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ABSTRACT Butterfly recognition is a key link in the field of animal and plant observation. In order to realize
the location and recognition of butterflies by robot vision system in complex environment, rapid fine-grained
classification of butterflies based on the FCM-KM andMask R-CNN fusion was proposed. First, an adaptive
image enhancement algorithm based on fuzzy sets optimized by FOA was used to realize the adaptive fuzzy
enhancement of butterfly images in image pre-processing. Then, K-Means clustering algorithm optimized
by dynamic population firefly algorithm based on chaos theory and max-min distance algorithm, FCM-KM,
was used to determine the optimal clustering number K instead of manual parameter tuning. Finally, while
effectively segmenting the butterfly images, the Softmax in Mask R-CNN was used to classify the butterfly
images. The recognition accuracy of the trained model in the verification set was 83.62%. To verify the
feasibility and effectiveness of the model in complex environment, the rapid fine-grained classification
method of butterflies based on the FCM-KM and Mask R-CNN fusion was compared with CNN, Resnet
and original Mask R-CNN. The experiment results show that the method proposed in this paper has a good
classification effect on butterflies in complex environment.

INDEX TERMS Fine-grained butterfly classification, FCM-KM, FOA, Mask R-CNN.

I. INTRODUCTION
In recent years, with the rapid development of animal and
plant observation, the images of animals and plants have pro-
liferated, and the demand for target identification of animals
and plants has also increased dramatically. Butterfly recogni-
tion is one of the important tasks. It can help natural scientists,
biologists and other researchers in related research. Scientists
can obtain the distribution of certain butterflies, count the
population of butterfly species, monitor and evaluate the
butterfly species and ecosystem, analyze the change of eco-
logical environment and assist the butterfly protection by
identifying the butterflies automatically. However, the natural
environment is complex and harsh, and the image resolution
is low. Butterfly subcategories usually have small inter-class
differences, so that we often require small local differences
to distinguish them. For example, Two-tailed Swallowtail
and Three-tailed Swallowtail are very similar, and the dif-
ferences between them mainly lie in the transverse bands
of the forewings and the shapes of the hind wings, but the
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differences are relatively slight. Compared with inter-class
differences, there are usually large intra-class differences in
fine-grained image classification, including object attitude,
lighting, scale, shielding, angle and background. Especially
in the case that the data amount of each category is limited and
there is no additional manual labeling information for butter-
fly parts, it is a very challenging task to realize fine-grained
image classification based on weak supervision information.

During the collection and transmission of butterfly images,
it is actually easy to be polluted by noise, which reduces the
quality of butterfly images and blurs the butterfly images.
Therefore, it is necessary to enhance butterfly images. It is
conducive to improving the image quality, enhancing some
features of the image areas and increasing the contrast
of the image areas. At present, image enhancement algo-
rithms include fuzzy processing, frequency domain method
and spatial domain method [1]. Fuzzy enhancement pro-
cesses the original images by fuzzification, then processes
them by using various properties in the characteristic plane,
and finally realizes the enhancement of the original images
by fuzzy inverse transformation. The frequency domain
method enhances the images through image transformation.
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The spatial domain method mainly deals with the images
directly, and the algorithms mainly include histogram trans-
formation, histogram equalization, local gray level, edge
extraction and smooth filtering. These methods all need to
determine the crossover point and saturation point manually.
Because of these shortcomings, the applications of traditional
methods are limited. To deal with the problems that tradi-
tional image enhancement algorithms need a large amount
of calculation, they lack applicability and their parameters
need to be set manually by experience, combined with rapid
optimization capability of fruit fly optimization algorithm,
an adaptive butterfly image enhancement algorithm based on
fuzzy sets optimized by FOA was used, and it is of important
theoretical value and practical significance.

Image segmentation is one of key technologies in image
processing, and it is also a fundamental and important part of
image analysis and computer vision tasks. Since the 1970s,
image segmentation has been highly valued by people. Up to
now, thousands of segmentation algorithms have been pro-
posed. However, because there is no universal segmentation
theory, most of the proposed segmentation algorithms are
specific to the certain problems. In addition, there is no stan-
dard to choose the suitable segmentation algorithm, which
brings a lot of practical problems to the applications of image
segmentation. With the rapid development of deep learning,
many semantic segmentation methods based on deep learning
have been proposed in recent years. Compared with the tradi-
tional methods, the image segmentation algorithms based on
deep learning have the advantages of precision and efficiency.
For example, it was proposed that full convolutional network
(FCN) [2] was adapted from VGG16 in 2015. VGG16 [3] is
a classification network. Its first half is convolutional layers
to extract local features, and its latter half is full connection
layers to integrate global information. FCN changes the full
connection layers of the latter half into the convolutional
layers, which can support the segmentation of input images
at any size. Compared with the traditional algorithms in the
early stage, its effect is significantly improved. Among the
deep learning algorithms, Mask R-CNN, an instance seg-
mentation model, combines target detection with instance
segmentation. It can not only determine the position of each
target in the pictures, but also complete target segmentation
and classification accurately. In recent years, it has been
widely concerned and applied. In the past, the methods of
instance segmentation were basically to first segment, then
classify. At the same time, there were also some multi-stage
concatenation methods: the candidate box of the target was
predicted, then the target was segmented in the candidate
box, and finally target classification was carried out on the
basis of the segmentation. These methods were not only
slow but also low in accuracy. However, Mask R-CNN com-
pletes image segmentation and classification at the same
time, which is much simpler and more flexible. Of course,
in the same period, there were also other methods which
can complete image classification, detection box regression
and mask prediction simultaneously, such as FCIS. It is a

end-to-end full convolution solution. It can carry out instance
mask prediction and classification simultaneously. Although
the network has a high degree of integration, its effect is not
good. It could produce errors for overlapping instances, and
there are some problems in mask boundaries. In addition,
some instance segmentation methods are that first semantic
segmentation and then instance segmentation, while Mask
R-CNN carries out instance segmentation directly.

