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ABSTRACT Medication recommendation based on Electronic Health Records (EHRs) is an important
research direction, which aims to make prescription recommendations according to EHRs of patients.
Most existing methods either only make recommendation through EHRs of the current admission while
ignoring the patient’s historical records, or fail to fully consider the correlations among the clinical events
from every single admission. These methods have shown their limitations in dealing with the complex
structural correlations and temporal dependencies of clinical events in EHRs, which results in the defect of
recommendation quality as well as the lack of temporal prediction ability. For that, a novel graph-attention
augmented temporal neural network is proposed to model both the structural and temporal information
simultaneously. For each admission record, a co-occurrence graph is constructed to establish the correlations
among clinical events, and then a graph-attention augmented mechanism is used to learn the structural
correlations on the graphs to obtain better representation of this admission. Then a temporal updating module
based on the gated recurrent units is further proposed to learn the temporal dependencies between multiple
admissions of each patient. Furthermore, our proposed model is also constrained by the co-occurrence graph,
which can capture the internal correlations of clinical events and provide better modeling capability when
the training data is sparse. Experiments illustrate that our model is superior to the state-of-the-art methods
on a real-world dataset MIMIC-III in all effectiveness measures.

INDEX TERMS Electronic medical records, medication recommendation, graph-attention neural networks,

temporal updating.

I. INTRODUCTION

Electronic Health Records (EHRs) are the main data carri-
ers for personalized medical research. With the popularity
and improvement of the quality of EHRs, plenty of efforts
have been dedicated to this field due to the potential appli-
cations such as medication recommendation and diagnosis
prediction [1], [15], [24], [25]. Normally, an EHR is rep-
resented as a temporal admission sequence for the patient,
in which each sequence contains a series of clinical events
(diagnoses, procedures, medications, etc.) of a single admis-
sion [4]. Given current clinical events as well as historical
admission records of the patient, the goal of the medication
recommendation task is to provide personalized medication
combinations appropriate for her/his health condition. The
medication recommendation problem is highly non-trivial
and has a long history in the field of machine-aided medical
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diagnoses and treatment. Early medication recommendation
researches [40]—[42] are mainly based on facts and rules sum-
marized by experts with rich clinical experiences. In recent
years, deep learning based methods have been widely used in
this task [1], [2], [4], [10], [25], which have greatly improved
the prediction accuracy and provided greater possibilities for
applications in practical scenarios.

The main challenges of medication recommendation prob-
lem arise from the following two aspects:

1) Structural correlations: The EHR of a single admis-
sion can be regarded as a collection of clinical
events including diagnoses, procedures and medica-
tions, these events are internally related, and the corre-
lation between different events has different meanings
and degrees, which we call structural correlations. For
example, people with alcohol dependence are more
likely to have hyperlipidemia and hypertension. There
may also be correlations between different medication
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suggestions, e.g., cardiac glycoside and antiarrhythmic
drugs often work together. Besides, the relationship
between diagnoses and symptomatic medications is
also important for prediction.

2) Temporal dependencies: The patient’s condition will
change with the time of multiple admissions, and
the course of different diseases, different procedures
and medications are also different. For example, liver
transplantation may lead to some complications in
the future, and gout usually has a longer course than
esophageal reflux disease. Clinical events such as diag-
noses and medications between different admissions
often have various temporal dependencies.

In order to capture structural correlations, graph-based
deep learning techniques are often used to construct clinical
events into a network for better prediction. Mao et al. [9] used
the graph convolutional network (GCN) to model the similar-
ities between lung cancer patients according to their health
record information. Shang et al. [2] integrated the drug-drug
interactions knowledge graph to establish the relationship
between medication labels. Choi et al. [5], [24] used the
GCN and graph-based transformer to model the relationship
between different types of clinical events. Other existing
methods [1], [3], [25] used attention aggregation or GCN to
encode the tree structure of different medical code ontology.
Most of these methods just concern the structural correlation
among some types of clinical elements, which is not enough
to fully capture the different structural correlations among
various clinical events in EHRs.

Some existing models take into account the temporal evo-
lution of the patient’s historical EHRs in medication predic-
tion. Choi et al. [4], [10] used a multi-hot label vector to
represent clinical events for each admission, then adopted
gated recurrent units (GRUs) or a two-level attention mecha-
nism to model the temporal evolution of multiple admissions.
In these two approaches, clinical events of each historical
admission are treated as a bag of independent features, i.e.,
a set of independent vectors. More specifically, clinical events
of a single admission are represented as multi-hot vectors
and then perform linear embedding to obtain representations
of the admission. The method of using events as a vector
set cannot learn different correlations between each clinical
event. Finally, medication prediction is made based on the
temporal representation sequence of multiple admissions.

It should be mentioned that the structural correlations refer
to the relationship between all the clinical events of a single
admission, while the temporal dependencies focus on the
temporal evolution of the clinical events between different
admissions, these two types of information exist naturally in
the data. Simultaneously modeling these two types of infor-
mation helps to make full use of the data available, thereby
improving the recommendation quality.

