROI datasets.

(or abnormal) ROIs. Table 3 presents average cross-
validation and test results of applying different OMIs features
to the CADe dataset (i.e. the dataset with 200 abnormal
and 200 normal ROIs). Obtained results, namely, ROC analy-
sis (Az-value) of SVMclassification results show an excellent
performance of using various moment features for character-
izing the presence of masses. GeMs-features produced aver-
age test classification results of 0.929±0.021 (0.935±0.014)
which are a little higher than 0.926± 0.021 (0.935± 0.014)
and 0.918± 0.021 (0.926± 0.011) respectively produced by
GHMs-features and LMs-features.

To further examine the adequacy of applying moment
features for implementing both CADe and CADx systems,
we have examined whether the early fusion (combining) of
different feature subsets can boost the classification perfor-
mance. The results of different feature combinations are also
presented in Table 3. The obtained results, from Table 3,
show that combining the three sets of features, (GeMs +
GHMs + LMs) produced an average classification perfor-
mance of 0.935 ± 0.022 (0.948 ± 0.013). These results are
higher than the best classification performance produced by
individual feature sets, namely, GeMs-features. However, the
cost of such a small performance improvement was obvi-
ously higher dimensionality of the features space of (231 ×
3 = 693) compared to 231 features in case of using an
individual features subset form classification. We have also
combined features pair-wise that led to features space with
the dimensionality of 462 in each combination. The combina-
tion of GeMs-features and LMs-features, called GeMs/LMs-
features, produced the highest classification results 0.943 ±
0.027 (0.95± 0.013). This is slightly higher than the perfor-
mance achieved using GHMs/LMs-features. Consequently,
the use of either individual feature subset or combined feature
subsets is promising for the detection of abnormalities.

C. RESULTS OF THE PROPOSED CADx SYSTEM
We also applied OMIs features for characterizing the malig-
nancy of masses in mammographic regions. Table 4 presents
the results of classifying ROIs in the CADx dataset.
This dataset consists of regions depicting 200 masses of
which 100 are benign and 100 are malignant. The over-
all average Az-value obtained using various feature sets
show that the performance of the proposed features, for
implementing CADx systems (i.e. distinguishing between
ROI depicting malignant masses and those regions depicting
benign masses), is not as efficient as for the CADe systems
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FIGURE 3. Samples regions of the detection and diagnosis datasets; regions with malignant masses (first row), regions with benign masses
(second row), and regions related to the normal breast parenchyma (third row).

(i.e. characterizing the presences of masses). Our justifica-
tion for such a performance of CADx algorithms is that the
task of characterizing the malignancy of abnormality, even
when done by expert radiologists is much more difficult than
accomplishing the detection task. This is mainly due to the
obscured and vast variation of the appearance of malignant
masses on mammograms.

From the results presented in Table 4, the highest
classification performance, in terms of average Az-value,
of CADx algorithms using different OMIs features is 0.765±
0.065 (0.798 ± 0.052) which was produced by GHMs-
features, which slightly outperformed GeMe-features and

LMs-features as well. Combining different features subsets,
including pair-wise combinations, was not useful and even
provided inferior classification performance. For instance,
results of combined features, also included in Table 4, show
that the ABC-features with 693 features provided an average
classification performance of 0.764±0.054 (0.803±0.040).
The obtained classification performance, on the test dataset,
was almost equal to that produced using B-features (GHMs)
and A-features (GeMe) individually applied.

Moreover, obtained classification results demonstrated that
different features sets (including combined features) pro-
duced FPF results that is significantly higher than FNF
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TABLE 3. Classification results of various feature sets applied to distinguish between abnormal and normal classes(A = GeMs; B = GHMs; C = LMs).

TABLE 4. Classification results of OMIs feature sets applied to distinguish between malignant and benign classes (A = GeMs; B = GHMs; C = LMs).

TABLE 5. Classification results of selected OMIs features applied to the CADe(A = GeMs; B = GHMs; C = LMs).

results, which implies that using various CADx system
benign masses were misclassified at higher rate than malig-
nant masses.

D. RESULTS OF APPLYING PSO-SVM FEATURE SELECTION
To examine whether applying the feature selection can
improve the classification performance of the proposed fea-
tures, we have adopted the embedded feature selection and
classification system based on PSO-SVM algorithm from [7].
Such an approach provided a simultaneous framework for
accomplishing the parameters and feature selection tasks

such that both dimensionality reduction of the feature space
and higher classification performance can be attained. The
classification results, after applying PSO-SVM for param-
eters and feature selection, produced from individual and
combined OMIs feature sets are presented in Tables 5 and 6.