In recent years, fine-grained image classification which is
also called as sub-category recognition is a hot research prob-
lem in the field of computer vision, pattern recognition and so
on. Its purpose is to carry out more detailed sub-category clas-
sification for coarse-grained categories. However, due to the
subtle inter-class differences and large intra-class differences
between the subcategories, compared with coarse-grained
image classification, fine-grained image classification pays
more attention to the small but very important local fea-
tures in the image and is more difficult. Early fine-grained
image classification algorithms based on artificial features
generally extracted SIFT (scale-invariant feature transform),
HOG (histogram of oriented gradient) or other local features
from the image and then used VLAD (vector of locally
aggregated descriptors), Fisher vector or other coding models
for feature coding. Due to the complicated selection process
of artificial features and limited expression ability, their
classification effects were not good. However, with the rise of
deep learning, features obtained from Convolutional Neural
Networks (CNN) [4] automatically have more powerful
description ability than artificial features. Therefore, a large
number of convolutional feature algorithms are proposed,
which promotes the rapid development of fine-grained image
classification algorithms. In recent years, Convolutional Neu-
ral Network (CNN) has made remarkable achievements in
general image classification, bringing a new development
direction for fine-grained image classification. Researchers
begin to select CNN features as image representations for
fine-grained image classification. For example, literature [5]
used 26 morphological features of the fore and hind wings
and color features of the front to identify 43 species of
butterfly specimens, which obtained a high recognition rate.
Literature [6] established a neural network model based on
the radial basis by using the color features of the butterfly
fronts and backs, which also obtained a high recognition
rate. Literature [7] proposed an image feature extraction
method based on Gabor filter and an extreme learning
machine (ELM) method to identify 5 butterfly species with
a high recognition rate. Soon after, literature [8] used the
method which combined the gray-level co-occurrence matrix
feature and RGB color features of the butterfly wings’ sur-
face with artificial neural network classifier to recognize
14 butterfly species in the Satyridae family in Turkey.
In 2014, the above method was improved, and the
improved method which combined gray-level co-occurrence
matrix (GLCM) with multi-nominal logistic regression real-
ized the automatic recognition of 19 butterfly species.
Literature [9] proposed a butterfly recognition method
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that the training set was expanded by observing butterfly
images from multiple perspectives. Literature [10] designed
15 unique features of fishes, butterflies and plants from
three aspects including geometric structure, morphology and
texture features in their images, and then used neural net-
work for training and species classification. Literature [11]
used butterfly recognition model CaffeNet to identify the
butterfly pattern photos. Its recognition result was not signif-
icantly different from those of the traditional SVM methods,
but the recognition rate of butterfly ecological photos was
much higher than those of the traditional SVM methods.
Literature [12] used the Faster R-CNN algorithm to identify
and classify butterfly images captured in the natural environ-
ment, which acquired good result. The accuracy rates of the
above algorithms were all over 80%. These results prove that
convolutional features can play a better role in fine-grained
image classification, but there is still room for improvement
in classification accuracy. In addition, the existing algorithms
are basically based on the images of butterfly specimens,
which is inclined to the simple classification task, while the
ability to expand in the ecological images is weak, which
needs to be further studied [13].

Therefore, a deep learning model suitable for butterfly
image classification in natural environment, which is called
rapid fine-grained classification of butterflies based on the
FCM-KM and Mask R-CNN fusion, was proposed in this
paper. The overall flowchart of the method is shown in Fig. 1.
First, the collected butterfly images were preprocessed.
Image preprocessing included data augmentation and data
normalization. Data augmentation operations included ver-
tical flip, horizontal flip, horizontal-vertical flip, contrast
enhancement, noise addition and image enhancement based
on fuzzy sets optimized by FOA. The data normalization
operation was to normalize the RGB color channels of the
images to (−1, 1). Then, K-Means clustering algorithm opti-
mized by dynamic population firefly algorithm based on
chaos theory and max-min distance algorithm, FCM-KM,
was used to determine the optimal clustering number K
instead of manual parameter tuning. Finally, while effec-
tively segmenting the butterfly images, the Softmax in Mask
R-CNN was used to classify the butterfly images. The exper-
imental results showed that the model achieved the good
performance with the recognition accuracy of 83.62%. At the

FIGURE 1. Overall flowchart.

same time, the rapid fine-grained classification method of
butterflies based on the FCM-KM and Mask R-CNN fusion
was compared with CNN, Resnet and original Mask R-CNN,
and the results showed that in the case of complex back-
ground, the model proposed in this paper had a better clas-
sification effect and more remarkable advantage than other
networks.

The rest of the paper is as follows. The second part intro-
duces the material and method of this paper. The third part
analyzes the experimental results. We conclude in part four.