In this work, we propose a Graph-Attention augmented
TEmporal neural network (GATE) that simultaneously mod-
els structural and temporal information in the EHR of each
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FIGURE 1. lllustration of medication recommendation task, where the
input is the EHRs of a patient in chronological order (above), and the
prediction result is the probability of each medicine at the ntf! admission.
EHRs are constructed in the form of temporal graph-structured sequences
(below). At each time point, there is a dynamic graph that takes all types
of events at this admission as nodes and uses the correlation between
these events as edge weights. Black and blue nodes represent diagnoses
and treatments, respectively, and red nodes represent medications.

patient. As shown in Fig. 1, we treat the original input as
a graph-based sequence based on the characteristics of the
graph structure to preserve the correlation between clinical
events. Then the problem reduces to the task of temporal
modeling and prediction over the graph-based data. Specifi-
cally, for each admission record of a patient, we construct the
patient’s diagnoses, treatments and medication history into a
co-occurrence correlation graph, in which each node repre-
sents the clinical event and the weight of the edge between
nodes represents the relevance between clinical events. Then
we use the graph-attention mechanism to capture the inherent
structural correlations in the graph. After that, we propose a
GRU-based temporal updating module to learn the temporal
dependencies between multiple admissions of each patient.
Since our model is constrained by co-occurrence graphs,
it can better capture the internal correlations of events. For
rare or non-occurring clinical events, our proposed model
can also obtain more effective information from co-occurring
events through the extracted structural and temporal correla-
tions, thus providing supplement and enhancement for sparse
data.

To summarize, the main contributions of our work are as
follows:

1) We treat EHRs as temporal graph-structured data and
propose a graph-attention augmented temporal neural
network to simultaneously model the temporal and
structural information for each patient. Our proposed
model uses an advanced graph-attention mechanism
and a two-dimensional incremental temporal updating
module.

2) We construct the EHR data into a global guidance
co-occurrence correlation graph, which guides the
attention weight between event nodes in the graph
attention mechanism, and then models the structural
characteristics of each admission record by incorpo-
rating the information of diagnoses, procedures, and
medications.
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3) Our proposed GATE method outperforms existing
state-of-the-art methods in terms of three metrics in
medication recommendation on a real-world dataset
MIMIC-III.

The remainder of this paper is organized as follows.
In section II, we introduce some related work used in our
method. In section III, we describe the framework of our
proposed GATE model. In section IV, we compare the pre-
diction performance of the proposed model with other base-
line models based on the real-world dataset MIMIC-III and
presents several analyses. Finally, we give some conclusions
and discuss future studies in section V.

Il. RELATED WORK

A. GRAPH NEURAL NETWORKS

Recently, great attention has been paid to the study of graph
representation learning. As a deep learning method on graph
domain, graph neural network (GNN) has been widely used in
various scenarios, such as social network, knowledge graph,
physical system, etc., because of its great expressive power
and high interpretability. The concept of GNN was first intro-
duced in [23], which extended the existing neural network
methods for processing the data represented as the graphs.
GNN is based on an information diffusion mechanism, the
intuitive idea underlying GNN is that nodes in a graph are
naturally specified by using the information contained in their
neighborhood. The core part of GNN is a propagation func-
tion, which is used to express the dependence of a node on its
neighborhood. Different from the previous approaches of net-
work information aggregation, GNN is naturally able to cap-
ture the multi-hop relations and help to obtain higher-order
features.

Kipf et al. [13] proposed a simplified spectral approach
called GCN, which significantly outperformed the existing
methods on the semi-supervised classification task. GCN
introduced a simple and efficient layer-wise propagation
function for neural network models that are based on a
first-order approximation of spectral convolutions on graphs.
Nevertheless, the real graph-structured data can be both struc-
turally large and complex, the method of aggregating all
neighbor features equally will introduce a lot of noise, which
will pose a challenge for effective graph mining. Another
popular variant called graph attention network (GAT) [14]
incorporates the attention mechanism into the propagation
function, it computes the hidden representations of each
node in the graph by attending over its neighbors, follow-
ing a self-attention strategy. As opposed to GCNs, GAT
allows for assigning different importances to different neigh-
bors of the same neighborhood in the role of attention,
which can ignore noisy parts of the graph and improve
the interpretability of the model. In the medication recom-
mendation task, the correlations between different clinical
events can be naturally handled by using the graph attention
mechanism.
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B. TEMPORAL MODELING OF SEQUENTIAL DATA

There are many approaches to model temporal dependencies
for sequential data such as Markov chain, hidden Markov
model, vector autoregressive model and neural models. In
recent years, recurrent neural networks (RNN) and their
variants e.g. long-short term memory (LSTM) are widely
leveraged to learn temporal dependency for sequential data,
which have been successful in modeling long sequences.

