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ABSTRACT Medical imaging techniques play a critical role in diagnosing diseases and patient healthcare.
They help in treatment, diagnosis, and early detection. Image segmentation is one of the most important
steps in processing medical images, and it has been widely used in many applications. Multi-level threshold-
ing (MLT) is considered as one of the simplest and most effective image segmentation techniques. Traditional
approaches apply histogram methods; however, these methods face some challenges. In recent years, swarm
intelligence methods have been leveraged in MLT, which is considered an NP-hard problem. One of the
main drawbacks of the SI methods is when searching for optimum solutions, and some may get stuck in
local optima. This because during the run of SI methods, they create random sequences among different
operators. In this study, we propose a hybrid SI based approach that combines the features of two SI methods,
marine predators algorithm (MPA) and moth-?ame optimization (MFO). The proposed approach is called
MPAMEFO, in which, the MFO is utilized as a local search method for MPA to avoid trapping at local
optima. The MPAMFO is proposed as an MLT approach for image segmentation, which showed excellent
performance in all experiments. To test the performance of MPAMFO, two experiments were carried out.
The first one is to segment ten natural gray-scale images. The second experiment tested the MPAMFO for
a real-world application, such as CT images of COVID-19. Therefore, thirteen CT images were used to
test the performance of MPAMFO. Furthermore, extensive comparisons with several SI methods have been
implemented to examine the quality and the performance of the MPAMFO. Overall experimental results
confirm that the MPAMFO is an efficient MLT approach that approved its superiority over other existing
methods.

INDEX TERMS Image segmentation, multi-level thresholding, moth-?ame optimization (MFO), marine
predators algorithm (MPA), COVID-19, swarm intelligence.

I. INTRODUCTION

With the fast spread of the new coronavirus, COVID-19,
researchers are trying to address different aspects related to
this new virus. One of the most important issues is diagnos-
ing COVID-19 using different tests, including the real-time
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polymerase chain reaction (RTPCR), and chest CT. The
RT-PCR is a time-consuming test, and also it faces
false-negative diagnosing [1]. Therefore, chest CT scans may
play an important role in diagnosing COVID-19. Medical
imaging technologies have been implemented in different
diseases diagnosing. Image segmentation is an essential tech-
nique in image processing, and it is an important procedure in
various image and vision applications, which can efficiently

VOLUME 8, 2020


https://orcid.org/0000-0002-7682-6269
https://orcid.org/0000-0002-0666-7055
https://orcid.org/0000-0001-6551-2371
https://orcid.org/0000-0001-6767-7540
https://orcid.org/0000-0002-6561-2951
https://orcid.org/0000-0003-4489-2488
https://orcid.org/0000-0002-6956-7641

M. Abd Elaziz et al.: Improved MPA With Fuzzy Entropy for MLT: Real World Example of COVID-19 CT Image Segmentation

IEEE Access

detect a region of interest (ROI) form other outsides. It is
applied to classify image pixels into different classes which
contain similar properties, such as brightness, gray level,
contrast, texture, and color. Also, itis able to extract important
features, such as texture and shape of tissues [2]

The segmentation process has been applied in various
fields and applications, for instance, medical image [3],
remote sensing [4], video surveillance [5] and other appli-
cations [6], [7]. Several types of image segmentation tech-
niques have been proposed and applied, such as clustering [8],
thresholding [9], edge detection [10], and edge detection [10].

Thresholding is considered one of the most important
image segmentation techniques, which is implemented to
segment images depended on the information in the global
gray values of the image histogram [11]. In general, there are
two types of thresholding, called bi-level thresholding (BLT)
and multi-level thresholding (MLT). For BLT, an image is
divided into two classes, in which one class contains pixels
with gray levels above a threshold, and the other class con-
tains the rest [11]. However, the BLT faces a challenge in
case of a given image has more than two classes. Therefore,
the MLT can solve this challenge by implementing the sub-
division of a given image into more classes.

Traditional MLT segmentation methods are based on the
image grey-level histogram [12] by minimizing or maxi-
mizing the fitness functions, for example, entropy [13] and
Otsu [14]. However, there are certain limitations and short-
comings in the performance of traditional MLT techniques.
For example, they are time-consuming, especially when the
number of threshold levels is increased. In addition, they
easily stuck at a local point. Therefore, optimization methods
have been widely employed to enhance MLT since MLT can
be considered as NP-hard problem. In the recent decade,
several optimization methods have been used to improve
MLT, such as MFO [15], cuckoo search (CS) [16], [17], ant
colony optimizer (ACO) [18], chaotic bat algorithm (CBA)
[19], WOA [20], and firefly algorithm (FA) [21]-[24].

Although the optimization algorithms mentioned above
showed good performances in MLT since they can find the
optimal threshold value, they face some challenges, such as
getting stuck at local optima or suffer from slow conver-
gence [25]-[30]. In general, according to the NFL (No free
lunch) theorems, no optimization method can be the best for
solving all problems. In general, some optimization methods
have good exploitation ability, and some have good explo-
ration ability [31]. To address these issues, various hybrid
optimization methods have been proposed. For example,
a hybrid of FA and social spider optimization (SSO) was pro-
posed by [32] for MLT image segmentation. The new hybrid
optimization method achieved better results than individual
optimization methods. In [33], an MLT image segmentation
method based on a hybrid of PSO and BFO is proposed. Eight
images were used to test the hybrid model and reached good
results for both MLT and BLT. More so, MLT and optimiza-
tion methods have been applied for different medical image
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segmentation, such as CT images [34]-[36], MR images [37],
[38], MRI image [20], [39].

Following the hybridization concepts, in this study, we pro-
pose an efficient MLT method based on an improved marine
predators algorithm (MPA) for image segmentation. The
MFO is employed as a local search for the MPA to improve
its performance. The proposed method, MPAMFO, is an
efficient hybrid optimization method for MLT that over-
comes the shortcomings of individual optimization meth-
ods using the power of both MPA and MFO. The MPA is
a new nature-inspired optimization algorithm proposed by
Faramarzi et al. [40]. It is inspired by the movements of
Lévy and Brownian in ocean predators. Twenty-nine engi-
neering problems were used to test its performance, and
it showed high performances in various optimization prob-
lems. MPA has some merits, such as its requirement for
the least number of tunable parameters, its simplicity in the
implementation, and flexibility in modifying the basic MPA
version that attracted Yousri et al. [41] to apply basic MPA
for photovoltaic reconfiguration. Whereas, the shortage of
the MPA while the exploration stage for the search space
motivated Abdel-Basset et al. [42] to modify the MPA by
using ranking-based diversity reduction (RDR) methodology
to discover better solutions while applied with for COVID-
19 Detection Model. Accordingly, proposing a robust MPA
variant is a challenged door to tackle its shortage.

The MFO is a nature-inspired optimization method pro-
posed by [43], which simulates the behaviors of the moth
for path navigation. In recent years, it has been applied to
solve various optimization problems. Kotary and Nanda [44]
applied MFO to improve distributed data clustering in wire-
less sensor networks (WSN). The main function of the dif-
fusion MFO is by minimizing intracluster distance, which
results in determining the optimal partition of each sensor
node. Ewees et al. [45] used the MFO to improve Arabic
handwritten letters recognition. They applied the MFO as a
feature selector, which achieved a high accuracy rate com-
pared to previous approaches. In [46], MFO was applied
to enhance ANFIS model to forecast the number of con-
firmed cases of the new coronavirus (COVID-19). In [47],
a feature selection mechanism based on differential evolu-
tion and MFO is proposed. They tested the proposed hybrid
model with different CEC2005 benchmark problems, and
they found that the proposed method outperformed several
existing methods. Zhao et al. [48] applied MFO to optimize
the grey model (1,1) with a rolling mechanism for forecasting
electricity consumption in Inner Mongolia. The evaluation
results showed that MFO improved forecasting performance.
It has also been applied for solving different mathemati-
cal problems, for example, multi-objective problems [49],
binary problems [50], and and other applications [51], [52].
By inspecting the literature, one can observe that implement-
ing the logarithmic spiral function in MFO in the phase of the
moths update their position concerning the flame strength-
ened the searching ability of the algorithm. Moreover, MFO
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simplicity and flexibility motivated numerous researchers
have been working on it.

Motivated by the merits of the MFO of its ability to dis-
cover the search space efficiently and demerit of MPA in
detecting better solutions in the exploration phase, in this
work, a new hybrid version of MPA is based on MFO has
been introduced. The main idea of the proposed hybrid MPA
version by MFO (MPAMFO) is to enhance the exploration
ability of the MPA using the operators of the MFO algorithm.
This achieved by making the agents/solutions be competitive
in the exploration phase by using the probability of the fitness
value of each solution to determine either the operators of
MPA or MFO will be used to update the value of the current
agent, while the exploitation phase is performed similarly to
the traditional MPA.

In this paper, we evaluate the MPAMFO using two exper-
iments series. In the first experiment series, we used a group
of ten images. These images were widely used in previ-
ous studies to test various segmentation methods. Moreover,
to implement MPAMFO in a real-world application, we test it
to segment chest CT images of COVID-19 [53]. The perfor-
mance of both experiment series showed that the MPAMFO
is an efficient segmentation method that can be applied in
various segmentation applications including medical images.

The main contributions of this study can be summarized
as:

1) We propose an MLT method for image segmentation
based on a modified version of the new optimization
method, called MPA.

2) The MFO operators are employed to improve the
exploitation ability of the MPA.

3) We test the performance of the proposed method in
two experiment series, using ten gray-scale popular
images and thirteen CT images of COVID-19. More-
over, we compared it to several state-of-art methods.

The rest of this paper is organized as follows. Section II
presents some of the existing works of the MLT and opti-
mization methods in image segmentation, including medical
images. In Section III, we present the problem definition and
the preliminaries of MPA and MFO. The proposed method
is described in Section V. The experimental evaluation and
comparisons are presented in Section VI. In Section VII,
we conclude the paper.

Il. RELATED WORK

Mousavirad and Ebrahimpour-Komleh [54] proposed an
MLT approach using Human Mental Search (HMS). They
applied Kapur and Otsu as objective functions. The HMS
was compared to several optimization methods, and it
showed significant performance. In [55], several MH
algorithms are used for MLT, such as WOA, GWO,
CS, biogeography-based optimization, cuckoo optimization
algorithm, teaching—learning-based optimization, imperialist
competitive algorithm, and gravitational search algorithm.
In the same context, the authors in [56] applied differ-
ent optimization algorithms for MLT. Monisha et al. [57]
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employed Social Group Optimization for MLT for RGB
images. Also, Bhandari [58] presented a new beta differential
evolution (BDE) for color image MLT.