II. MATERIALS AND METHODS
A. DATA COLLECTION
The data set was collected and sorted out on the Internet by
the author. The data set is almost a collection of the actual
butterfly images captured in the ecological environment, and
only a small fraction of the images are the traditional butterfly
specimen images. Because of downloading on the Internet,
some images were classified incorrectly. The author referred
to professional books and reclassified these five kinds of
butterfly images, with a total of 1,188. In the data set,
the images of Argynnis hyperbius are 226, the images of
monarch butterfly are 169, the images of Polygonia c-aureum
are 308, the images of Danaus genutia are 235, and the images
of Papilio machaon are 250. The background areas of the
images are basically complex background, as shown in Fig. 2.
Fig. 2 (a) is Argynnis hyperbius, Fig. 2 (b) is monarch
butterfly, Fig. 2 (c) is Polygonia c-aureum, Fig. 2 (d) is
Danaus genutia, and Fig. 2 (e) is Papilio machaon. In this
data set, different species of butterflies have high similarity,
and butterflies of the same species have great differences due
to environmental influence or abnormal development.

FIGURE 2. Examples of butterfly dataset.

B. BUTTERFLY IMAGE ENHANCEMENT BASED ON FUZZY
SETS OPTIMIZED BY FOA
In the process of collection and transmission, butterfly images
are susceptible to noise and blurred. There are many disad-
vantages in traditional fuzzy enhancement algorithms. For
example, they need a large amount of calculation, they lack
applicability and their parameters need to be set manually
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by experience. Their results of image enhancement are usu-
ally bad and cannot achieve the best effect. Therefore, fruit
fly optimization algorithm was introduced into the fuzzy
enhancement of butterfly images, and fuzzy entropy was used
as an evaluation index for the effect of image enhancement.
Use the fruit fly optimization algorithm for automatic opti-
mization to realize the adaptive selection of parameters in
butterfly image fuzzy enhancement.

1) BUTTERFLY IMAGE FUZZY PROCESSING
The process of fuzzy enhancement algorithm is as follows:

Step 1: According to the In Equation (2), in view of
the different butterfly images and enhancement purpose,
the parameters of the membership function (Fe,Fd , gmax) are
adjusted, all the sets constituted by µmn are fuzzy feature
planes, gmn represents the maximum pixel value, Fe is the
exponential fuzzy factor, Fd is the reciprocal fuzzy factor,
and the fuzziness can be controlled by adjusting these param-
eters. Therefore, the selection of fuzzy parameters Fe and Fd
can effectively enhance the butterfly images. When µmn =
G (gc) = 0.5, this point is called the transition point. The
selection of transition point gc and fuzzy parameters satisfies
the conditions of Equation (1):

Gmn =


< 0.5 gmn < gc
= 0.5 gmn = gc
> 0.5 gmn > gc

(1)

After determining the transition point gc, when Fe is
known, formula (2) can be used to calculate Fd .
Step 2: The butterfly image is mapped from the spatial

domain to the fuzzy domain by G transformation.

µmn = G (gmn) = [1+
gmax − gmin

Fd
]
Fe

(2)

Step 3: According to the transformation of Equation (3),
fuzzy enhancement can be modified. The membership degree
of the modified fuzzy enhancement is (µmn→ µ′mn):

T (µm) =

{
2 · [µmn]2 , 0 ≤ µmn ≤ 0.5

1− 2 ·
[
1− µmn

]2
, 0.5 ≤ µmn ≤ 1

(3)

The key point of fuzzy enhancement is to enhance the
membership value µmn that is greater than 0.5, and reduce
the membership value that is less than 0.5, so as to reduce the
fuzziness of G.

Step 4: The new gray level g′mn is obtained through theG
−1

inverse transformation, and the butterfly image is mapped
from the fuzzy domain to the spatial domain:

g′mn = G−1 (µmn)

= gmn − Fd [(µmn)
−1
Fe −1] (4)

2) BUTTERFLY IMAGE ENHANCEMENT BASED ON FOA
OPTIMIZED FUZZY SET
a: FRUIT FLY OPTIMIZATION ALGORITHM
Fruit Fly Optimization Algorithm (FOA) has the advan-
tages of few control parameters and fast convergence speed.

This algorithm is a group intelligence algorithm which sim-
ulates the foraging of fruit flies. The algorithm flow is as
follows:

Step 1: Initialize the parameters of the algorithm, fruit
fly population size and maximum number of iterations. The
initial positions of fruit flies are X_begin and Y_begin.

Step 2: According to Equation (5) and (6), calculate the
searching direction and distance of fruit fly individuals.

xi = X_begin+ Value× rand() (5)

yi = Y_begin+ Value× rand() (6)

In Equation (5) and (6), xi and yi represent the positions
of fruit fly individuals, and Value represents the searching
distance of fruit fly.

Step 3: Calculate the distance between the fruit fly individ-
ual and the origin, and calculate the taste concentration si of
the fruit fly individual by Equation (7) and (8).

di =
√
x2i + y

2
i (7)

si =
1
di

(8)

Step 4: Calculate the determination function of taste con-
centration by Equation (9) to obtain the taste concentration of
the fruit fly individual at the current location.

Smell t = Funcyion (si) (9)

Step 5: Search for the best taste concentration value Smellb
in the fruit fly population and the best location xb and yb;

Step 6: Record and reserve the best location and the
best taste concentration of the fruit fly population Snekkb,
Xbegin = xb,Ybegin = yb, and search in the best location
direction of the fruit fly population.