Inreal life, there are many application scenarios where data
has both temporal and network structure, for example, traffic
situation prediction based on real-time spatial road condition
information, action recognition with human joints as nodes
and continuous frames as a temporal sequence in the video, a
series of continuous transaction prediction between different
people in the financial field, and the prediction of social
network users’ friendship development over time. These sce-
narios have led to a lot of research [16]-[22], [46] on tem-
poral modeling for graph-structured sequence data. Most of
these networks in the real-world are naturally dynamic, which
means that they evolve over time, and nodes and links may
appear or disappear. The spatio-temporal dynamic framework
is now widely used in a variety of real-world scenarios.
For example, traffic situation prediction, action recognition,
financial transaction prediction, social network evolution, etc.
Researches in these scenarios breed a lot of temporal mod-
eling methods for graph-structured data. Nguyen et al. [30]
suggested using temporal random walks and the skip-gram
model for learning node embeddings, which constrained the
random walk to follow the order of time. Trivedi et al. [31]
presented Know-Evolve model which modeled the occur-
rence of a fact as a temporal point process. Trivedi et al. [32]
extended Know-Evolve model with a two-time scale process
that captured temporal node interactions in addition to the
topological evolution. Goyal et al. [28] incrementally built
node representations by initializing an autoencoder from the
previous time step. Hawkes process based Temporal Network
Embedding (HTNE) [29] used the concept of a Hawkes pro-
cess [37] to model the dynamism with an attention mecha-
nism to capture the influence of historical neighbors on the
current neighbors.

Recently, some researchers have attempted to combine
graph models with RNN-based modules to make up for
the lack of sequential modules in modeling the high-level
network structure, which has shown good results in many
tasks. Graph Convolutional Recurrent Network (GCRN) [38]
merged a convolutional neural network for graph-structured
data and LSTM to simultaneously identify meaningful spa-
tial structures and dynamic patterns. Goyal et al. [35] used
sparsely connected LSTM networks to learn the temporal
transitions in every node of the network. In these two meth-
ods, the output representation matrix of the graph model
was then directly inputted into the LSTM network. In other
words, it can be treated as applying the LSTM on each
column of the representation matrix independently. Recur-
rent Graph Convolutional Neural Network (RgCNN) [39]

125449



IEEE Access

C. Su et al.: GATE: Graph-Attention Augmented Temporal Neural Network for Medication Recommendation

combined convolutional neural networks and LSTM, which
designed a flattened dense layer behind the output of the con-
volutional neural network. Taheri ef al. [34] used an average
pooling of the nodes’ hidden states after message propaga-
tion in the graph model as the representation of the entire
graph. Pareja et al. [33] presented EvolveGCN, it introduced
a new method to combine GNN with the GRU. The heart of
EvolveGCN is that the weight matrix in the propagation func-
tion will be updated over time using the GRU network. In our
work, we consider modeling the graph-structured sequential
data by using the temporal updating module.

ill. METHODOLOGY

A. PROBLEM DEFINITION

1) DEFINITION OF PATIENT RECORDS

The EHR of each patient can be represented as a set of
temporal admission sequences: E" = {x], x5, ... ,x’;(n)},
where T (n) is the number of admissions of the n-th patient.
To avoid clutter, we will describe the method for a single
patient, and we omit z in the notation if there is no ambiguity.
Each admission sequence x; = {d,, p,, m;} is a collection of
codes that contains all the diagnosis event codes d;, procedure
event codes p, and medication prescription event codes m;
at the ¢-th admission, where d refer to the collection of
codes corresponding to the diagnosis symptoms recorded like
acute renal failure and anemia, p refer to the collection of
codes corresponding to various examinations and operations
performed such as liver transplantation, liver biopsy, etc, and
m refer to the collection of codes corresponding to the med-
ications (eg insulin, cardiac glycoside) prescribed according
to the patient’s condition.

2) MEDICATION RECOMMENDATION TASK

Given a patient’s history admission sequences Ej.,—; =
{x1,x2,x3,...,x,_1}, and the diagnosis and procedure codes
of this admission x; = {d,, p,} at time ¢. Our goal is to gener-
ate a medication combinationy, € {0, 1}% at time ¢ according
to the patient’s current clinical events x; and historical EHRs
E1.;_1, which can be regarded as a multi-label classification
task since the number of labels can be more than one, and L
is the number of candidate medications.

B. GRAPH CONSTRUCTION
To construct the graph structure of the clinical events for each
admission of a patient, we first need to represent the global
correlations between these events. The graph construction
process can be divided into two stages as shown in the Fig. 2.
Stage I: We first need to construct a global guidance cor-
relation graph G, where each node is a clinical event code.
These nodes include all diagnosis event codes, procedure
event codes and medication prescription event codes that ever
appeared in the dataset. Edges are based on co-occurrence
probability between events in each admission of every patient
used for guidance.
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FIGURE 2. Two stages of building the dynamic co-occurrence graphs for
every patient from the whole original EHR data.

TABLE 1. Notations used in this paper.