Huang and Wang [59] proposed an MLT method based
on the quantum particle swarms algorithm (QPSO) algo-
rithm for image segmentation. They used Otsu’s fitness func-
tion. They concluded that compared to traditional methods,
the QPSO improved both accuracy and speed. Qin et al. [60]
employed the subspace elimination optimization (SSEO)
for MLT image segmentation. They applied the SSEO for
four different images, and they compared it to the parti-
cle swarm optimization (PSO). They found that SSEO has
better performance in all tested images. Both moth-flame
optimization (MFO) algorithm and whale optimization algo-
rithm (WOA) were used for MLT in [61]. The authors used
Otsu’s was used as the fitness function, and they test both
WOA and MFO using several images. They concluded that
MFO had better performance than WOA. Farshi [62] pro-
posed an MLT method based on animal migration optimiza-
tion (AMO) algorithm. Different images were used to test
the performance of the AMO algorithm, and it was com-
pared to several optimization methods, such as PSO, bacte-
rial foraging algorithm (BFA), and genetic algorithm (GA).
As the author mentioned, the AMO algorithm provided better
results. In [63], an MLT method based on electromagnetism-
like mechanism optimization (EMO) and Renyi’s entropy
is proposed for image segmentation. The evaluation results
showed that EMO could find the optimal threshold value
better than several existing optimization methods.

Tuba et al. [64] proposed an MLT method based on the
fireworks algorithm for image segmentation. They evaluated
the proposed method using several images, and it showed
good performance in all tested images. In [9], an MLT
method based on PSO and maximum entropy is proposed.
The PSO showed good performances in several tested images
compared to traditional methods. Ali ef al. [65] proposed
an improved differential evolution (DE) called synergetic
DE (SDE) for MLT image segmentation. Their evaluation
outcomes showed that the SED could perform better than
other MLT methods in terms of reaching the optimal thresh-
old value. The galaxy-based search algorithm (GbSA) was
applied by [66]for MLT maximizing Otsu’s fitness func-
tion, and it approved its good performance to determine the
optimal thresholding value. Ewees er al. [67] proposed a
hybrid of the artificial bee colony (ABC) and sine cosine
algorithm (SCA) for MLT image segmentation. The SCA
is employed as a local search for the ABC to enhance its
performance. The hybrid model was applied for MLT using
several images and showed good performances compared to
several existing MH methods. In [68], an MLT method based
on fuzzy entropy and a hybrid of the salp swarm optimizer
(SSO) and the MFO was proposed. It was evaluated using
different images, and it showed better performance compared
to individual optimization algorithms. Furthermore, a hybrid
of gravitational search algorithm and GA was proposed
by [69] for MLT image segmentation using the entropy fitness
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function. Also, a hybrid of the spherical search opti-
mizer (SSO) and SCA is proposed by [70]. Fuzzy entropy
is applied as the fitness function. The proposed model also
confirms its performance using different images and by com-
paring it to several state-of-art models.

Moreover, MLT also has been used for medical image
segmentation; for example, Li et al. [34] proposed a
dynamic-context cooperative quantum-behaved PSO based
on MLT for CT image segmentation. They used six different
CT images to test the performance of the improved PSO,
which showed significant performance. Also, Li et al. [71]
proposed an MLT for medical image segmentation based
on a partitioned and cooperative quantum-behaved PSO.
They test the improved PSO with four stomach CT
images, and they compared it to two modified PSO algo-
rithms. Chatterjee et al. [35] proposed an MLT method with
three-level thresholding for human head CT image segmen-
tation. They applied an improved biogeography based opti-
mization (BBO) and fuzzy entropy to segment fifteen CT
images. The improved BBO was compared to PSO, GA,
and it showed better performance. Also, in [36], an MLT
method with PSO is applied for lung high-resolution CT
image segmentation.

Panda et al. [37] proposed an MLT approach for brain MR
image segmentation based on an evolutionary gray gradient
algorithm (EGGA). They also applied an adaptive swallow
swarm optimization (ASSO) algorithm to optimize the fitness
function. They used twenty-five MR images to evaluate the
ASSO, which showed better performance than the origi-
nal SSO. Wang et al. [72] presented an MLT approach to
segment medical images based on an improved FPA algo-
rithm. They applied Otsu’s as an objective function. They
used Eight CT images to evaluate the proposed approach,
which outperformed several MH algorithms, including the
original FPA, PSO, GA, and DE. Mostafa et al. [20] applied
the WOA for liver MRI image segmentation. They used
several measures to evaluate the WOA, including structural
similarity index measure (SSIM) and similarity index (SI).
The WOA achieved high accuracy rates in both measures.
Ladgham et al. [38] proposed an enhanced Shuffled Frog
Leaping Algorithm (SFLA) for MR brain image segmenta-
tion. They compared it to the original SFLA and the GA, and
it showed significant performance. Raja et al. [39] applied
the bat algorithm (BA) to enhance the segmentation process
of the MRI images. In [73], the FA is used to optimize SVM
classifier to classify lung CT images. Also, the gray wolf
optimizer (GWO) was used with the artificial neural network
(ANN) to classify MRI images [74]. Also, in [75] the FA is
applied for brain MRI segmentation.

ill. METHODOLOGY

A. PROBLEM DEFINITION

The problem formulation of MLT is presented in this section.
Assume we have a gray-scale image I, which has K + 1
classes. To divide a given image I into classes, the values of k
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thresholds {#;, k = 1, 2, K} are needed, which can be defined
as:

Co=1{;10<IL;<t —1},
Ci={jltn<lj<t—-1},

Ck ={ljjlixg <Ij<L—1} ey

where L represents the maximum gray levels, Ck is the kth
class of the image,t is the k-th threshold, and /;; represents
gray levels at (7, j)-th pixel. Where the problem of the MLT
can be defined as a maximization problem which is applied
to find an optimal threshold value as:

T R =argtlma)t(K Fit(t1, ..., tx) 2)
where Fit is the objective function. Here, the Fuzzy
entropy [14] is applied as an objective function. Fuzzy
entropy is a popular technology [76]-[78], which has been
applied in many multi-level threshold segmentation applica-
tions, such as color images [79], brain tumor images [80],
MRI images [81] and others [82], [83]. It can be defined as:

K
Fit(ty, ... tx) = ZHl- (3)
k=1
Spix @ pix )
Hy = — : In(= , (4
K ;Pk xIn(=—p=—). @
L—1
Pe =) pix (i) 5)
i=0
1 [ < ag
[ —cp
) =1—— a1 =l=q (6)
a) —C1
0 [ > C1l
1 [ <ag_
l—a
ug) = —5 ax 1 <l<ck )
CK — dg
0 [ > CK—1

In Eq. (7), p; is the probability distribution which is computed
as p; = h(i)/N, (0 < i < L — 1); where h(i) and N,, are the
number of pixels for the corresponding gray level L and total
number of pixels in /.

ai,cl,....,ak—1, ck—1 are the fuzzy parameters, where
O0<a1<c1<...<ag_1 <ck_1.Thent; = %,tz e
atc ¢ _ aKk—1+CcKk—1

2 sy ooy LIK—1 = 2 .

IV. MARINE PREDATORS ALGORITHM

Faramarzi et al. [40] introduced a novel meta-heuristic (MH)
optimization algorithm inspired by the prey and predator
characteristics in nature. The developed algorithm named
Marine Predators Algorithm (MPA). The creatures usually
aimed to find their foods and continuously searching for
them. Hence, the predator is searching for its food as well
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as the prey is looking for its food. Based on this concept,
Faramarzi et al. [40] designed the MPA algorithm.

At the first stage, the predator/prey stats discovering the
search space to detect their food location, then they con-
vergence for its position to catch it from this principle the
MHs are established. MPA started by discovering the search
space via a random set of solutions as an initialization. Then
those solutions are updates based on the mainframe of the
technique.

The initialization stage can be given based on the search
space boundaries as below;

Ujj = Ibj + 11 X (ubj — b)),
j=1,2,....,D,i=1,2,...,N (8)

where the /b; and ub; are the lower and upper boundaries
in the search space at dimension j, r; is a random number
withdrawn from a uniform distribution in the interval of [0,1].

As mentioned earlier both the prey and predator are search-
ing for their foods; therefore, there are two main matrices
should be defined, the Elite matrix (matrix of the fittest
predators) and the prey matrix that can be defined as below:

rrrl 1 1 7

UI]I U112 Ulld
Elite = U21 U22 te U2d ,

1 1 1

L Unl Un2 Und -
Un Un Uia

U= Uy Uy ... Uy ’ )
L Un Unp ce. Una _

where Uj; refers to the value of the ith solution at jth dimen-
sion. To catch the global optimum solutions, the initial solu-
tions should be modified based on the main structure of the
MPA. MPA maintains three stages for adjusting the initial
solutions. The followed steps have relied on the velocity
ration between prey and predator. The first phase can be
regarded once the velocity ratio between predator and prey
is high. In contrast, the unit and low-velocity rates are mea-
surable for the second and third stages. Details of each step
are addressed below.

A. STAGE 1: EXPLORATION PHASE (HIGH-VELOCITY
RATIO)

For the first third of the total number of iterations, i.e., %tmx)
in MPA, the search agents start to discover the search space
where the exploration stage is accomplished. The prey hurries
to search for its food while the predator waits to monitor its
motion. That is why the high-velocity ratio among the prey
and predator is the primary feature of this stage. Accordingly,
the prey location is modifying using the following equations.

S,-:RB®(Elitei—RB®U,-), i=1,2,....,n (10)
Ui =Ui+PRE)S: (11)

where R € [0, 1] is a random vector withdrawn from a
uniform distribution, and P = 0.5 is a constant number. The
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symbol of Rp refers to Brownian motion. () indicates the
process of element-wise multiplications.

B. STAGE 2: TRANSITION AMONG THE EXPLORATION
AND EXPLOITATION ( UNIT VELOCITY RATIO)

After detecting the closest position for the foods,
the prey/predator starts to exploit this location; therefore,
this stage is considered as the transmission phase among the
exploration and exploitation capabilities. This stage is the
middle stage of the algorithm when %tmax <t < %tmax
where both the prey and predator move with the nearly same
velocity. The predator follows Brownian motion while the
prey follows the 1évy flight sequentially Faramarzi et al. [40]
divided the population for two halves and implemented
Egs. (12)-(13) to model the motion of the first half of the pop-
ulation and Eq. (14)-(15) for the second half as represented
below.

Si = Ry Q)(Elite; — R, Q) Up,  i=1.2,....,n72 (12)
Ui = Ui+ PRE)S (13)
where R;, has random numbers that follow Lévy distribution.
Egs. (12)-(13) are applied to the first half of the agents that

represents the exploitation. While the second half of the
agents perform the following equations.

Si = Re QR Q) Elite;—Uy),  i=1,2,....n/2 (14)
1t

Ui = Elite; + P.CF (R S;, CF = (1 - —)*ma)  (15)

max
where CF is the parameter that controls the step size of
movement for predator.