Step 7: Enter the iteration process of optimization and
repeat step 2-step 5. If the taste concentration is better than
that of the previous iteration, carry out Step 6. Otherwise,
return step 2-step 5.

b: IMAGE ENHANCEMENT REGION DEFINITION
During initialization, a certain number of populations are
randomly generated, the Fitness(m) of each population is cal-
culated, the maximum value of Fitness(m) in the population
is searched, and then the speed and position of particles are
updated according to FOA algorithm rules [14]. Until the
given algebra is calculated, the fuzzy enhancement param-
eters Fe, Fd corresponding to the maximum fitness value are
used for fuzzy enhancement of butterfly images.

The algorithm steps are as follows:
Step 1: Initialize the position of fruit fly population and the

parameters of the algorithm;
Step 2: Calculate the Fitness(m) of each population. If it

is better than the optimal value of the individual in history or
the optimal value of the population in history, the position of
the current value will be retained and the optimal value of the
individual in history or the optimal value of the population
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FIGURE 3. Flow chart of image enhancement based on FOA optimization
fuzzy set.

in history will be updated at the same time. Otherwise,
the previous historical optimal value will be retained.

Step 3: Move the particles to the new location according to
the update rules of fruit fly optimized location;

Step 4: Judge whether the maximum algebra is reached.
If Lteration < Maxgen, the optimization will end. Instead,
return to step 2;

Step 5: The fuzzy enhancement parameters Fe, Fd corre-
sponding to the maximum Fitness value which is obtained
finally are used for fuzzy enhancement of butterfly images.

C. APPLE DEFECT DETECTION BASED ON MULTIVARIATE
IMAGE ANALYSIS
1) MASK R-CNN
Mask R-CNN network, as an extension of Faster R-CNN,
extends classification [15]–[18] and regression tasks on the
basis of Faster R-CNN, which is the highest level of instance
segmentation algorithm [19]–[23]. Mask R-CNN network
has two-layer branching structure: the first layer is the struc-
ture of original Faster R-CNN,which is used for classification
of candidate windows and regression of window coordinates;
The second layer uses the full convolutional network structure
to predict the binary segmentation mask for each region of
interest (ROI) [24]–[26].

The steps of Mask R-CNN algorithm are as follows:

Step 1: Input butterfly images and carry out the corre-
sponding preprocessing operation, or input the preprocessed
butterfly images; Then, it is input into a pre-trained neural
network to obtain the corresponding feature maps.

Step 2: Set predetermined ROIs for each pixel in the feature
map to obtain multiple candidate ROIs.

Step 3: Send these candidate ROIs into the RPN network
for binary classification (foreground or background) and BB
regression, and filter out some of the candidate ROIs.

Step 4: Carry out ROIAlign operation on the remaining
ROIs (first match the pixels of the feature maps with those
of the original image, and then match the feature maps with
the fixed features).

Step 5: Classify these ROIs into specific butterfly cate-
gories (N category classification), obtain the precise position
by BB regression and MASK generation (fully convolutional
network operation is carried out in each ROI).

For the traditional Mask R-CNN, it can not only correctly
find each target in the images, remove part of the complex
background and accurately segment these targets, but also
effectively complete the target classification [27]–[31]. How-
ever, there are still some deficiencies in the traditional Mask
R-CNN. For example, its parameters need to be set manually
by experience, its efficiency is low and it lacks applicability.
To deal with the problems, K-Means clustering algorithm
optimized by dynamic population firefly algorithm based on
chaos theory and max-min distance algorithm, FCM-KM,
was used to determine the optimal cluster number K instead
of manual parameter tuning. The specific process is as
follows.

2) BUTTERFLY IMAGE NETWORK BASED ON THE FCM-KM
AND MASK R-CNN FUSION
(1) FCM-KM

a. K-Means clustering algorithm
K-Means algorithm is a kind of unsupervised learning and

a clustering algorithm based on partition, mainly used to clas-
sify samples into K categories by the operations. Generally,
Euclidean distance is used as an index to measure the similar-
ity between data objects. The similarity is inversely propor-
tional to the distance between data objects. The greater the
similarity is, the smaller the distance is. The algorithm need
to specify the initial cluster number k and k initial clustering
centers in advance, update the locations of the clustering
centers constantly according to the similarity between data
objects and clustering centers, reduce the Sum of Squared
Error(SSE) of class clusters constantly, when the SSE doesn’t
change anymore or objective function converges, clustering is
over and the final result is obtained.

The core idea of K-Means algorithm is as follows: first,
randomly select K initial clustering centersCi(1 ≤i≤K ) from
the data set, calculate the Euclidean distance between the
remaining data objects and the clustering centers Ci, find the
clustering center Ci closest to the target data objects, and
assign the data objects to the cluster corresponding to the
clustering center Ci. Then calculate the average value of data
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objects in each cluster as the new clustering centers, and carry
out the next iteration until the clustering centers no longer
change or the maximum number of iterations is reached.