Notation | Description

E EHR of a patient

x clinical event codes of a patient

c multi-hot vector of @

L total number of medications

N total number of clinical events

G global guidance correlation graph

M adjacency matrix of G

A adjacency matrices of a patient’s EHR
HO medical embeddings

H medical representation at GAM module
«@ attention coefficient

G% selective update gate

GT incremental update gate

1:"07t medical representation at TDU module
F} output of 2D-GRUcell

(@] feature bag at MIML module

S instance-label scoring matrix

Yt predicted medication combination

Yt ground truth of medication combination

We define an adjacency matrix M € RV*N to clarify the
construction of the graph, where N is the total number of
clinical events in the dataset. Here we employ the Point-wise
Mutual Information (PMI) value to calculate the weight of the
edges. Formally, the edge weight between node i and node j
at time ¢ is defined as follows:

.. PMI(i,j), with PMI(i,j) >0
M. j) = / ’ (1)
0, else
and the PMI value is computed as:
- d(i,))
PMI(i, j) = log | ——— - |D| @
d(i)d(j)

where d(i, j) is the total number of admission records that
events i and j co-occurred. d(i) and d(j) are the total number
of admission records that i and j have appeared at least once
respectively, and |D] is the total number of admission records.
Note that events i and j here can belong to the same type of
event, such as two diagnosis events, or events of different
types, such as diagnosis events and medication prescription
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FIGURE 3. The framework of our proposed method. The left half-block is the overall structure of our model which mainly contains four modules, and the
right half-block depicts the module details of the last two time steps. Input data consists of related clinical events of the patient’s admissions ordered by
time. It is first transformed into input features through the embedding layer. Then we construct the dynamic correlation graphs based on input data and
feed them into the graph-attention augmented module (GAM) by time. The temporal updating module models the temporal evolution of each event
contained in the output matrix of the GAM at different time steps. Finally, an overall representation matrix is obtained incrementally and is fed into the

multi-instance multi-label classification module to obtain the predicted output.

events. At this stage, we have obtained a weight guidance
graph that reflects the degree of correlation between various
events.

Stage II: We construct dynamic co-occurrence graphs
from each patient’s history admission sequences Ej,_1 =
{x1,x2,x3,...,x;_1} and the clinical events occurred at cur-
rent admission x, = {d,, p,}, which is specifically expressed
as a sequence of adjacency matrices A = {A1,A2,...,A:}.
The co-occurrence graph at each time step can be considered
as a local mapping of the global guidance co-occurrence
graph. Due to the limited space, only one of the patient’s
dynamic co-occurrence graphs of multiple admission records
is drawn in Fig. 2. Specifically, at each time step, the adja-
cency matrix A; is a fully connected graph, where the nodes
represent all clinical events in the patient’s EHRs includ-
ing diagnosis events d;, procedure events p, and medication
prescription events m,, while the edge weight here is not
set to all 1, but calculated according to the global guidance
co-occurrence matrix. The specific calculation method is as
follows:

M(i,j), ifi,jin admission x;

AL ] = 3
tLi, ] 0. clse 3)

With the constraint of dynamic co-occurrence graphs, we can
effectively establish the association between clinical events
at each admission. The prior statistical guidance can enhance
the representation of sparse categories, which alleviates the
problem of insufficient training data of some event types.

C. MODEL FRAMEWORK

After constructing the co-occurrence correlation graphs,
we then introduce the framework to model the structural
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correlations and temporal dependencies simultaneously. Note
that structural refers to the co-occurrence relatedness of
multiple events from diagnoses, procedures and medications,
and temporal refers to the evolution of clinical events in
each admission of the patient over time. The framework
mainly includes the input embedding module, graph-attention
augmented module, temporal dependency updating module
and multi-instance multi-label classification module. Fig. 3
provides an overview of our proposed method.

1) INPUT EMBEDDING MODULE

The input embedding module first maps all the clinical event
codes x; of the patient at the 7-th admission into a feature
matrix H,° e RI“*4 a5 follows, where |c;| is the total
number of clinical event codes of the patient at ¢-th admission
and d is the feature dimension.

H =W “

where W, € RV*4 is the learnable embedding matrix, ¢; is a
multi-hot vector representing the existence of each clinical
event at the 7-th admission, N is the total number of the
clinical events in the whole dataset.

2) GRAPH-ATTENTION AUGMENTED MODULE (GAM)

Given the co-occurrence correlation matrix A; at time f,
we use a two-layer graph-attention neural network to encode
node features, which allows the encoded event node vectors
to contain the information of other co-occurrence events
at the same admission with different degrees of correla-
tion to obtain a more comprehensive representation. At
each layer, it embeds a set of node representations H, =
{hi1,hs2, ... ke, } by recursively aggregating informa-
tion from their neighbors. Formally, the node representation
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of every event code at the [-th graph attention layer hﬁ’ ; can
be obtained through the propagation function as follows:

Z ahl W'+ b ()

where o is a non-linear activation function(we use ReLU
in this paper), W and b are learnable parameters, and N
is the neighborhood of node i in the graph. The function
mainly follows the traditional GAT [14], in which the new
node representation hl ; of event code i contains both the pre-
vious layer representatlon hl Uand a weighted aggregation
of neighbor representations hl /1 The core of GAM is the
calculation of the attention coefficient, which determines the
importance of each neighbor’s feature to the current node.
The traditional implementation of calculating the attention
coefficient is as follows:
o exp(LeakyReLU( a T[W h,; ||W h ]])) ©)
=
L Y ien exp(LeakyReLU(G T[W I {||W i 41))

where a is a trainable attention vector, W is a trainable
weight matrix mapping the input features to the hidden space,
and || represents concatenation. In our method, since the
co-occurrence correlation graph has been constructed and the
correlation between events has been established, the calcu-
lation of the attention coefficient here can be simplified as
follows:

o _ expAi)
U Y ien, expAqli k1)