C. STAGE 3: EXPLOITATION STAGE (LOW-VELOCITY RATIO)
This stage is the last stage in the optimization process as the
predator exploits the detected location of the prey and move
very fast to catch it. This stage executed on the last third of
the iteration numbers (¢ > %tmax) where the predator fol-
lows Lévy during updates its position based on the following
formula:

S; =Ry ®(RL ®Elitei —U), i=1,2,....,n (16)
1t

U; = Elite; + P.CF R)S;, CF = (1 — —)ma’  (17)

max

D. EDDY FORMATION AND FISH AGGREGATING DEVICES’
EFFECT (FADS)

In the purpose of avoiding the local optimum solutions,
Faramarzi et al. [40] considered the external impacts from
the environment such as the eddy formation or Fish Aggre-
gating Devices (FADs) effects that can be mathematically
formulated as below:

Ui+ CF[Upin + RQUDI)I QW rs < FAD
" Ui+ [FAD( = 1) + r1(Us1 = Ura) 15 > FAD
(18)
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In Eq. (18), UDif = Uygx — Upmin FAD = 0.2, and W is a
binary solution O or 1 that corresponded to random solutions.
If the random solution is less than 0.2, it converted to O while
the random solution becomes 1 when the solutions are greater
than 0.2. The symbol of r € [0, 1] represents a random
number. r] and r, are the random index of the prey.

E. MARINE MEMORY

The marine predators have a feature that helps in catching
the optimal solution very fast and avoid the local solutions is
that memorizing the location of the high production foraging.
Faramarzi et al. [40] implement this feature in his algorithm
via saving the previous best solutions of a prior iteration and
compared with the current ones. The solutions are modified
based on the best one during the comparison stage. The
pseudo-code of MPA is presented below 1.

Algorithm 1 Steps of MPA
1: Set the initial value for a set of N agents U.
2: while termination criteria are not met do
3:  Compute the fitness value and build in Elite matrix.

4:  ift < tyee/3 then

5: Update value of agent using Eq. (11).

6: elseif #,,,c/3 <t <2 X tyyax/3 then

7: For the first half of the agents i = 1, ..., N /2).

8: Update value of agent using Eq. (13).

9: For the second half of the agents (i =1, ..., N/2).
10 Update value of agent using Eq. (15).
11:  elseifr > 2 X 4 /3 then
12: Update value of agent using Eq. (17).
13:  endif
14 Using FADs effect and Eq. (18) to update current

agent.
15:  Update memory and Elite.
16: end while

F. MOTH-FLAME OPTIMIZER

Mirjalili [84] proposed the moth-flam optimizer based on
the navigation behavior of moths at night that known by
transverse orientation methodology. The moth utilized a fixed
angle with the moon during its fly that helps it to reach for its
goal, especially when the light is far. In contrast, the moths
follow spirally flying around the near source of the light.
Mirjalili [84] addressed another feature in MFO algorithm
as the moths search around the flame and continually update
this flame; therefore, not only the moths are the solutions
but also the flames. Both the moths and flames locations
are modified across the iterations number whereas with fol-
lowing diff rent control equations. The moths are the search
agents, while flames are the best obtained moths location
so far. Mirjalili [84] modeled these behaviors for mathemati-
cal equations to form his techniques MFO algorithm. MFO
as all the MHs starts with random solutions, initialization
phase then the solutions are modified based on the main
equations of the algorithm, and at the end, the algorithm
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is stopped based on its termination criteria as presented as
follows [84]:

MFO = (Init, Main, Ter), (19)

where Init is the initialization phase that is responsible for
creating the first random solutions as bellow

U(,)) = (ub(@) — Ib(i)) * rand() + Ib(i), (20)
OM = SAE = FitnessFunction(U), 21

where /b, ub are the lower and upper bounds of the variables,
respectively.

The Main function in Eq. 19 includes the main structure of
the MFO where the MFO motions are modeled and updated
based on the logarithmic spiral function to emulate the trans-
verse orientation of moths as below [84]:

S(Ui, Fy) = |F; — Uile? cos2nd) + F;, (22)

where U;, Fj refer to the i-th, j-th moth and flame, respec-
tively. The symbol of § denotes the spiral function, b is a con-
trol parameter for the shape of the logarithmic spiral, and d €
[r, 1]is arandom number. The r values are linearly decreased
from —1 to —2 in order to accelerate the convergence speed
of MFO where the smaller d, the closer the distance to the
flame.

In MFO, Mirjalili [84] adaptively update the number of
flames across the iterations to balance between the diversi-
fication and intensification phases, as in equation. (23). The
equations reveal on decreasing for the number of the flames
across the iteration numbers thereby at the last iterations the
moths update their locations only with respect to the best
flame [84]:

Ny —1
flame no = round | Ny —t * , (23)
tmax
where t is the current number of iteration, Ny is the maxi-
mum number of flames, and #,,,, is the maximum number of
iterations.
The final steps of the MFO are illustrated in Algorithm 2.

Algorithm 2 Steps of MFO
1: Producing the initial population U.
settr = 1.
while (7 < t,,4¢) do
calculate objective value for U;.
Sort U and determine the best solution (Up).
Using Eq. (23) to update Flamesy .
fori=1:Ndo
Using Eq. (22) to update U;.
end for
end while
: Return Up,.

R R A A S o
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[
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FIGURE 1. The steps of MPAMFO approach.

V. PROPOSED IMAGE SEGMENTATION METHOD

In this section, the steps of the proposed multi-level threshold
approach are introduced, as in Figure 1. The developed model
depends on improving the performance of the Marine Preda-
tors Algorithm (MPA) using the operators of moth-flame
optimization (MFO). This achieved by using the operators of
MFO to make the agents are competitive during the explo-
ration phase since it has been found that the main weakness
of MPA is its ability to explore the search space. In general,
the modified MPA is called MPAMFO starts by setting initial
value for a set of N agents X. This performed by using the
following equation:

Uij=Ilninj+rs X (Imax,j_lmin,j)» j=L12,....,D, (24)

In Eq. 24, Ijyinj and Iy j are the minimum and maximum
gray value of [ at jth dimension, respectively. In addition,
D = 2K where K is the threshold level that needs to segment
the image at it. The next process is to compute the fitness
value Fit for each agent using Eq. (2). Then determine the
agent that has the best Fit and used it as best agent Uj.
Thereafter, the agent will update their values using either
the operators of exploration or exploitation, as discussed in
section IV. However, during the exploration, the probability
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Segmented Image

(Pr;) of each agent depends on its fitness value, is computed
using Eq. (25).

Fit;

Pri= ————
N )
Zi:l Fit;

(25)
Thereafter, the agents in the exploration phase are updated
using the following equation:

(26)

U — operators of MPA  Pr; > rl
l operators of MFO  otherwise

where

rs =min(Pr;)+ rand x (max(Pr;)—min(Pr;)), rand €0, 1]
(27)

From Eq. (26), when the value of Pr > r1, then the operators
of MPA are used, otherwise the operators of MFO are used.
In addition, we applied Eq. (27) to avoid the problem of fixing
it to a specified value, so the value of r1 is automatically
updated depends on the value of Pr.

From Eq. (26), when the value of Pr > r1, then the oper-
ators of MPA are used, otherwise the operators of MFO are
used. In addition, we applied Eq. (27) to avoid the problem of
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fixing it to a specific value, so the value of »1 is automatically
updated depends on the value of Pr.

The next step is to check the stop conditions when they are
met, then the best solution is considered the output. From the
value of Uy that refers to the fuzzy parameters are used to

Uk yk!
b+2b ,wherek =1:2:

form the threshold value as #;, =
K —1.

Computational Complexity: The computational complex-
ity of MPAMFO depends on some factors such as number of
fitness evaluation EF', number of solutions N, total number
of iterations #,,,, and the number of thresholds K. In addi-
tion, since MFO is one of main component of MPAMFO
so its complexity also influence on the total complexity of
MPAMEFO. So, the complexity O (MPAMFO) of MPAMFO
formulated as: In Best case:

0] (N X tnax ((N + 1)K+EF+(N—Kp)xlog(N))) (28)
In worst case:
O (N X tax (N + DK + EF + (N = K;) x N?) ) (29)

where K, denotes the number of solution that using the
operators of MPA to update their values.

VI. EXPERIMENTS AND RESULTS

In this section, two experiments are used to evaluate the
performance of the MPAMFO. It is compared with eight
algorithms namely, original MPA, harris hawks optimiza-
tion (HHO) [85], cuckoo search (CS) [86], grey wolf opti-
mization (GWO) [87], grasshopper optimization algorithm
(GOA) [88], spherical search optimization (SSO) [89], par-
ticle swarm optimization (PSO) [90], and moth-flame opti-
mization (MFO) [84]. Besides, using two sets of images.
These algorithms established their quality as MLT image
segmentation methods in literature.

A. PERFORMANCE MEASURES

In order to assess the quality of the segmented image, we used
a set of performance metrics, including Peak Signal-to-Noise
Ratio (PSNR) [91], [92], and the Structural Similarity Index
(SSIM) [93]. PSNR and SSIM can be defined as:

PSNR = 20l0g10(—>2)
= 0} .
S108 R MSE

N, N¢ ..
RMSE — \/Zizl i iy — Isi, j)?
- N, x N,

here, the RMSE is the root mean-squared error. [ and Ig refer
to the original and segmented images with the size N, x N,
respectively.

(30)

QCurpgg + c1)2oy 15 + ¢2)

SSIM(I, Is) =
(] + g, +c)Of +of +c2)

€1V}

wi(or) and pyg (o) refers to the images’ mean intensity
(standard deviation) of I and Is, respectively. The oy  is the
covariance of I and I5. The values of the constants ¢ and ¢;
are set to 6.5025 and 58.52252, respectively following [61].
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Furthermore, we use the fitness value to evaluate the quality
of threshold values; also, we use the CPU time for each
algorithm.

B. PARAMETERS SETTING

Table 1 lists the parameter settings for the algorithms that are
applied in the following experiments. In addition, the general
parameters are set as follows. The population number is set
to 20, and the total number of iteration is 100. More so,
30 independent runs were performed for each method.

TABLE 1. Parameters setting.

Algorithm  Parameters setting

MPA FADs =02, P=05, =15

MPAMFO FADs=02, P=05, =15.b=1
HHO E €10,2]

CS pa=0.25

GWO a € [2,0]

GOA Cmaz = 1, Cmin = 0.00004

SSO w € [0,27], F €10,1], 8 € [0, 7]

PSO Wiiaz = 0.9, Warin, =02, C1 =2, C2=2
MFO b=2

C. FIRST EXPERIMENT

In this experiment, a set of ten images has been used to com-
pute the quality of the proposed method. As can we observed
from Figure 2, these images have different characteristics
according to their histogram. The MPAMFO aims to segment
those images at different levels of thresholds, these levels
equal to 6, 8, 15, 17, 19, and 25.