The calculating formula of Euclidean distance between
data objects and clustering center in space is

d (x,Ci) =
√∑m

j−1
(xj − Cij)2 (10)

In Equation (10), x is the data object; Ci is the i-th cluster-
ing center; m is the dimension of the data object; xj, Cij is the
j-th attribute value of x and Ci.
The calculating formula of Sum of Squared Error (SSE) of

the whole data set is

SSE =
∑k

i=1

∑
x∈Ci
|d(x,Ci)|2 (11)

In Equation (11), the size of SSE represents the clustering
result; K is the number of clusters.

From the above process, we can see that K-Means algo-
rithm is very simple and easy to understand. It has fast
convergence speed, low time complexity, and can effectively
process large-scale data sets. Also, it is not sensitive to the
input order. However, K-Means algorithm has the following
defects:

a) No algorithm has been specified for the selection of
the clustering center value K. If the selected K value is
not reasonable, the clustering precision and computational
complexity will be seriously affected.

b) The optimal clustering result corresponds to the extreme
point of the objective function, and the clustering center
falls near a local minimum point, which easily leads to the
algorithm falling into local optimization.

For the traditional K-Means algorithm, given the initial
clustering centers, the randomicity and global search ability
of the firefly algorithm can be used to accurately divide the
data set except the clustering centers, so as to further improve
the convergence speed of the algorithm and realize the opti-
mization of K-Means algorithm. At the same time, in view of
the defect of the optimized algorithm that it is easy to fall into
the local extremum region in the global optimization search,
K-Means clustering algorithm optimized by dynamic popu-
lation firefly algorithm based on chaos theory and max-min
distance algorithm, FCM-KM, is used to optimize K-means
clustering again according to initial value sensitivity and
ergodicity of chaos mapping.

b. Optimization of K-Means clustering algorithm
a) Firefly algorithm
Firefly algorithm is a random search technique based on

swarm intelligence. The idea stems from the biological char-
acteristic of fireflies that they move toward brighter fireflies
than themselves. In the search space, the positions of the
fireflies represent the solutions of the optimization problem,
and the brightness corresponds to the adaptive value of the
optimization problem. The fireflies keep moving towards
the brighter fireflies until the preset termination condition
of the algorithm is reached and the optimization task is
completed.

Set the number of fireflies to N, and set the dimension
to D. The positions of the i-th firefly and the j-th firefly
are expressed as xi = (x i1,xi2,..., xiD),i= 1, 2, . . . ,N and
xj = (x j1,xj2,..., xjD),j= 1, 2, . . . ,N . The calculating formula
of distance rij between the firefly i and the firefly j is as
follows:

rij =
∥∥xi − xj∥∥ = √∑D

d=1
(xid − xjd )2 (12)

In Equation (12), xid and xjd represent the d-dimensional
position of the ith firefly and the j-th firefly respectively.

The calculation formulas for the brightness and attraction
of fireflies are as follows:

I = I0exp(−γ ∗r2ij) (13)

β = β0exp(−γ ∗r2ij) (14)

In Equation (13) and (14), I0 and β0 are the initial bright-
ness and initial attraction of fireflies respectively, and γ is the
light absorption coefficient.

The updated formula for the movement of firefly i to
firefly j is as follows:

xid (t + 1) = xid (t)+ β
(
xjd (t)− xid (t)

)
+ αi(t)ε (15)

In Equation (15), xid (t) and xjd (t) are the d-dimensional
positions of t-th generation of the firefly i and the firefly j
respectively, and αi(t) represents step length factor of the t-th
generation of the firefly i. ε is uniformly distributed and its
value range is[−0.5, 0.5].

b) The Max-Min distance algorithm determines the clus-
tering center value K

The Max-Min distance clustering algorithm is similar to
the traditional K-means in that according to the nearest neigh-
bor principle, they both divide the sample points belonging
to each clustering center by calculating Euclidean distance.
The difference lies in that the former does not directly give the
clustering category value K, but selects an object Xi from the
sample points as the first clustering center. The Euclidean
distances between each point and Xi are calculated, and the
point farthest from Xi is taken as the new clustering center.
Repeat the above steps until no new clustering centers are
generated and the total number of clustering centers K is
finally determined. The steps of the algorithm are as follows:

Step 1: θ is given and 0 <θ< 1. Select the initial clustering
center Z1 = x1;

Step 2: Generate new clustering centers
Calculate the Euclidean distances between each point

and Z1. Dk1 = max{Di1}. The corresponding xk is next
clustering center Z2;

Calculate the distances from each point to the clustering
center Z1 and Z2. If Di = max{min(Di1,Di2)}, i= 1, 2,L, n
andDi > θ∗D12, then take x1 as the third clustering center Z3.Di1 = ‖xi − Z1‖ =

√∑d

i=1
|xi − Z1|2

Di2 = ‖xi − Z2‖
(16)
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If Z3 exists, determine whether Dj = max{min(Di1,Di2,
Di3)} exists. If the above conditions are met andDi > θ ∗D12,
the fourth clustering center is determined. Similarly, ifDi≤θ∗
D12, stop searching for the new cluster center.

Step 3: Count the total number of clustering centers K
The clustering result of the algorithm has a lot to do with

the selection of parameters and starting point. In order to
obtain a good clustering effect, repeated experiments are
required without the knowledge of prior sample distribution,
so the algorithm is only used to determine the size of the
clustering center value K in this paper.

c) Chaos theory optimizes clustering center
Chaotic sequences are characterized by randomness,

ergodicity and boundedness, but the ergodic uniformity of
chaotic sequences generated by different mappings is differ-
ent and has different effects on the optimization speed of the
algorithm. At present, Logistic mapping is often used to gen-
erate chaotic sequences in the literatures, but the uniformity
of chaotic sequences generated by Logistic mapping is poor,
and their values are usually taken in [0, 0.1] and [0.9, 1].
Through rigorous reasoning, it is verified that the chaotic
sequences generated by Tent mapping are more conducive to
algorithm optimization, and it is pointed out that the converg-
ing rate and ergodic uniformity of Tent mapping are better
than logistic mapping.