As stated in the previous section, the co-occurrence corre-
lation matrix A represents the correlations between differ-
ent clinical events at each admission. Through the above
equation, we assign different weights to other clinical events
for the updating of each clinical event representation in the
current admission, which can model the correlations among
various clinical events such as diagnoses, procedures and
medications. The GAM module in the framework makes
our model different from the way of treating events as an
independent set of vectors. With such a two-layer graph
attention neural network, each medical code can iteratively
accumulate first-order and second-order neighborhood code
information from various dynamic structures. The ability of
graph attention mechanism to encode higher-order structural
features enriches the representation of sparse features, and to
some extent makes up for the problem of sparse training data.

Note that the attention matrix A changes with the evolution
of clinical events over time. The GAM module needs to
simultaneously model different co-occurrence structures at
different time steps, parameters are shared across all temporal
and spatial co-occurrence correlation structures.

)

3) TEMPORAL DEPENDENCY UPDATING MODULE (TDU)
The GAM module outputs the node representations as
{Hy,Hso, ..., H;} at each time step that can capture the
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structural correlations, where H; € Rl¢!*4 contains all the
node representations at z-th admission. These representations
will then be processed by a temporal dependency updating
module. In our task, the nodes at each time step represent
various diagnosis events, procedure events, and medication
prescription events for the current admission, which are very
different, and the temporal evolution among different nodes
at various time steps may have dependencies. For example,
cerebral aneurysms can cause arachnoid hemorrhage, but they
are not directly related to gastrointestinal diseases which may
also appear at this admission. At each time step, the update
of each node should selectively remember the information
of some historical nodes. In addition, some clinical events
occurred only over some time, and some persist throughout.
We propose a temporal dependency encoding module to com-
prehensively consider the clinical events experienced by all
historical admissions of the patient, and embed all nodes that
have ever occurred up to time step ¢+ — 1 to have the final
historical representation of size |c| x d.

For that, we capture the temporal development of different
kinds of diseases and treatments, as well as the long-term his-
torical record information by using GRU as the basic model.
Note that other types of RNN, e.g. LSTM, can also be choices.
Since the number of clinical events is very large, it is not
practical to set a weight parameter for each node, which may
cause parameter explosion and overfitting. Inspired by the
temporal point process and the gating mechanism [31], [37],
we propose a selective update gate G° and an incremental
update gate G . Specifically, the temporal dependency updat-
ing process is formulated as the function of incremental linear
convex combination from the node vector representations of
temporal consecutive events, then the final output at time 7 is
calculated as follows:

Fo: =G Fo,_1 +(1 —G')F, ®)

where F; is the output of 2D-GRU cell at time 7, and G,
controls the update in the node dimension, it determines
how much (or how less) the previous information of each
clinical event impacts on the current encoding result of the
corresponding event code. In this way, the output of each time
step could be considered as an incremental update with the
node dimension, which can retain the information of all event
nodes ever occurred in the past, and model the preservation
and forgetting of each clinical event respectively. Locally,
the new hidden layer of each event code is obtained from
the current input feature and the hidden node state matrix
at the previous time step after passing the selective update
gate G3,. Then G5, will calculate the similarity of each input
clinical event code at time ¢ and each clinical event code in
the previous hidden state at time ¢ — 1, and the hidden state
of each event code at time ¢ can be captured by a weighted
average of the hidden states of clinical event codes with high
similarity with it.

In this part, we model the evolution of different clinical
events over time, so that for each clinical event code, the
hidden state of 2D-GRU cell at each time step selectively
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Algorithm 1 Training Algorithm
Input: Training dataset D, training epoches N;
Output: Optimal parameters 6*;
Construct the global guidance correlation graph G and the
adjacency matrix M ;
Initialize: Transform clinical codes to vectors, initialize
the model parameters using uniform distribution;
fori =0to N do
for j = 0to |D| do

Sample a patient record E = {x1, x2, ..., X7} from
D;

Construct the dynamic co-occurrence adjacency mat-
ices A;

fort =2to T(j) do
Use (4) to get medical embeddings H;
Use (5),(7) to get Hy,H», ..., H; through GAM
module;
Use (8),(9) to get ﬁO,t though TDU module;
0, <~ concat(FA'o,,, H)),
Use (10) to calculate the medication prediction
¥y, < MIML(Oy);
end for
Use (11) to update the parameters 6 < 6 — AgL(0);
end for
end for
Return 0* <« 6;

considers various clinical events at the previous time step.
We reiterate the whole formulation of our TDU module as
follows:

R, = Sigmoid(W, x [G%,F;_1,H,;] + B,)
Z; = Sigmoid(W,  [GS,F,_, H,] + B;)
F; = tanh(W « [R, « G5,F,_|,H,] + B)
F,=0-2)%G%F,_\+Z *F,
Fo; = G',Fo,—1 + (1 — G'DF, ©)

Note that unlike the standard GRU where both the input and
output are vectors, the input and output from the module
are now matrices, and both gates G! and G5 are node-aware
functions.