The results are introduced in Tables 2-4 and Figures 3-5.
Table 2 shows the results of the PSNR measure for all images.
In detail, at level 6, the performance of the MPAMFO is
similar to the HHO algorithm; they achieved the best PSNR
values in 5 images for each one followed by MPA, SSO, CS,
GWO, PSO, and MFO, respectively. At level 8, the MPAMFO
achieved the best PSNR in 4 images and is ranked first,
followed by MPA, HHO, PSO, SSO, MFO, GWO, and CS,
respectively. At level 15, the HHO algorithm obtained the
highest PSNR value in 5 images followed by the MPAMFO.
The PSO, MFO, and MPA achieved the third, forth, and fifth
rank. However, the MPAMFO does not obtain the first rank,
its performance is very close to the HHO algorithm in most of
the images. At level 17, both MPAMFO and HHO algorithms
obtained the highest PSNR value in 3 images followed by
the PSO, CS, and MFO. At levels 19 and 25, the MPAMFO
obtained the best PSNR values in 60% and 70%, respectively,
of all images. The HHO algorithm came in the second rank
with only two images for each level. The CS is ranked third,
followed by PSO, SSO, MFO, and MPA. Whereas, the GOA
algorithm recorded the worst results at all levels.

Table 3 shows the SSIM results for all images. From this
table, we can see that, at levels 6 and 17, the MPAMFO
achieved the highest SSIM values in 90% of images, while
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FIGURE 2. Histograms and original images.

the HHO is ranked second, followed by MPA and SSO,
respectively. Whereas, the CS and GWO performed equally.
At levels 8, the MPA obtained the best SSIM in 6 images
whereas, the MPAMFO came in the second rank; however,
the performance of both are similar to some extend. The
HHO is ranked third. The PSO, MFO, and SSO came in
the forth, fifth, and sixth ranks followed by the CS and
GWO, respectively. At levels 15, the highest SSIM val-
ues are obtained by the MPAMFO in 80% of the images.
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The MPA and HHO performed equally, followed by GWO,
CS, SSO, PSO, respectively. At levels 19, the MPAMFO
is also ranked first and recorded the best SSIM values
in 70% of the images. The HHO and MPA performed
equally. Wheres, GWO is ranked fourth, followed by CS
and SSO. At levels 25, the MPAMFO could also reach
the highest SSIM values in 90% of the images, whereas,
the second-best is the HHO algorithm followed by PSO, CS,
and GWO. The MPA and SSO performed equally. Whereas,
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TABLE 2. PSNR results for the first experiments.
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Level (K) Image MPA MPAMFO HHO CS GWO  GOA SSO PSO MFO
6 11 14.002 16.859 15233 14254 14.123 13.562 14.598 11.847 10.774
12 16.250 16.244 16.563 15.881 15.612 15455 15964 12495 12476

13 10.039 14.984 15425 12.881 12.605 11.330 13.483 10.720 10.763

14 14.761 16.697 16.413 16.211 16331 16.025 16.010 11.028 10.776

I5 12.703 15.329 13.730 11.666 11.903 10.880 12.563 10.806 10.490

16 13.417 13.233 14.552  11.924 12.183 11.507 12.603 10.955 10.374

17 11.744 14.805 14.062 11.983 11.822 11.687 12.334 12451 11.852

18 13.520 15.269 14906 14.489 14.019 13.397 14.172 10.551 10.787

19 11.096 13.121 13.561 10.151 10599 9.386  10.191 11.054 9.928

110 10.716 15.815 16.429 14212 14424 13.073 14.702 13.122 12.049

8 I1 17.684 18.747 17.980 18.151 17.706 17.051 18.162 17.989 16.840
12 20.117 21.272 18.227 16.894 16.539 15.643 17.067 17.825 15.266

13 11.852 16.635 17173 15720 15964 14.909 16.561 16.278 16.175

14 18.522 18.419 17.249 17.698 17.064 16.777 17.736 18.241 17.185
I5 16.222 17.311 16.168 16.013 16.157 15.748 15.723 16.431 16.054

16 18.006 17.873 17.727 15.184 15.585 14.066 15.741 17.116 16.225
17 14.614 16.541 16.842 15996 15.544 15.139 16.239 16.022 15.704

18 17.222 17.029 16.336  15.153 16.899 14.709 15.062 16.833 16.423

19 12.830 16.898 16934 15504 15424 14237 15.663 14987 16.155
110 12.581 19.909 19.079 19.108 19.316 18.182 18.338 17.830 17.730
15 Il 22.285 22.327 23.361 23.013 21.509 20.835 22.868 21.847 20.842
12 23.519 23.664 23.141 22.437 22.187 20.035 22.457 23.379 20.748

I3 16.773 17.613 22.895 21.528 19.667 19.299 21.927 23.026 17.105

14 22.004 21.866 22.179 21.667 21.685 19.882 22.547 22.977 21.057

I5 21.389 21.348 22.851 21.165 21.295 18.609 21.149 20.250 20.888
I6 21.956 22.574 23.204 21.151 20.510 17.751 21951 23.115 22.510

17 20.257 20.146 21.458 21.324 20229 18.422 21.547 19913 20.495

I8 22.289 22.282 22.649 21.823 21.299 18.722 21.601 21.748 22.505
19 18.935 21.348 21.457 20969 18.096 17.775 19.950 19.989 21.206
110 19.707 22.813 23306 21.459 21.467 19492 21416 24.165 20.719

17 I 23.596 24.544 24427 24529 23.075 22315 24.233 23.525 21.207
12 24.587 24.493 24.081 24.146 24.048 20.855 23.838 23.653 22454

I3 19.227 23.936 24209 23.327 20.658 20.903 23.356 24.306 23.505
14 23.248 24.088 24.217 22.894 22487 20.985 22.883 24.194 23.322
I5 22.399 24.630 23208 22.685 22.868 20.365 22.299 22.892 23.089

16 23.113 24.739 25.263 22213 22.155 19.231 23.945 23480 22.317

17 21.510 23.741 23.548 22.614 21.414 20.145 22.164 22.094 22.598
I8 23.485 23.242 23294 22.681 22.887 19.943 23.237 22.843 23.474
19 20.607 22.078 22.632 22.7704 19356 18916 21.635 21.320 22.526

110 21.697 23.547 23991 23.155 21930 20.542 23.026 23.223 22.035
19 11 24.517 26.348 25.449 25236 24251 23.077 25.151 24320 24370
12 25.521 25.914 25311 25350 24971 22273 24569 25.250 24.647

13 20.620 26.781 25517 24743 21.786 21.583 25.124 24976 23.371

14 24.561 24.649 23939 23709 23913 21438 23342 23916 23.45]
15 23.384 25.425 24976 24.154 23.857 21.752 23.178 24.064 23.724
16 24.401 25.414 26.355 24.851 23.623 20.327 24.041 24.136 24.216
17 23.339 24.646 24.137 24532 22.666 21.274 24273 24346 23.158
18 24.016 24.223 24.105 24.152 23.879 20.465 24.155 24208 24.848
19 21.206 24.278 23.359 22523 20.864 19.788 22.468 22.311 24.358
110 22.093 24.479 25.254 24317 22756 21.452 24.126 23.108 23.434
25 I1 26.755 28.696 27.710 27.401 26.732 25.759 27.409 28.313 26.519
12 27.586 28.751 27.851 28.227 28.058 26.214 27.747 27.481 27.394
I3 24.424 28.127 28.267 26.803 23.930 23.908 27.446 27.545 26.903
14 26.553 29.200 27.601 26.752 26.257 24955 26336 28.649 27.207
15 26.168 27.172 26954 27.395 26906 24.826 26330 27.115 26.562
16 26.884 27.747 28.624 26.745 27.180 23.776 28320 27.276 25.356
17 25.663 28.684 27453 27406 25971 24731 26.792 26.051 25.698
18 26.673 28.266 27.085 27203 26.709 24.640 26.669 27.115 26.163
19 24.804 27.881 26439 26.565 24.435 23.307 25.730 27.285 25.832
110 26.179 28.727 28.032 27.664 25956 24.661 27.600 26258 25.700
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TABLE 3. SSIM results for the first experiments.
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Level (K) Image MPA MPAMFO HHO CS GWO GOA SSO PSO MFO
6 11 0.5058 0.6032 0.5872 0.5235 0.5103 0.4897 0.5391 0.4156 0.3673
12 0.4192 0.4745 0.4585 0.4040 0.4023 0.3849 0.4089 0.2248 0.2530

13 0.5983 0.6828 0.6668 0.6162 0.6072 0.6125 0.6366 0.6113 0.6187

14 0.4835 0.5894 0.5734 0.5448 0.5513 0.5386 0.5351 0.2871 0.2726

I5 0.3767 0.4511 0.4351 0.2994 0.3153 0.2469 0.3557 0.2370 0.2260

16 0.4175 0.5022 0.4862 0.3415 0.3617 0.3087 0.3845 0.2679 0.2366

17 0.4291 0.5485 0.5325 0.4191 0.4188 0.3957 0.4297 0.4016 0.3934

18 0.5447 0.6422 0.6262 0.5921 0.5727 0.5410 0.5790 0.3885 0.4090

19 0.7189 0.7760 0.7600 0.5780 0.7024 0.5644 0.5437 0.5829 0.5218

110 0.7303 0.7387 0.7227 0.6603 0.6614 0.6270 0.6831 0.7687 0.7444

8 I1 0.7104 0.7252 0.7092 0.7146  0.7044 0.6805 0.7059 0.6943 0.6371
12 0.5863 0.5495 0.5335 0.4540 0.4567 0.4037 0.4644 0.4283 0.4812

13 0.7009 0.7957 0.7797 0.7611 0.7528 0.7520 0.7764 0.7745 0.7772

14 0.6586 0.6186 0.6026 0.6005 0.5889 0.5731 0.6048 0.6188 0.5839

I5 0.6353 0.5817 0.5657 0.5522 0.5653 0.5366 0.5337 0.5704 0.5540

16 0.6475 0.6369 0.6209 0.5114 0.5342 0.4460 0.5323 0.5842 0.5334

17 0.6379 0.6339 0.6179 0.5850 0.5685 0.5367 0.5896 0.5552 0.5526

18 0.7154 0.7142 0.6982 0.6480 0.7071 0.6364 0.6336 0.6730 0.6679

19 0.7721 0.8313 0.8153 0.8056 0.8046 0.7806 0.8057 0.7995 0.8106

110 0.8199 0.7925 0.7765 0.7771 0.7632 0.7384 0.7698 0.8345 0.8218

15 In 0.8352 0.8685 0.8525 0.8378 0.8128 0.7950 0.8357 0.8076 0.7880
12 0.7222 0.7299 0.7139 0.6742 0.7036 0.5865 0.6641 0.6523 0.5914