The mathematical expression of Tent mapping is:

xt+1 =


2xt , 0 ≤ xt ≤

1
2

2(1− xt ),
1
2
< xt ≤ 1

(17)

The expression after Bernoulli displacement transforma-
tion is

xt+1 = (2xt)mod1 (18)

The generation steps of Tent chaotic sequence are as fol-
lows:

Step 1: Randomly generate an initial value that is not in
(0.2,0.4,0.6,0.8), and write it as z, z (1) = x0, i = j = 1.
Step 2: Iterate according to Equation (18) and generate the

x sequence.
Step 3: If x(i) = [0, 0.25, 0.5, 0.75] or x(i) = x(i − k),

k = {0, 1, 2, 3, 4}, go to step2.
Step 4: Change the initial value of iteration according to

the formula x (i) = z(j+1), j=j+1, and go to step 2.
Step 5: If the maximum number of iterations is reached,

terminate the operation and save the generated x sequence.
FCM-KM algorithm takes the local optimal solution

searched at present as the fiducial point and generates Tent
chaotic sequence, and jumps out of the local optimal through
Tent search to obtain the global optimal solution.

Suppose the clustering center isCx,Xk= {xk1, xk2, · · · ,xkd }
The main steps of Tent chaotic search are as follows:

Step 1: Use the formula Z0
kj =

(xkj−X
j
min)

(X jmax−X
j
min)

, and map Xk to

(0,1). In the formula, k = 1, 2, . . . , n, d = 1, 2, . . . ,D.

Step 2: Substitute the above formula into Equation (18)
of Tent mapping and iterate to generate chaotic variable
sequence Zmkj (m= 1, 2, . . . ,Cmax). Cmax is the maximum
number of iterations of chaotic search.

Step 3: Carry Zmkj within the space neighborhood of the
original solution to generate the new solution Vk by the

formula Vkj = xkj +
(X jmax−X

j
min)

2 × (2Zmkj−1)
Step 4: Calculate fluorescence brightness value F(Vk ) of

Vk , compare it with fluorescence brightness value F(xk ) of
local optimal solution, and retain the best solution.

Step 5: If the number of searching Cmax is reached, stop
searching; Otherwise, go to step 2.

d) FCM-KM algorithm
Basic steps of FCM-KM algorithm are as follows:
Step 1: Initialize the parameters: the total number of clus-

tering objects N, absorption coefficient γ , step length fac-
tor α, the maximum iteration times of chaotic search Cmax ,
the maximum fluorescence brightness I and the maximum
attraction β0
Step 2: Determine the number of clustering centers K

through the Max-Min distance algorithm, and record the
initial location of clustering centers obtained by theMax-Min
distance algorithm.

Step 3: Construct the chaotic search space which takes
each clustering center as the fiducial points through the Tent
mapping successively.

Step 4: Use Tent chaos to search and update the location
of the initial clustering centers until the clustering centers no
longer change.

Step 5: Match clustering centers with the target fire-
flies, and give them the maximum fluorescence brightness.
Calculate the Euclidean distance between the remaining sam-
ple points and each cluster center, and give them different
fluorescence brightness according to formula (13).

Step 6: If Ii > Ij, the objective function value of firefly j is
less than that of firefly i, and the position of firefly j is better
than firefly i. The firefly j will attract firefly i to move towards
it. The movement mode is determined by formula (14), and
the positions of the fireflies are updated through formula (15).

Step 7: Repeat step 6 until all fireflies are divided into their
respective clustering centers.

Step 8: Output the result.
(2) The rapid fine-grained classification method of butter-

flies based on the FCM-KM and Mask R-CNN fusion
The structure chart of the butterfly classification method

based on the FCM-KM and Mask R-CNN fusion is shown
in Fig. 4

The steps of this algorithm are as follows:
Step 1: Input butterfly images and carry out the correspond-

ing preprocessing operation, or the preprocessed butterfly
images; Then, it is input into the Resnet101 neural network
to extract the features and obtain the corresponding feature
maps by using the pyramid (FPN) network.

Step 2: Take each pixel in the feature maps as the
center, and generate multiple anchors according to the
proportion of the generated anchors in the configuration
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FIGURE 4. Structure chart of the classification method based on the
FCM-KM and Mask R-CNN fusion.

file(RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512),
RPN_ANCHOR_RATIOS = [0.5,1,2]).

Step 3: Use K-Means clustering algorithm optimized by
dynamic population firefly algorithm based on chaos the-
ory and max-min distance algorithm, FCM-KM, to roughly
screen the anchors.

Step 4: Send the screened anchors into the RPN network
for binary classification (foreground or background) and BB
regression.

Step 5: Apply the outputs of RPN network to the anchors.
First, sort the probabilities and keep the part with high prob-
ability of the foreground. Then, select the corresponding
anchors and use the regression value of RPN to correct the
anchors for the first time. After fixing these, the anchors are
carefully screened using a non-maximal inhibition method.