4) MULTI-INSTANCE MULTI-LABEL CLASSIFICATION
Overall, our medication recommendation task can be seen as
a multi-instance multi-label classification task by considering
the multi-events as input instances and multi-medicines as
output labels. All previous modules are instance-level mod-
eling, and the output of the TDU module can be regarded
as a bag of multiple node features where each node feature
integrates the structural and temporal characteristics of the
co-occurrence graphs. Then we integrate the output features
of all the clinical events by the previous modules to make the
final prediction.

Firstly, we select the node features contained in the last
admission record from the output of TDU module F 0.r to
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represent the node representations of temporal characteris-
tics, then concatenate the output of the GAM module at the
last admission record H; as a simple structural encoding
representation as our final feature bag O; which contains both
structural and temporal information of EHR. In this module,
we make the final multi-label classification for this feature
bag. Inspired by the DeepMIML [12] model that applies deep
learning to MIML, we introduce our MIML classification
module to discover instance-label relationships. Concretely,
for the feature bag O,, we proposed a fully connected layer of
size K * Cy,;, in which the matching score s;; of the i-th clinical
event instance and the j-th medication label is calculated as
follows:

K
s;j = Relu (Z Wik0ik + bj) (10)
k=1

where wj; can be interpreted as the matching weight for the
k-th sub-feature of the j-th medication. A max-pooling oper-
ation on this 2D instance-label scoring matrix § € RE<V
is conducted to obtain the matching scores for labels on
bag level, which will produce our final prediction Y of size
L * 1. Here the entry y,, is the matching score for the m-th
medication label on the whole EHR of the current patient.

D. OPTIMIZATION

Our goal is to predict the medication combination at each time
step y, € {0, 1}C"' where ¢+ > 2. The loss function in our
model can be selected as the binary cross-entropy function as
follows:

- . R
L= 3 (s toeG) + (1 —yDlog(1 =5))  (11)
=2

where y; is the ground truth and y, is the model predic-
tion. Due to a large number of samples and parameters,
the landscape of the loss function can be very complicated.
Thus, we adopt Adam [43] optimizer to minimize the loss
function in (11) which combines the advantages of two opti-
mization algorithms, AdaGrad [44] and RMSProp [45]. The
optimization considers the first-order moment estimation and
second-order moment estimation of the gradient, and can
adaptively tune the learning rate. The training algorithm is
shown in detail in Algorithm 1. In the optimization process,
the parameters of the two modules GAM and TDU will be
optimized at the same time and affect each other, then the final
model can learn the parameters that can capture the structural
and temporal correlation information and achieve the global
optimal solution.

IV. EXPERIMENTS

A. EXPERIMENT SETUP

1) DATASET

In the experiments, we employ the freely-available database
MIMIC-III [36] (Medical Information Mart for Intensive
Care III) comprising de-identified health-related data asso-
ciated with over forty thousand patients who stay in critical
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care units of the Beth Israel Deaconess Medical Center
between 2001 and 2012. We utilize multiple tables like
medication orders, procedure orders and prescription lists
and processed them into a patient’s temporal list of diag-
noses, medications, and treatment procedures. Since the
dataset records the clinical record in the intensive care unit
(ICU), the first 24 hours in ICU is often the most critical
time for patients to get correct treatment quickly, so we
choose a set of medications prescribed by doctors in the
first 24 hours after admission to ICU. And we transform
the drug coding from NDC to ATC Third Level for inte-
grating, and for the diagnosis codes and procedure codes,
and use the ICD-9 codes. Then we further divide the pro-
cessed data into single admission and multiple admissions,
and the statistics of the data information are listed in
Table. 2.

TABLE 2. Statistic of the Dataset MIMIC-III.

# of patients(single-visit) | 28,936
# of clinical event codes 3,321
# of patients(multi-visit) | 6,350
# of diagnose codes 1,958
# of medicine codes 145

# of procedure codes 1,426
max # of visits 29

avg # of visits 2.36

2) BASELINES
We consider several baseline algorithms in the experiments
for comparison as follows:

Logistic Regression (LR) is a logistic regression model
with L1/L2 regularization. Here we represent sequential mul-
tiple medical codes by the sum of a multi-hot vector of each
visit. Binary relevance technique [26] is used to handle the
multi-label output.

Learn to Prescribe (Leap) [15] is a method to decom-
pose the treatment recommendation into a sequential
decision-making process while automatically determining
the appropriate number of medications. A recurrent decoder
is used to model label dependencies and content-based atten-
tion is used to capture label instance mapping.

Reverse Time Attentlon Model (RETAIN) [10] is a
two-level neural attention model for sequential data which
relies on an attention mechanism to represent the behavior
of physicians during an encounter.

Graph Augmented Memory Networks (GAMENet)
[2] is the method that integrates the Drug-Drug Inter-
actions(DDI) knowledge graph by a memory module
implemented as a graph convolutional network. For a fair
comparison, we use a variant of GAMENet without DDI
knowledge.