I3 0.7897 0.8697 0.8537 0.8541 0.8498 0.8265 0.8465 0.8287 0.7899

14 0.7622 0.7760 0.7600 0.7395 0.7485 0.6808 0.7603 0.7743 0.7171

I5 0.7980 0.8363 0.8203 0.7627 0.7845 0.6729 0.7626 0.7339  0.7547

I6 0.7568 0.8078 0.7918 0.7408 0.7220 0.6174 0.7558 0.7723  0.7569

17 0.7858 0.7841 0.7681 0.7676 0.7929 0.6461 0.7642 0.6852 0.6896

I8 0.8481 0.8554 0.8394 0.8248 0.8354 0.7664 0.8259 0.8275 0.8377

19 0.8676 0.8864 0.8704 0.8489 0.8542 0.8248 0.8321 0.8429 0.8438

110 0.9152 0.8937 0.8777 0.8620 0.8462 0.8235 0.8452 0.8873 0.8336

17 I1 0.8572 0.8866 0.8706 0.8716 0.8434 0.8306 0.8642 0.8465 0.7954
12 0.7553 0.7619 0.7459 0.7345 0.7562 0.6155 0.7206 0.6523 0.6851

13 0.8267 0.8914 0.8754 0.8687 0.8666 0.8503 0.8719 0.8463 0.8096

14 0.7927 0.8250 0.8090 0.7736 0.7722 0.7264 0.7722 0.7997 0.7788

I5 0.8327 0.8440 0.8280 0.8101 0.8275 0.7448 0.8011 0.8201 0.8231

16 0.7860 0.8571 0.8411 0.7773 0.7747 0.6767 0.8048 0.7836 0.7532

17 0.7987 0.8256 0.8096 0.7876 0.8193 0.7288 0.7812 0.7550 0.7745

I8 0.8704 0.8725 0.8565 0.8414 0.8635 0.7922 0.8515 0.8405 0.8517

19 0.8728 0.8899 0.8739 0.8592 0.8549 0.8308 0.8550 0.8591 0.8528

110 0.9240 0.9140 0.8980 0.8850 0.8550 0.8533 0.8783 0.8783 0.8610

19 11 0.8761 0.9054 0.8894 0.8830 0.8653 0.8474 0.8806 0.8599  0.8695
12 0.7815 0.7965 0.7805 0.7644 0.7881 0.6684 0.7417 0.7400 0.7209

13 0.8384 0.9053 0.8893 0.8762 0.8741 0.8577 0.8800 0.8401 0.8353

14 0.8236 0.8199 0.8039 0.7928 0.8019 0.7343 0.7856 0.8036 0.7897

15 0.8438 0.8866 0.8706 0.8509 0.8525 0.7876 0.8245 0.8503 0.8380

16 0.8147 0.8795 0.8635 0.8361 0.8093 0.7149 0.8149 0.7970 0.7945

17 0.8303 0.8351 0.8191 0.8339 0.8400 0.7615 0.8206 0.8147 0.7712

18 0.8784 0.8853 0.8693 0.8766 0.8809 0.8065 0.8693 0.8677 0.8736

19 0.8833 0.8902 0.8742 0.8703 0.8711 0.8372 0.8699 0.8686 0.8783

110 0.9283 0.9168 0.9008 0.9050 0.8870 0.8703 0.8788 0.8959 0.8820

25 11 0.9109 0.9381 0.9221 09151 0.9058 0.8951 0.9145 0.9320 0.9046
12 0.8239 0.8554 0.8394 0.8372 0.8647 0.7923 0.8200 0.8106 0.8202

I3 0.8831 0.9221 0.9061 09041 0.9014 0.8830 0.8980 0.8916 0.8720

14 0.8593 0.8944 0.8784 0.8606 0.8544 0.8226 0.8518 0.8885 0.8678

15 0.9037 0.9235 09075 09126 09111 0.8664 0.8937 0.9106 0.8944

16 0.8650 0.9142 0.8982 0.8747 0.8864 0.8223 0.8918 0.8704 0.8317

17 0.8658 0.9016 0.8856 0.8798 0.8777 0.8439 0.8702 0.8571 0.8569

18 0.9142 0.9272 09112 09118 09145 0.8838 0.9036 0.9233  0.9000

9 0.9016 0.9166 0.9006 0.9035 0.8934 0.8740 0.8932 0.9112 0.8894

110 0.9173 0.9471 09311 09242 09223 0.9025 0.9262 0.9042 0.8845
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TABLE 4. Results of the fitness function value for all algorithms.
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Level (K) Image MPA MPAMFO HHO CS GWO GOA SSO PSO MFO
6 I1 17.54 17.54 17.43 1752 1753 17.54 1746 17.19 17.10
12 17.54 17.54 17.17 1729 1729 1732 1727 17.47 17.09

13 17.54 17.54 1691 17.09 17.08 17.10 17.06 16.74 17.28

14 17.54 17.54 17.45 17.55 1757 17.59 1753 1726 16.83

15 17.54 17.54 1547 1560 1559 15.62 1564 1658 16.58

16 17.54 17.54 1476 1507 15.08 15.13 15.02 17.19 1743

17 17.54 17.54 1743 17.62 17.62 1732 1748 16.66 16.78

18 17.53 17.54 17.43 1757 17.59 17.60 17.54 17.01 16.84

19 17.54 17.54 17.28 1748 1751 17.54 17.47 1754 16.71

110 17.54 17.54 16.59 16.77 16.78 16.80 16.77 17.15 17.00

8 Il 20.85 20.85 20.62 20.77 20.82 20.84 20.69 20.50 20.80
12 20.85 20.85 20.55 20.78 20.82 2091 20.69 20.00 20.36

13 20.85 20.84 20.28 20.44 2045 2054 2038 1992 20.28

14 20.86 20.85 20.73 2091 2095 21.01 2085 20.11 2042

15 20.85 20.86 18.17 1826 1832 18.38 18.26 20.54 20.32

16 20.85 20.84 17.05 1739 1743 1750 1728 1998 20.37

17 20.84 20.85 20.69 20.87 2091 2095 20.83 19.89 20.80

18 20.85 20.85 20.63 20.87 20.84 20.99 20.86 20.00 20.32

19 20.84 20.85 20.64 2098 21.04 21.06 2099 20.16 19.92

110 20.84 20.85 19.82 1998 20.02 20.06 19.92 20.73 2051

15 I1 29.63 29.71 29.09 2939 2947 29.80 2928 29.16 29.31
12 29.67 29.71 2939 29.68 29.76 2856 29.69 29.61 29.29

13 29.59 29.71 28.89 2926 29.26 2855 29.13 2891 29.70

14 29.68 29.70 2922 2953 29.63 30.02 29.55 29.63 2898

I5 29.64 29.69 2483 2520 2522 2572 2522 2883 29.57

16 29.65 29.71 22773 23.63 23.62 2423 2318 29.17 28.79

17 29.69 29.68 2928 29.47 29.60 28.61 29.42 29.18 29.26

I8 29.68 29.67 29.73 30.07 30.14 28.64 30.04 28.69 29.40

19 29.70 29.69 29.33 29.75 30.01 2852 2990 29.00 29.02

110 29.69 29.70 28.47 28.87 2895 29.28 2886 29.60 2949

17 I1 32.31 32.37 31.80 3196 3194 31.08 31.84 3224 31.84
12 32.31 32.30 3211 3239 3243 33.01 3242 3191 3138

13 32.30 32.33 3146 31.79 31.79 3243 31.70 32.04 3145

14 32.28 32.28 31.75 3213 32.14 3276 32.18 32.07 31.78

15 32.33 32.36 26.62 27.16 2721 27774 2722 3195 3226

16 32.28 32.36 24.19 2528 2529 26.12 24.64 31.72 3224

17 32.33 32.29 31.83 3211 3219 32.63 32.10 31.70 31.57

18 32.34 32.30 3228 3268 3271 3334 3266 32.11 31.81

19 32.29 32.34 3211 3244 32,53 3099 3246 3230 3142

110 3231 32.30 31.14 3146 31.58 31.07 3150 31.56 31.77

19 I1 34.87 34.86 3421 3436 3423 3328 3422 3454 34.68
12 34.81 34.85 3472 3498 3497 3331 35.07 3426 34.25

13 34.78 34.79 3374 3422 3414 3507 3410 3470 3452

14 34.82 34.88 3430 34.67 34.65 3539 3468 3435 3437

I5 34.83 34.89 28.34 29.00 29.04 29.68 29.15 3445 34.00

16 34.83 34.83 2547 26775 2654 2754 2598 3443 34.00

17 34.86 34.87 3431 34.64 3473 3532 3456 34.63 34.63

18 34.80 34.87 3485 3520 3523 3598 3527 3477 33091

19 34.84 34.87 3452 3496 35.02 3332 3506 34.64 3428

110 34.85 34.81 33.58 3392 34.02 3332 34.02 34.15 34.16

25 Il 41.66 41.77 40.65 41.07 40.64 39.56 4096 41.69 40.85
12 41.73 41.75 41.83 42.19 41.87 4292 4213 41.16 4092

13 41.76 41.72 40.03 40.61 4025 41.68 4042 41.54 4147

14 41.80 41.81 40.99 4156 4122 4246 41.69 4175 41.29

15 41.72 41.78 33.14 33.84 3372 3475 3399 4173 41.25

16 41.72 41.70 29.27 3047 29.62 3205 2929 4120 41.53

17 41.67 41.73 41.17 41.59 4149 39.55 4155 4138 41.62

18 41.67 41.78 41.89 4234 4211 39.73 4235 41.00 41.30

19 41.65 41.79 4152 41.89 4199 3956 4213 41.60 41.30

110 41.79 41.70 4022 40.82 40.50 39.77 40.77 41.16 40.88
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FIGURE 3. Summary of the PSNR results for the first experiment.

(a) illustrates the performance of each algorithm at thresholds levels.
(b) illustrates the numbers of the best cases obtained by each algorithm.
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FIGURE 4. Summary of the SSIM results for the first experiment.
(a) illustrates the performance of each algorithm at thresholds levels.
(b) illustrates the numbers of the best cases obtained by each algorithm.

the GOA algorithm showed bad performance in all thresholds
levels.

Table 4 records the fitness function values for all algo-
rithms. In this measure, the MPAMFO achieved the best
values in 5 images at level 6, followed by the GOA, MPA, and
GWO, respectively. Atlevels 8, 17, and 19, the GOA achieved
the highest values in 5, 5, and 4 images, respectively, followed
by the MPAMFO. Whereas, the rest of the algorithms are
ordered in the following sequence: MPA, GWO, CS, SSO,
PSO, and MFO. At level 15, the MPAMFO reported the
highest fitness values in 40% of the images followed by MPA
and GWO, respectively. At level 25, The MPAMFO and MPA
performed equally and obtained the best fitness values in 30%
of the images for each one. Whereas, the SSO and GOA
achieved the best fitness values in 20% of the images.
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FIGURE 5. Summary of the fitness value results for the first experiment.
(a) illustrates the performance of each algorithm at thresholds levels.
(b) illustrates the numbers of the best cases obtained by each algorithm.

However, the GOA outperformed the proposed method
in some images, and other measures showed the bad per-
formance of the GOA. Therefore, the proposed method is
considered the best method among the compared algorithms
in image segmentation.