Step 6: Carry out ROIAlign operation on the remaining
ROIs (first match the pixels of the feature map with those of
the original image, and then match the feature map with the
fixed feature).

Step 7: Classify these ROIs into specific categories of but-
terflies (Softmax is used for N category classification), obtain
the exact location by BB regression and MASK generation
(fully convolutional network operation is carried out in each
ROI).

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The hardware information is as follows: Processor is Intel
Core i9, 500 GB RAM; Graphics is Nvidia Titan Xp; System
Memory is 16 G.

The software information is as follows: LabelMe;
PyCharm 2019.1.3; MATLAB 9.0 (R2016a), Keras.

B. DATA PREPROCESSING
The experimental database contains 5 categories of butter-
flies, and each category contains 169 to 308 images, with a
total of 1,188 images. Samples of five butterfly species are
shown in Fig. 5. Fig. 5 (a) is Argynnis hyperbius, Fig. 5 (b) is
monarch butterfly, Fig. 5 (c) is Polygonia caureum, Fig. 5 (d)
is Danaus genutia, and Fig. 5 (e) is Papilio machaon. It can
be found that the image backgrounds of the database are
complex; The colors and illumination of the targets within

FIGURE 5. Examples of butterfly images in the database.

the same category vary greatly; The shapes and colors of the
targets across the categories are very similar.

A total of 913 images were randomly and uniformly
selected from these five categories of butterfly images as
the training set, and the remaining 275 images were as
the validation set. Because the trainings of the deep neu-
ral network models require a lot of images to extract the
effective features and the models need to alleviate overfit-
ting, data augmentation on the training set was done. The
data augmentation operations included vertical flip, horizon-
tal flip, horizontal-vertical flip, contrast enhancement, noise
addition and image enhancement based on fuzzy sets opti-
mized by FOA. The resulting image is shown in Fig. 6.
Fig. 6 (a) is the original image, Fig.6 (b) is horizontal-vertical
flip, Fig. 6 (c) is horizontal flip, Fig. 6 (d) is vertical flip,
Fig. 6 (e) is contrast enhancement, Fig. 6 (f) is noise addition,
and Fig. 6 (g) is image enhancement based on fuzzy sets
optimized by FOA. After data augmentation, the images of
Argynnis hyperbius is 277, the images of monarch butterfly
is 207, the images of Polygonia c-aureum is 377, the images
of Danaus genutia is 288, and the images of Papilio machaon
Linnaeus is 313, with a total of 1,462. Because the number
of images was fewer, only the training set and verification
set were set in the experiment. Table 1 shows the settings of

FIGURE 6. Seven data augmentation methods of butterfly images.
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TABLE 1. The settings of training set and verification set in the data set.

TABLE 2. The number and proportion of five categories of butterfly
images after data augmentation.

the training set and verification set in the data set used in this
experiment. Table 2 shows the number and proportion of the
five categories of butterfly images after data enhancement.

C. DATA ANNOTATION
Mask R-CNN requires data training before image target
detection and instance segmentation. However, data training
requires the labeled data set, so it is necessary to annotate the
data set. The image annotation tool selected in this paper is
LabelMe. Just install LabelMe under Anaconda and stimulate
the LabelMe environment in CMD to use. The LabelMe tool
saves the annotated annotations in a JSON file, generating a
set of polygon points for each object in the image, and storing
their coordinate values such as (x, y). When training,the
network needs a ‘mask image’, which will be temporarily
generated by loading polygon coordinate points from the
JSON file. An image is selected from the Mask R-CNN
training set. Fig. 7 (a) is the original image, and fig. 7 (b)
is the labeled image.

FIGURE 7. The labeled image.

D. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the effectiveness of the training model
for butterfly recognition, the experiment first compared the
experimental effect of the method proposed in this paper with
that of the original Mask R-CNN. Then, deep learning meth-
ods CNN and Resnet which were widely used in butterfly

recognition were selected to do the comparative experiments,
and finally the experimental conclusion was drawn.

1) EVALUATION INDEXES
The evaluation indexes in this paper are composed of four
indexes: accuracy, recall rate, accuracy and loss function.
Since the identification results of butterflies need to be eval-
uated, the evaluation indexes need to consider both accuracy
and recall rate. F1 is selected as one of the evaluation indexes
of butterfly identification results. F1 is themeasurement func-
tion of accuracy and recall rate, which is defined as follows,
as shown in Equation (19).

F1 =
2PR
P+ R

P =
TP

TP+ FP

R =
TP

TP+ FN
(19)

In Equation (19), P represents precision; R represents recall
rate.

TP represents the number of the samples which are actually
the butterflies and are predicted by the model to be the
butterflies (the positive samples are detected as the positive
samples). FP represents the number of the samples which
aren’t actually the butterfly but are predicted by the model to
be the butterflies (negative samples are detected as positive
samples). FN represents the number of the samples which
are actually the butterflies but aren’t predicted by the model
to be the butterflies (the positive samples are not detected as
positive samples).