G-Bert [1] is a model that integrates the GNN represen-
tation into a Transformer-based encoder with pre-training on
single-visit EHR data. For a fair comparison, we also use a
variant of G-Bert without codes’ ancestors information.
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3) METRICS

For the measurement of experimental results, we use the
Jaccard Similarity Score (Jaccard), Average F1 (F1) and
Precision Recall AUC (PRAUC) as the metrics. Jaccard is
defined as the size of the intersection divided by the size of
the union of the predicted set f/,(k) and the ground truth set
Yt(k) as follows:

N T

5(0) (k)
Ja¥", ¥ = ——— ZZ
Zkal

where N is the number of patients in the test set and Ty
is the number of admissions of the k-th patient. PR-AUC
is computed by trapezoidal integral for the area under the
PR curve. For the dataset where the number of positive and
negative samples are imbalance, the precision-recall curve
has shown to be a proper metric. And F1 here is defined as
follows:

|Y(k) N Y(k)|

|Y(k) U Y(k)| (12)

N T &) _ pk)
2x P X Ry
Fl= (13)
i Z,Tk PR
®© PP xy y®ng®)
where P,/ = W,R, = w

4) IMPLEMENTATIONS

We use all the single-visit EHR data to construct the global
guidance correlation graph. And for the multi-visit EHR data,
we select 2/3 of the data for training, and the rest is divided
into evaluation sets and test sets. We set the initial embedding
size and hidden size of GRU to 64. For the 2-layer GAM
module, the hidden layer dimension of the first layer is set
to 128, and the second layer is set to 64. The dropout rate is
set to 0.2.

B. EXPERIMENT RESULTS

We evaluate the performances of our proposed model in terms
of three metrics. We also further analyze the effectiveness of
each module and demonstrate the case studies that highlight
the advantages of our proposed model.

1) PREDICTION PERFORMANCES

Table. 3 lists the performances from various methods over
the dataset in the medication prediction task. Experiments
show that our model can achieve the best results among all the
methods. Specifically, our proposed method outperforms the
best state-of-the-art approach (GBert) by 3.9%, 2% and 2.6%
in terms of Jaccard, PR-AUC and F1 score. From the com-
parison methods, this is already a considerable improvement
for this multi-label classification task. Additionally, we can
see that the average number of medicines recommended by
our model is closest to the true number 15.02. Moreover,
our method achieves the best results using fewer parame-
ters than all the other methods, which shows the powerful
structural and temporal modeling ability of graph neural
networks.
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TABLE 3. Medication prediction performance of different methods on MIMIC-III. Note that the gold average number of medicines on the test set is 15.02.
DDI* and Ans indicates that these methods use additional drug interaction information or ontology information. Full name and description of these

models are stated in Baselines.

Methods Jaccard | PR-AUC | F1 Avg # of Med. | Parameters
LR 0.4075 | 0.6716 0.5658 | 11.42 -
LEAP 0.3844 | 0.5501 0.5410 | 14.42 436,884
RETAIN 0.4451 | 0.6751 0.6043 | 15.86 298,770
GAMENET 0.4503 | 0.6906 0.6077 | 13.44 452,434
G-BERT 0.4299 | 0.6771 0.5903 | 16.72 2,634,145
GAMENET(DDI) | 0.4516 | 0.6961 0.6096 | 13.45 461,714
G-BERT(Ans™) 0.4565 | 0.6960 0.6152 | 16.02 3,034,045
GATE 0.4742 | 0.7087 0.6315 | 15.53 298,385
vens - H count
| 06252
Avg-F1
A, o120
0.7087
PRAAUC 0.7045
S o.7004
1 12 13
0.4742 8
| 04667 I I > 3
Jaccard - 0.4603 - - - - ! ! - ! -
GATE(GAM+TDU) GAM+GRU m GAT+TDU  m GAT+GRU - : RAN:E OF LAB:. FREQUE%CIES g é é
FIGURE 4. Performance comparison among different variants of our (a)
method.
—Retain  —GAMENet G-Bert GATE

2) MODULE EFFECTS

To further investigate the effectiveness of each module com-
ponent in our proposed framework, we compare the method
with its variants as follows:

o GAT-+GRU: This is the most naive version, which uses
the original GAT to encode the structural features, and
averages the output feature matrix into a standard GRU
module.

e GATHTDU: In order to verify the effectiveness of the
global guidance correlation graph, we use a classic
graph model, that is, the traditional graph attention
mechanism to replace our GAM module, and the cor-
relation between nodes now is obtained through the
self-attention
mechanism.

¢ GAM+GRU: In order to clarify the -effective-
ness of the Temporal Updating module, we sim-
ply remove the two updating gates from the TDU
module, so it degenerates into a standard GRU
module.