In general, the MPAMFO obtained the best PSNR val-
ues in 42% of the experiment, followed by the HHO with
32%. In terms of SSIM measure, the MPAMFO obtained
the best values in 78% of the experiment, whereas, the MPA
is ranked second with 15%. In the fitness values, the GOA
showed the highest values in 35% of the experiment, followed
by the MPAMFO with 32%. However, the performance of the
GOA is the worst one in the other measures; it increases the
fitness value without saving the qualities of the images.

Figure 6 depicts the threshold values obtained by each
algorithm to segmented images at threshold level 19.

From the above discussion in Tables 2-4, it can be seen
that the developed MPAMFO has a high ability to obtain
the suitable threshold values that can be used to segment the
images. However, other MH techniques used in this study fail
to provide the optimal threshold values. The main reason is
that most of them can stagnation at the local optimal point
since they have high exploration ability with weak exploita-
tion ability. Also, by analyzing the behavior of HHO, we see
that it avoids this problem so it can provide results better than
other MH algorithm since its exploitation is better than its
exploration ability. Meanwhile, the proposed MPAMFO can
balance between two these phases.

1) ROBUSTNESS OF THE DEVELOPED MPAMFO
To validate the robustness of MPAMFO, a set of experiments
are performed using the same previous ten images under

variants of three values of Gaussian noise (i.e., 0.03, 0.05,
and 0.1); and at five images (I1, I3, I7, I8, and 19).
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FIGURE 6. Threshold values obtained by each algorithm over the histogram of image I1.

Table 5 illustrates the average of SSIM, and PSNR
values for the traditional MPA and proposed MPAMFO
at threshold levels 6, 16, and 19. One can be seen
from these results that the proposed MPAMFO pro-
vides better results than traditional MPA in most of the
tested cases, especially with increasing the level of noise.
In addition, it can be observed that the performance of

VOLUME 8, 2020

the two algorithms is decreased by increasing the noise
level.

D. SECOND EXPERIMENT: REAL-WORLD APPLICATION OF
COVID-19 CT IMAGES

To assess the quality of the segmentation method for
COVID-19 CT images, a set of thirteen images is used
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TABLE 5. Results of study the influence of noise on the quality of MPAMFO.

0.03 0.05 0.1
Level (K) Img PSNR SSIM PSNR SSIM PSNR SSIM
MPA MPAMFO MPA MPAMFO MPA MPAMFO MPA MPAMFO MPA MPAMFO MPA MPAMFO
1 1342 14.11 0.480 0.528 13.76 14.61 0.490 0.544 13.90 14.64 0.496 0.561
13 9.32 10.19 0.295 0.297 9.47 10.20 0.362 0.350 9.72 10.28 0.414 0.401
6 17 11.26 12.19 0.311 0.327 11.42 12.21 0.349 0.345 11.61 12.41 0.364 0.354
8 11.76 14.30 0.461 0.465 13.30 14.43 0.489 0.505 13.45 14.70 0.520 0.559
19 11.00 11.82 0.411 0.398 11.03 11.85 0.457 0.452 11.07 11.90 0.468 0.458
1 20381 21.44 0.819 0.806 20.85 21.80 0.821 0.820 21.88 22.04 0.829 0.821
I3 16.18 16.28 0.669 0.650 16.37 16.74 0.671 0.720 16.54 16.97 0.741 0.793
15 17 1891 19.69 0.719 0.724 19.13 19.39 0.762 0.752 20.13 19.98 0.775 0.769
18 20.90 20.76 0.785 0.801 21.13 21.58 0.807 0.818 21.43 21.81 0.833 0.842
19 1748 19.43 0.663 0.642 17.70 21.16 0.746 0.778 18.57 20.68 0.848 0.876
11 19.24 23.84 0.832 0.872 23.60 23.85 0.853 0.888 23.80 24.45 0.864 0.894
I3 18.18 21.70 0.721 0.748 19.23 22.35 0.766 0.847 20.29 22.75 0.827 0.874
19 17 21.70 22.70 0.807 0.814 21.77 23.55 0.818 0.817 22.90 23.66 0.826 0.829
I8  20.03 23.69 0.827 0.823 2291 23.72 0.851 0.859 23.96 23.53 0.869 0.879
19 18.06 22.57 0.734 0.733 20.10 23.03 0.809 0.828 20.70 23.28 0.832 0.873

from [53] as in Figure 7. These images are collected
from different datasets such as CheX aka CheXpert [94],
Openl [95], Google [96], PC aka PadChest [97], NIH aka
Chest X-ray14 [98], and MIMIC-CXR [99]. The images are
resized to 224 x 224 pixels [53]. Each of which is segmented
using five thresholds’s levels (i.e. 6, 8, 15, 17, and 19). The
results are recorded in Tables 6-8 and 8-10.

Table 6 shows the results of the PSNR measure for the
images. The results indicate that the MPAMFO obtained
the best PSNR values in 11 images at the threshold level 6
whereas, the SSO and PSO got the best results in only one
image for each one and they are ranked second and third,
respectively. The HHO and CS obtained the fourth and fifth
rank. The MPAMFO outperformed all other algorithms at
level 8, and it obtained the best PSNR values in 69% of the
images. The MFO is ranked second, followed by PSO, SSO,
HHO, CS, GWO, and MPA, respectively. At levels 15 and 19,
the MFO got the second rank after the MPAMFO then the
CS came third. The rest of the algorithms were ordered as
follows, SSO, HHO, PSO, MPA, then GWO, while the GOA
showed the worst performance in all images. At level 17,
the MPAMFO produced the best results in 9 images, whereas,
the HHO and SSO performed equally with two images for
each one. The CS was ranked fourth. While the MFO and
MPA showed the same performance in most images. The
GOA showed the worst performance in all images at all
threshold levels. At all levels, the MPAMFO obtained the best
values in 46 out of 65 cases (13 images and five threshold
levels), as shown in Figure 8.

To analyze the SSIM results, Table 7 and Figure 9 report
that the MPAMFO is ranked first at all thresholds levels.
It recorded the best SSIM values in 13,7, 5, 7, and 8 images
at thresholds levels 6, 8, 15, 17, and 19, respectively, and
achieved the best SSIM in 61% of all cases. The HHO is
ranked second at levels 17 and 19. In these levels, the CS
and GWO obtained the third and fourth rank, followed by
SSO and PSO, respectively. At level 8, the HHO showed the
best performance after the MPAMFO, followed by CS and
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PSO, respectively. At level 15, the GWO produced the best
SSIM values in three images, whereas, the HHO showed the
best results in one image. The rest of the algorithms showed
similar performance except GOA.

The fitness function value is also analyzed and the results
are listed in Table 8 and Figure 10. These results show that
the MPAMFO obtained the highest fitness values at levels 6,
15, and 17 while the GOA came second, followed by HHO,
MPA, and GWO. Atlevels 8 and 19, the MPAMFO performed
similarly as MPA; however, the average of the fitness values
for the MPAMEFO is lightly higher than those of the MPA. The
GWO and HHO were ranked third and fourth, respectively,
followed by GOA, CS, PSO, and MFO.

In general, the MPAMFO obtained the best PSNR values
in 70% of the experiment, followed by the HHO with 9%
of the images. In terms of SSIM measure, the MPAMFO
obtained the best values in 61% of the images followed by the
HHO and GWO with 12% and 8% of the images, respectively.
The MPAMFO also achieved the highest values in the fitness
values in 36% of all images, whereas, GOA obtained the
second-best in 25% of the images followed by HHO.

Figure 12 depicts the threshold values obtained by each
algorithm to segmented image I1 for COVID-19.

E. STATISTICAL RESULTS

In this section, we applied Friedman test to study the robust-
ness of all algorithms in the experiments. The Friedman test
statistically ranks the algorithms. In this rank, the highest
value is the best. The results of first and second experiments
are listed in Table 9 and 10, respectively.