2) EXPERIMENTAL COMPARISON AND PERFORMANCE
EVALUATION
The originalMask R-CNN network and the improvedmethod
proposed in this paper, rapid fine-grained classification of
butterflies based on the FCM-KM and Mask R-CNN fusion,
were used to identify butterflies respectively, and then their
effects of butterfly recognition were compared. The loss of
Mask R-CNN is composed of the losses of category predic-
tion branch, boundary box prediction branch and segmenta-
tion mask branch. The training loss of original Mask R-CNN
model is shown in Fig. 8 (a), and the training loss of the
improved model based on the FCM-KM and Mask R-CNN
fusion is shown in Fig. 8 (c). The loss of the regional sug-
gested network consists of the losses of category prediction
and boundary box prediction. The original training loss of the
regional suggested network is shown in Fig. 8 (b), and the
improved training loss of the regional suggested network is
shown in Fig. 8 (d). The horizontal axis represents the number
of training batches, and the vertical axis represents the loss in
these figures. It can be seen that compared with the original
Mask R-CNN model, the loss values of the improved model
based on the FCM-KM and Mask R-CNN fusion are lower,
and its training effect is better.
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FIGURE 8. The loss of Mask R-CNN and the improved model based on the
FCM-KM and Mask R-CNN fusion.

TABLE 3. The accuracy of Mask R-CNN and the improved model based on
the FCM-KM and Mask R-CNN fusion.

The experimental results of the two algorithms are shown
in Table 3. After the experiment of the data set without image
enhancement, the accuracy of the improved model based on
the FCM-KM and Mask R-CNN fusion was 81.94%, which
was higher than that of the original Mask R-CNN (+2.39%).
After the experiment of the data set with image enhancement,
the accuracy of the improved model based on the FCM-KM
andMask R-CNN fusion was 83.62%, which was higher than
that of the original Mask R-CNN (+3.19%). Experimental
results show that the improved model based on the FCM-KM
andMask R-CNN fusion can effectively optimize the training
model.

At the same time, the experimental results of the improved
model based on the FCM-KM and Mask R-CNN fusion for
each category were also compared with those of the orig-
inal Mask R-CNN model, as shown in Table 4. It can be

TABLE 4. Comparison of experimental results of the two models for each
category.

seen that the classification accuracy is improved for various
categories (+3.78%, +1.74%, +2.11%, 2.94%, +2.92%),
and the classification accuracy of the improved model based
on the FCM-KM and Mask R-CNN fusion is higher than
that of the original Mask R-CNN model. Among these data,
the classification accuracies of Argynnis hyperbius, Danaus
genutia and Papilio machaon are more than 83%, while the
classification accuracies of monarch butterfly and Polygo-
nia caureum are relatively low. This is because, as shown
in Table 2, monarch butterfly accounts for less proportion in
the data set, its images with complex backgrounds account for
a large proportion, and the image backgrounds of the Polygo-
nia caureum are also all complex backgrounds, the training
results of these two categories of butterflies are relatively
poor. In addition, some of the characteristics of the selected
butterflies are very similar, which increases the difficulty
of identification. At the same time, different environment
background will also affect the classification results.

In this paper, the data set without image enhancement and
with image enhancement is used to train different networks.
The classification accuracies of different networks are shown
in Table 5. The experimental results show that the classi-
fication accuracy of the dataset with image enhancement
is improved in different networks (+0.15%, 0.42%, 0.88%,
1.68%), and compared with other networks, the classification
accuracy of the improved model based on the FCM-KM
and Mask R-CNN fusion is significantly improved. The
F1 values of different species for different networks are
shown in Table 6. The results show that the improved model
based on the FCM-KM and Mask R-CNN fusion is better
than the other three algorithms in recognizing butterflies, and
its F1 value is higher than those of CNN, Resnet and Mask
R-CNN. In general, the improved Mask R-CNN has a good
recognition effect on butterflies.

TABLE 5. Classification accuracy of different networks.

TABLE 6. F1 values for each category for different networks.
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IV. CONCLUSIONS
In this paper, a fine-grained butterfly recognition algorithm
based on the improved model based on the FCM-KM and
Mask R-CNN fusion was proposed. First, an adaptive image
enhancement algorithm based on fuzzy sets optimized by
FOA was used to realize the adaptive fuzzy enhancement
of butterfly images in image pre-processing. Then, K-Means
clustering algorithm optimized by dynamic population fire-
fly algorithm based on chaos theory and max-min distance
algorithm, FCM-KM, was used to determine the optimal
clustering number K instead of manual parameter tuning.
Finally, while effectively segmenting the butterfly images,
the Softmax in Mask R-CNN was used to classify the butter-
fly images. The method proposed in this paper can find each
object in the image correctly, remove the complex interfer-
ence information in the background and segment the objects
accurately to simplify the classification work. At the same
time, the feature maps of the input images were extracted
for classification, and its validity in butterfly classification
was verified on the data set. Experimental results showed that
comparedwith the originalMaskR-CNNnetwork, the overall
classification results improved by about 3%. In order to verify
the feasibility and effectiveness of the model in complex
environments, the comparative experiments between CNN,
Resnet, Mask R-CNN and the improved model based on the
FCM-KM and Mask R-CNN fusion were done. The exper-
imental results showed that the improved model had better
classification effect and more remarkable advantages in the
case of complex background.

The butterfly recognition model proposed in this paper
improved the effect of fine-grained butterfly classification in
complex backgrounds greatly, but considering that the data
set contained fewer butterfly categories, the model will be
improved from the perspective of expanding the butterfly
categories in the future to enhance the generalization ability
of the recognitionmodel and further improve the performance
of the algorithm.
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