For distinguishing between abnormal and normal regions,
as shown by results in Table 5, using the feature selec-
tion based on PSO-SVM, we were not only able to sig-
nificantly reduce the dimensionality of the feature space
but also we have improved the classification performance.
For instance, using individual feature sets, the highest
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TABLE 6. Classification results of selected OMI features applied to the CADx or detection dataset (A = GeMs; B = GHMs; C = LMs).

TABLE 7. The comparison between the proposed system and the other related work.

classification results of 0.933 ± 0.022 was produced from
GeMe-features with the average size of the optimized fea-
ture space of 88.35 ± 10.69 features (original feature space
is 231). When combined feature sets were used for clas-
sification, the fused set of features provided the best clas-
sification performance of 0.969 ± 0.01 with the feature
space reduced from 693 to an average of 177.72 ± 30.55
features, which is almost 25% of the original features
set.

For classifying regions with benign or malignant masses
with the PSO-SVM approach used for selecting the most
relevant OMI features and for performance optimization,
results from Table 6 show that applying the PSO-SVM opti-
mization, indeed, reduced the dimensionality but, unexpect-
edly, degraded the classification performance provided by
most features sets. The highest classification performance
of 0.817 ± 0.04, however, produced by ABC-features that
slightly outperformed previous performance attained without
applying the feature selection step. The dimensionality of
the feature space, in case of using all features, was reduced
from 693 to an average of 275.2± 45.473 features, which is
almost 39.6% of the total features set.

The high dimensionality of the feature space, namely, the
fused space, presented a practical and main computational
challenge as it is expected to require larger population swarm
size or higher number of iterations to enable the PSO-SVM
escape from the local or suboptimal solution. The next sub-
section presents a comparison study of the proposed system
for solving the detection (CADe) and diagnosis (CADx) tasks
of masses in mammographic images against state of the art.

E. COMPARISON STUDY
This work proposed to combine the advantages of orthogonal
moments features with the PSO-SVM to achieve high perfor-
mance CAD system. The results of the proposed detection
and diagnosis system, as shown in Table 7, are promising
and competitive when compared with the state of the art.
Moreover, the PSO based SVM classifier was not only able
to select the appropriate input features but also optimized
the SVM performance. However, the straight comparison of
the proposed system results with those from existing sys-
tems cannot be direct because of differences, among systems,
in terms of datasets used for the training and validation of the
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algorithm. The community of mammography CAD research
mostly used two common and public datasets of screen mam-
mography: the DDSM [28] and MIAS [26] datasets. Another
difference is the performance metrics used for the evaluation.
For this, we reported our results using both Az-values of the
ROC curve and accuracies. In addition to the mammogra-
phy data. Other differences as shown in Table 7, however,
including the machine learning algorithms used for classifi-
cation and feature selection approach, including the PCA and
genetic algorithms.

Considering the key difference in the literature of mammo-
graphic mass CAD systems, namely, the validation datasets
and for providing meaningful and fair comparison, the focus
will be on those studies [13], [14], [40] used DDSM dataset
for the evaluation of the CAD systems. For accomplished
mammography detection task, the proposed work, by com-
bining PSO-SVM model selection and orthogonal moments
had outperformed, in terms of the classification accuracy or
the Az-value, existing systems [13], [40]. For instance, the
proposed CADe system provided an average accuracy of
93.5±0.01 that higher than 90 achieved form combining GA
and random forest classifier [13]. As for accomplishing the
CADx task, the proposed system is competing very well with
FLDA approach form [40] but inferior to the performance
obtained from the GA and MLP system [14].

VI. CONCLUSION
This paper proposed a CAD system combining orthogonal
moments for feature extraction and the PSO-SVM for hyper-
parameter and parameter optimization to accomplish the two
CAD tasks. The first task classified regions of interest (ROIs)
of digitized mammograms into mass and normal breast tis-
sue regions. The second task focused on characterized the
malignancy of mammographic masses. This paper focused
on the examining whether the use of OMIs features is ade-
quate or not. Three sets of OMIs features were extracted
from mammographic ROI dataset with 200 masses. On the
CADe or detection’s dataset, the combined OMIs features
achieved an average Az value of 0.969 ± 0.01. As for the
application of OMIs features for solving the CADx task, the
classification performance was good but not as high as for
the detection task. However, obtained results show that the
potential application of OMIs features for solving the feature
extraction task in CADe and CADx systems.
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