From Table 9, the MPAMFO algorithm obtained the high-
est mean rank among the two measures (i.e., PSNR and
SSIM), followed by the HHO, CS, SSO, PSO, MPA, and
MFO, respectively, in the PSNR measure; and the HHO,
MPA, CS, GWO, SSO, PSO, and MFO, respectively, in the
SSIM measure. For the second experiment, Table 10 shows
that the MPAMFO algorithm also has the highest rank in both
measures, followed by SSO and HHO. Whereas, CS, MFO,
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TABLE 6. Results of the PSNR measure for all algorithms for the second experiment.
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Level (K) Image MPA MPAMFO HHO CS GWO GOA SSO PSO MFO
6 Covl 15.07 15.13 1597 1549 1537 1508 16.85 1559 14.28
Cov2  11.86 19.63 1736 12.61 12.86 11.38 18.80 14.79 14.39
Cov3 11.98 17.06 1451 12773 12,65 1278 16.56 13.04 12.49
Cov4  12.80 17.81 15.37 1327 13.07 12.88 1693 14.39 14.25
Covs 11.07 18.07 1623 1144 11.83 11.64 17.64 14.55 14.44
Covb6  12.58 18.55 1393 13.05 12.09 1297 16.77 12.89 13.62
Cov7 15.48 16.24 1549 1597 1549 15778 1576 13.83 13.71
Cov8 10.28 13.83 1032 1072 1044 958 11.39 1341 13.18
Cov9  15.65 17.50 1556 1627 15.65 1550 1599 1495 14.77
Covl0 10.25 13.35 10.17 1077 1090 9.67 11.20 13.94 13.37
Covll 1525 16.51 1536 1554 1544 1578 1533 14.74 1447
Covl2 15.18 16.55 1520 1572 1453 1547 1542 13.60 13.57
Covl3 15.55 15.97 15.64 1587 1539 15.08 15.62 1320 13.36
8 Covl 16.84 22.73 20.11 1755 18.14 17.40 1995 19.18 18.87
Cov2  17.09 22.41 20.52 18.57 17.65 17.01 19.64 20.75 19.57
Cov3 16.46 20.37 1732 1729 1632 16.00 18.30 18.49 19.06
Cov4  16.12 21.08 17.69 1656 16.60 15.69 19.08 19.50 20.71
Cov5 16.93 21.85 1896 17.68 17.06 1623 19.76 18.19 20.15
Cov6  17.26 20.16 1725 16.87 1422 1522 17.72 18.08 20.11
Cov7 17.28 17.47 1749 18.09 16.14 1676 1786 1725 16.48
Cov8 14.79 16.20 13.80 1434 14.07 1350 1541 1393 13.71
Cov9  16.35 18.49 16.67 17.10 1725 17.01 17.09 16.71 15.85
Covl0 13.58 17.09 1459 1499 1397 12776 14.84 16.78 14.49
Covll 15.18 18.14 1522 1549 1580 1535 1524 21.88 23.46
Covl2 17.25 17.46 17.12 17.62 1581 16.87 17.69 17.05 1527
Covl3 17.07 17.63 16.33 17.60 18.50 1585 18.08 16.04 16.45
15 Covl 24.06 24.24 24.02 2439 2410 2329 2389 2254 21.80
Cov2 2272 24.49 2647 2486 2252 2147 2499 22,00 2338
Cov3d  20.58 23.77 21.89 21.16 20.86 18.87 2328 2121 2275
Cov4  20.54 23.68 21.87 2136 2149 1889 22.16 2295 2272
Cov5  21.70 24.27 24.89 2363 21.68 20.15 2331 2281 2336
Cov6  18.81 23.76 1891 20.19 17.34 1624 2193 2192 22.00
Cov7 18.19 21.20 1859 19.72 17.87 16.61 18.73 18.17 17.25
Cov8 19.00 21.44 19.32 2074 19.77 17.88 2039 16.16 17.92
Cov9  22.05 22.40 22.53 20.84 2192 2203 2236 20.13 20.04
Covl0 19.81 22.39 1929 20.78 19.40 1898 21.01 17.68 18.42
Covll 22.19 21.36 21.67 21.60 1922 20.89 2140 20.06 20.82
Covl2 18.09 20.20 1872 1949 1754 16.68 1882 21.53 22.54
Covl3 20.00 19.90 20.61 2041 1950 19.83 21.93 1844 17.48
17 Covl  24.62 26.88 2547 2499 2433 2392 2483 23.00 22.89
Cov2  24.07 26.48 26.64 26.00 2296 22.01 26.12 2330 23.85
Cov3d  21.25 24.38 2366 2283 21.65 19.56 24.06 22.13 23.86
Cov4  22.15 25.32 2340 2244 2250 2037 2233 23.08 23.18
Cov5 2275 25.11 25776 25.00 23.07 2221 2622 2397 2428
Cov6  19.60 24.34 2196 1898 18.01 1843 24.09 2273 2249
Cov7 19.36 21.47 20.06 2130 1928 1730 20.75 1945 19.63
Cov8  21.19 23.05 19.75 2226 2133 19.72 2158 17.66 18.77
Cov9  23.80 23.83 22775 2256 2325 2224 2336 21.14 2245
Covl0 21.04 22.56 20.65 22.68 20.87 19.94 2273 1842 18.85
Covll 22.00 22.55 22.56 2218 21.07 20.77 2218 1925 19.78
Covl2 19.53 22.79 19.79 20.19 1948 17.02 20.10 20.78 22.77
Covl3 20.62 22.60 2043 22.13 20.10 2097 22.03 2041 20.04
19 Covl 25.50 27.49 26.58 2680 25.15 2445 26.10 26.06 26.18
Cov2 2475 28.42 2729 2639 24.12 2350 2637 2647 2678
Cov3  22.04 26.68 2475 2343 2322 2028 25.16 26.11 2630
Cov4  23.60 26.08 2495 23.64 2405 2148 2506 2586 2531
Cov5 2395 26.39 2641 2626 23.66 2292 2636 2524 2582
Cov6  20.51 26.35 2226 19.89 1930 1872 2559 24.15 26.46
Cov7  20.77 23.33 2097 19.68 20.00 18.23 22.05 20.67 22.56
Cov8  22.59 24.20 22.52 2407 2228 21.18 23.18 20.14 20.85
Cov9 2382 25.94 24.17 25.02 2436 2325 2354 2294 2213
Covl0 22.42 24.70 21.33 2400 2199 2185 2352 2030 2041
Covll 23.05 23.82 23.30 2245 2289 21.59 2279 20.78 20.24
Covl2 20.35 23.95 2029 20.06 21.74 17.65 2220 20.82 23.06
Covl3 21.73 23.28 2231 2279 2148 2196 2275 22.60 20.77
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TABLE 7. Results of the SSIM measure for all algorithms for the second experiment.
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Level (K) Image MPA MPAMFO HHO CS GWO GOA SSO PSO MFO
6 Covl  0.399 0.496 0473 0.447 0447 0481 0415 0483 0452
Cov2  0.653 0.757 0.745 0.669 0.670 0.629 0.647 0.716 0.726
Cov3d 0510 0.665 0.618 0.551 0.508 0.529 0.509 0.502 0.459
Cov4  0.243 0.585 0453 0259 0.249 0.243 0.243 0.348 0.361
Cov5  0.661 0.764 0.732 0.663 0.686 0.652 0.657 0.746 0.749
Cov6  0.529 0.551 0.499 0.536 0485 0.545 0.530 0.477 0.480
Cov7  0.443 0.468 0.440 0.453 0454 0441 0455 0364 0359
Cov8  0.405 0.518 0.409 0.433 0414 0339 0444 0426 0.506
Cov9  0.558 0.579 0.571 0.571 0.575 0.567 0.555 0.480 0474
Covl0 0.383 0.525 0374 0412 0441 0333 0437 0.505 0.507
Covll 0.527 0.556 0.530 0.528 0.528 0.537 0.523 0.543 0519
Covl2 0.428 0.484 0431 0.438 0421 0429 0442 0356 0352
Covl3 0.464 0.527 0.462 0472 0434 0461 0483 0454 0497
8 Covl  0.542 0.710 0.713 0571 0.811 0.613 0.500 0.677 0.692
Cov2  0.752 0.760 0.785 0.757 0.754 0.737 0.753 0.726 0.754
Cov3d  0.672 0.696 0.687 0.686 0.641 0.600 0.658 0.647 0.680
Cov4  0.503 0.694 0.586 0.540 0.538 0.500 0.510 0.634 0.675
Cov5  0.755 0.800 0.776  0.768 0.767 0.737 0.760 0.783 0.771
Cov6  0.602 0.598 0.570 0.603 0.477 0.500 0.598 0.559 0.568
Cov7  0.533 0.517 0.546 0.542 0.467 0.488 0.544 0.522 0.521
Cov8  0.551 0.594 0.503 0.520 0.521 0.479 0.568 0.514 0.532
Cov9 0510 0.587 0.525 0.537 0.558 0.532 0.545 0.570 0.520
Covl0 0.505 0.606 0.557 0.574 0.537 0.448 0.550 0.570 0.571
Covll 0.520 0.626 0.522 0531 0.546 0524 0.523 0.608 0.601
Covl2 0.533 0.511 0518 0.535 0446 0.499 0536 0.519 0.501
Covl3 0.582 0.608 0.546 0.596 0.654 0.536 0.615 0.617 0.612
15 Covl  0.863 0.846 0.855 0.856 0.866 0.836 0.865 0.817 0.805
Cov2 0814 0.832 0.842 0.818 0.818 0.779 0.807 0.797 0.786
Cov3d  0.692 0.782 0.737 0.720 0.702 0.643 0.709 0.696 0.722
Cov4  0.763 0.816 0.806 0.785 0.814 0.691 0.773 0.748 0.777
Cov5  0.817 0.819 0.814 0.828 0.829 0.777 0.820 0.803 0.795
Covo  0.625 0.720 0.646 0.675 0.574 0.523 0.587 0.740 0.711
Cov7  0.554 0.679 0.580 0.621 0.528 0.483 0.572 0.646 0.630
Cov8  0.674 0.737 0.679 0.712 0.714 0.622 0.707 0.721 0.737
Cov9  0.739 0.747 0.751 0.709 0.756 0.731 0.741 0.765 0.770
Covl0 0.724 0.761 0.707 0.737 0.735 0.697 0.751 0.720 0.727
Covll 0.771 0.749 0.752 0.762 0.698 0.741 0.750 0.726 0.705
Covl2 0.553 0.629 0.586 0.618 0.514 0.485 0.575 0.627 0.610
Covl3 0.707 0.685 0.720 0.715 0.707 0.732 0.742 0.726 0.727
17 Covl  0.863 0.856 0.871 0.870 0.867 0.855 0.862 0.833 0.840
Cov2 0811 0.842 0.837 0.829 0.829 0.795 0.818 0.818 0.806
Cov3d  0.713 0.785 0.784 0.758 0.731 0.660 0.713 0.728 0.746
Cov4  0.833 0.828 0.860 0.827 0.851 0.765 0.831 0.750 0.785
Cov5  0.831 0.851 0.844 0.838 0.835 0.813 0.840 0.813 0.811
Covb6  0.646 0.775 0.723 0.663 0.605 0.608 0.628 0.751 0.615
Cov7?  0.597 0.676 0.626 0.682 0.585 0.516 0.638 0.650 0.636
Cov8  0.736 0.778 0.696 0.763 0.748 0.699 0.747 0.737 0.748
Cov9  0.793 0.779 0.759 0.754 0.800 0.743 0.758 0.785 0.781
Covl0 0.764 0.778 0.749 0.775 0.758 0.718 0.781 0.747 0.730
Covll 0.767 0.779 0.785 0.782 0.746 0.733 0.767 0.742 0.727
Covl2 0.613 0.715 0.622 0.654 0.597 0.509 0.627 0.630 0.618
Covl3 0.738 0.761 0.731 0.754 0.737 0.749 0.743 0.730 0.739
19 Covl 0.870 0.880 0.889 0.894 0.885 0.859 0.872 0.849 0.858
Cov2  0.820 0.837 0.845 0.844 0.835 0.800 0.830 0.805 0.813
Cov3d  0.734 0.820 0.797 0.770 0.761 0.683 0.740 0.808 0.758
Cov4 0872 0.894 0.897 0.857 0.886 0.802 0.856 0.856 0.833
Cov5  0.835 0.858 0.843 0.857 0.840 0.817 0.838 0.839 0.833
Cov6  0.674 0.803 0.728 0.692 0.639 0.625 0.648 0.770 0.751
Cov7  0.644 0.743 0.659 0.629 0.610 0.558 0.691 0.708 0.745
Cov8  0.774 0.806 0.773 0.796 0.772 0.743 0.777 0.823 0.781
Cov9  0.802 0.832 0.803 0.809 0.828 0.768 0.768 0.812 0.804
Covl0 0.779 0.817 0.764 0806 0.771 0.768 0.800 0.786 0.762
Covll 0.790 0.814 0.793 0.785 0.789 0.757 0.775 0.758 0.747
Covl2 0.646 0.753 0.644 0.661 0.673 0.548 0.700 0.722 0.734
Covl3 0.766 0.782 0.772  0.772 0.759 0.767 0.777 0.737 0.759
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TABLE 8. Results of the fitness function value for all algorithms for the second experiment.
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Level (K) Image MPA MPAMFO HHO CS GWO  GOA SSO PSO MFO
6 Covl 15.740 15.750 15.630 15.720 15.730 15.720 15.430 14.991 15.663
Cov2  16.450 16.460 16220 16.460 16.460 16.500 15.940 16.276 15.825
Cov3 16.760 16.780 16.570 16.760 16.760 16.770 16.350 16.777 16.156
Cov4  18.020 18.020 17.840 18.060 18.080 18.090 17.560 17.483 17.964
Covs 16.900 16.910 16.650 16.880 16.870 16.900 16.420 16.507 16.522
Cov6  16.450 16.460 16.240 16400 16.390 16.440 15960 16.272 15.636
Cov7 16.853 16.613 16.856 16.816 16.814 16.850 16.784 16.520 15.963
Cov8 16.908 16.736 16912 16.893 16.896 16.918 16.863 16.443 16.011
Cov9  16.272 16.325 16.274 16.222 16.232 16249 16.238 16.288 15.877
Covl0 16.937 16.826 16938 16.955 16956 16.984 16.899 16.727 16.771
Covll 15.230 14.919 15.232 15117 15.124 15.013 15182 14.742 14.256
Covl2 16.765 16.604 16.765 16.817 16.780 16.860 16.695 15.625 15989
Covl3 16.359 16.202 16.362 16316 16.310 16325 16316 15.736 15.357
8 Covl 19.190 19.210 18.870 19.080 19.100 19.170 18.640 18.740 18.569
Cov2  19.860 19.880 19.340 19.780 19.850 19.760 18.880 19.074 19.411
Cov3  20.000 20.020 19.760 19.930 19.960 20.030 19.220 19.987 19.593
Cov4  21.565 21.550 21.290 21.470 21.520 21.560 20.830 21.497 20.759
Cov5  20.230 20.240 19.850 20.160 20.170 20.280 19.440 19.536 19.564
Cov6  19.670 19.700 19.430 19.610 19.580 19.670 18.930 18.966 18.797
Cov7  20.369 20.251 20.372 20.288 20.299 20.362 20.288 19.764 20.062
Cov8  20.318 20.211 20.317 20.246 20.273 20313 20.167 19.812 19.675
Cov9  19.854 19.585 19.846 19.732 19.792 19.839 19.680 19.298 18.751
Covl0 20.326 20.995 20.345 20.277 20.232 20351 20.222 20916 20.844
Covll 18.599 18.172 18.592 18.452 18477 18.464 18.359 18.110 17.300
Covl2 20.353 20.117 20.367 20.304 20.297 20336 20.284 19.578 19.309
Covl3 19.286 19.905 19.713  19.632 19.602 19.732 19.580 19.170 19.515
15 Covl  28.560 28.590 27.770 28.220 28.340 28.580 27.200 28.004 28.169
Cov2  28.390 28.490 26.590 27.780 27.620 28.260 25.820 28.468 27.929
Cov3d  29.700 29.730 28.950 29.270 29.330 29.890 28.140 28.776 28.859
Cov4  30.800 30.800 30.070 30.480 30.470 30.930 29.430 30.403 29.859
Cov5  28.990 28.970 27.880 28.520 28.850 29.150 27.000 28.310 28.442
Cov6  28.400 28.520 27.360 27.780 27.600 28320 25240 28.238 27.975
Cov7  29.490 28.405 29.535 29.040 29.329 29.458 28.863 27.581 28.230
Cov8  29.174 28.253 29.318 28.742 28.676 29.281 28.755 27.266 27.930
Cov9  28.625 27.541 28.716 28.079 28.002 28.706 28.027 26.649 26.682
Covl0 29.348 28.462 29.385 28.953 29.056 29.481 28.969 27.927 28.041
Covll 26.824 27.038 27.014 26.201 25.894 26.795 26.002 26.652 26.560
Covl2 29.532 29.564 29.557 29.086 29.352 29.507 29.005 29.368 29.463
Covl3 28.440 27.234 28.577 28.058 27.256 27.869 27.816 26901 26.535
17 Covl  31.260 31.340 30.190 30.740 30.760 31.220 29.650 30.789 31.099
Cov2  30.970 30.940 29.210 30.110 29.400 30.560 27.380 30.706 30.821
Cov3d  32.340 32.350 31.460 31.870 31.940 32.490 30.530 31.416 32.021
Cov4  33.490 33.620 32.620 33.110 33.080 33.700 32.090 33.549 33.163
Cov5  31.580 31.630 30.300 30910 31.250 31.610 29.200 31.338 30.751
Cov6  30.960 30.970 28.560 30.170 29.800 30.790 27.670 30.646 30.050
Cov7  32.142 31.127 32.196 31.491 31.601 32.314 31.378 30485 30977
Cov8  31.786 30.751 31.810 31.212 31.124 31.775 31.266 30.182 30.384
Cov9  31.022 29.705 31.189 30.479 30.198 30.883 30.526 29.510 29.694
Covl0 32.111 32.276 32.085 31.556 31.595 32274 31.644 31.358 32.050
Covll 29.161 27.434 29.214 28.161 28.111 29.388 28.266 27.286 26.467
Covl2 32.165 32.928 32231 31.619 31.730 32.188 31.388 32.465 32.834
Covl3 30.470 29.705 31.055 30.247 29987 30.323 30.202 28.718 29.003
19 Covl  33.780 33.790 32.740 33320 33.360 33.730 32.190 33.361 32.859
Cov2  33.250 33.470 31.500 32.230 31.660 33.050 29.080 32.650 33.393
Cov3d  34.900 34.860 33.670 34.330 34.410 35.050 32490 34.330 34.556
Cov4  36.160 36.230 35270 35.740 35590 36.390 34.530 35.364 35.505
Cov5S  34.050 34.010 32530 33.300 33.320 33.770 31.200 33.482 33.470
Cov6  33.280 33.340 31.210 32370 31.830 32550 28.810 32.717 33.064
Cov7  34.675 33.410 34745 33945 33.884 34718 33.658 33352 33.290
Cov8  34.229 33.418 34228 33.663 33.530 34.180 33.774 33.212 320918
Cov9  33.341 32.178 33420 32.873 32749 33.346 32.879 31.814 31.389
Covl0 34.720 34.781 34778 34.135 34.215 34760 34.270 34.048 34.502
Covll 31.494 29.853 31.350 30.351 30.217 31.305 30.263 29.479 28.971
Covl2 34.798 33.497 34735 33.999 34.085 34.540 33.608 33.274 33.341
Covl3 33.104 32.291 33.308 32.576 32.642 33.093 32.683 31.729 31.982
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TABLE 9. Friedman test results for the first experiment.