Fig. 4 shows the different improvement of these variants
on the prediction results, Comparing the result of GAT+TDU
and our final GAM+TDU framework in Fig. 4 and the results
in Table 3, we find that the standard graph attention network
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FIGURE 5. (a) The total number of labels in a different range of label
frequencies. (b) Comparison of averaged F1 scores predicted separately
by different methods for labels in different frequency ranges.

is already able to capture the correlation between clinical
events well and achieve better results. And when the guidance
co-occurrence graph is introduced, the ability of the module
to capture the inherent structural features from multiple clini-
cal events can be enhanced, so as to further achieve better pre-
diction results. We then compared the results of GAM+GRU
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TABLE 4. Recommended medications for a patient with three admissions through different methods. Here “unseen” refers to the medications that are
predicted but not in the ground truth, while “missed” indicates the medications that are in the ground truth but are not predicted. Full name and

description of these methods are stated in Baselines.

Methods Recommended Medication Combination
Retain 23 correct, 5 unseen, 4 missed(Potassium, Thyroid preparations, Cardiac glycosides, Dopaminergic agents)
GAMENet | 19 correct, 3 unseen, 7 missed(Thyroid preparations, Anxiolytics, Cardiac glycosides, Dopaminergic agents, Antibiotics, Antigout, ...)
G-Bert 20 correct, 1 unseen, 6 missed(Potassium, Propulsives, Anxiolytics, Dopaminergic agents, Antibiotics, Antigout)
GATE 26 correct, 4 unseen, 1 missed(Antibiotics)
O method outperforms all the other methods for various tem-
poral lengths. In particular, it has significant improvement for
o the data of long sequences(>6) compared with other methods,
062 which shows that our method has a better ability for modeling
I — . long historical dependency in the records.
S T “\\
é 058 L\%\k ;A&\‘
3 \ /‘i \
£ oo \ / \ C. CASE STUDY
< \ / \
054 \ / \ In order to observe the effects of our model concretely and
\ /

0.52 L

05
2 3 4 5 6 7 8 9 >=10
TOTAL ADMISSION TIMES

FIGURE 6. Evaluation for data of different temporal length.

with the final framework, the results show that our temporal
updating module can better encode the temporal evolution of
different events for this task based on the better prediction
results.

3) EVALUATION FOR UNBALANCED LABELS

Due to the limitation of EHR data, there exists the problem of
unbalanced labels, which causes the difficulty of predicting
specific medications that appear infrequently. Our model,
by establishing a dynamic correlation evolving of time and
structure between clinical events, is expected to improve the
prediction with small samples. Fig. 5(a) counts the number
of labels in different frequency ranges, which can be seen
that 58 of the 145 medication types appear in the training set
less than 100 times, and some appear up to several thousand
times. We calculated the averaged F1 scores of medication
prediction results from the evaluation methods for different
frequency ranges. As can be seen from Fig. 5(b), our method
has significantly improved the prediction of less frequent
medications than the other methods. In addition, it also shows
that the labels with a more pronounced prediction effect are
mainly dedicated medications for specific diseases, such as
pathological addiction drugs, insulin, etc.

4) EVALUATION FOR DATA OF DIFFERENT TEMPORAL
LENGTH

Since the number of admissions for each patient is differ-
ent, the length of the time series to be processed should
be considered. Based on the data statistics in table 2, the
longest sequence length is 29, which makes it very difficult
for the temporal modeling module. Fig.6 shows that our
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intuitively, we select a patient’s EHRs of three temporal
admissions in the test set for case study. This patient has
various symptoms such as sepsis, heart failure and gout.
Table. 4 summarizes the accuracy of the prediction results of
our proposed model and other methods at the third admission.
On the whole, our method predicts 26 out of 27 medications,
only one medication is missed and four are unseen in the
ground truth medications prescribed by doctors. It can be
seen from Table. 4 that some medications like Antigout,
Cardiac glycoside and Anxiolytics are often omitted from
the prediction results from the other methods. To verify
the interpretability of our model, we draw the dynamic
co-occurrence correlation graph over time based on the EHR
data.

For the convenience of observation, Fig.7 shows the sub-
graphs of the dynamic co-occurrence correlation graph at
each admission. Each node represents a clinical event, and the
width of the edge represents the degree of correlation between
the two events. It can be seen from the figure that the dynamic
graph well represents the correlations between different clin-
ical events in each admission record, which can distinguish
the events of various diseases and aggregate the events of
the same diseases. Taking gout as an example, the high-
lighted nodes are the clinical events related to gout in each
medical record. In the first two admission records, we can
associate the diagnoses gout(3), osteoarthritis(31) with the
anti-gout medication(70) through the structural modeling of
a 2-layer dynamic graph attention mechanism. In the last
admission record, the patient is diagnosed with acute gouty
pathway(29) and underwent an arthrocentesis(44). Then we
use a heatmap to show the correlation distribution of the
two events with historical events in the G5 of temporal
modeling at the last time step. As shown in Fig.8, both
of the two clinical events tend to focus on osteoarthritis.
Thus, although they do not appear in the patient’s history
records, the relationship between them and historical events
through the temporal updating module can also be effectively
established.
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FIGURE 7. The subgraphs of the dynamic co-occurrence correlation graph constructed at each admission. Each node represents a clinical event,
and the width of the edge represents the degree of correlation between the two events.

of EHRs. In the future, we will consider combining the raw

o
S text information of EHRs and focus on how to better model
Q&f&%ﬁ' the fine-grained temporal evolution in the EHRs.
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