MPA MPAMFO HHO CS GWO GOA SSO PSO MFO
PSNR 443 7.93 7.57 540 3.5 1.55 507 525 4.05
SSIM 593 8.67 691 5.15 5.01 1.62 443 418 3.12
TABLE 10. Friedman test results for the second experiment.
MPA MPAMFO HHO CS GWO GOA SSO PSO MFO
PSNR 3.76 8.38 575 5790 371 238 6.64 432 435
SSIM  3.95 7.89 5,62 597 486 231 495 482 4.64
ig’s -....-k.. [ 19§ igz 1 _' ..‘f [ J -1719§
. W T T YWl T
(a) (a)
12 | —_ _ m _ == o:o —_— | . = e
(b) (b)

FIGURE 8. Summary of the PSNR results for the second experiment.
(a) illustrates the performance of each algorithm at thresholds levels.

(b) illustrates the numbers of the best cases obtained by each algorithm.

PSO, and MPA, and GWO allocate from the fourth to eighth
ranks, respectively according to PSNR measure. Meanwhile,
based on the SSIM value, the algorithms are ranked as in the
following order, the CS, HHO, SSO, GWO, PSO, and MFO,
respectively. From these two tables, it can see that GOA is the
worst result according to the results of the experiments.
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FIGURE 9. Summary of the SSIM results for the second experiment.
(a) illustrates the performance of each algorithm at thresholds levels.
(b) illustrates the numbers of the best cases obtained by each algorithm.

For further analysis, the Wilcoxon rank-sum test is used to
check the statistical differences between the proposed method
and the compared algorithms as in Tables 11 and 12. From
Table 11, there are statistical differences between MPAMFO
and MPA, GWO, GOA, and MFO based on the PSNR mea-
sure. Whereas, based on the SSIM measure, there are statis-
tical differences between MPAMFO and GOA, SSO, PSO,

19
17

Threshold levels
a

% 150
3
100

= MPA = MPAMFO = HHO CS ®mGWO ®mGOA mSSO mPSO mMFO

(b)

FIGURE 10. Summary of the fitness value results for the second experiment. (a) illustrates the performance of each algorithm at thresholds
levels. (b) illustrates the numbers of the best cases obtained by each algorithm.
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FIGURE 11. Segmented image and Threshold values obtained by each algorithm over the histogram of image 11 for
CoVID-19.
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FIGURE 12. Segmented image and Threshold values obtained by each algorithm over the histogram of image 11 for
CoVID-19.
and MFO. From Table 12, the MPAMFO showed statistical From the above two experimental series, it can be observed

differences with all algorithms in both measure except the the superiority of the developed MPAMFO overall the com-
SSO for the PSNR, and HHO, CS, and PSO for the SSIM pared algorithms. However, MPAMFO has some limitations
measure. that need to be improved; for example, complexity is higher
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TABLE 11. Wilcoxon rank sum test results for the first experiment.

MPA HHO CS GWO GOA SSO PSO MFO
PSNR 0.049 0.783 0.214 0.035 0.000 0.177 0.218 0.048
SSIM  0.132 0.291 0.065 0.056 0.000 0.034 0.040 0.005
TABLE 12. Wilcoxon rank sum test results for the second experiment.
MPA HHO CS GWO GOA SSO PSO MFO
PSNR 0.000 0.016 0.008 0.000 0.000 0.108 0.001 0.006
SSIM  0.027 0.153 0.127 0.047 0.000 0.037 0.075 0.049

than the original MPA. Since it depends on MFO (dur-
ing exploration phase) that using the sorting process during
searching about the optimal threshold values, and this per-
formed by using Quicksort algorithm. In addition, the initial
population affects the quality of the final output, and for
fixing this point, the chaotic maps or opposite-based learning
techniques can be used.

VIl. CONCLUSIONS
This paper presents an efficient multi-level thresholding
(MLT) method for image segmentation including medical
image segmentation, such as COVID-19 CT images. The
proposed method uses a new swarm intelligence (SI) method,
called marine predators algorithm (MPA). The MPA is a
novel SI method, and therefore, for our knowledge, this
study presents the first application of the MPA for image
segmentation. The MPA is improved using the moth-?ame
optimization (MFO) algorithm. The operators of the MFO
are applied to improve the exploitation ability of the MPA
by working as a local search of the MPA. The proposed
MPAMFO was evaluated with different images, including
CT images of new coronavirus (COVID-19), and it showed
good and stable performances in all tests. More so, extensive
comparisons were implemented to approve the superiority of
the proposed MPAMFO over several existing methods, such
as GWO, SSA, CS, PSO, and the originals MFO and MPA.
Evaluation outcomes showed that the MPAMFO outperforms
other methods in terms of SSIM, PSNR, and fitness value.
Overall, the proposed MPAMFO assesses its high perfor-
mance; therefore, in the future, it could be improved to be
applied in various optimization applications, such as time
series forecasting, data clustering, cloud computing, machine
job scheduling, and others. Also, for COVID-19 CT image
segmentation, there are several algorithms can be consid-
ered in the future work, such as improving MPAMFO as
a multi-objective image segmentation method, using recent
new MH technique such as Henry Gas optimization algo-
rithm, and Slime mould algorithm.
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