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ABSTRACT This paper investigates the problem of nonsmooth feedback stabilization for the higher
order uncertain chain of integrators. For achieving the specified goal, the integral term of classical
Proportional-Integral (PI) controller is replaced by an integral of the discontinuous function. Replacing
this integrator, the overall control becomes absolutely continuous rather than discontinuous as in the first
order sliding mode control. With this proposed scheme, the property of invariance concerning the matched
Lipschitz uncertainty is still preserved. Themain technical contribution of the paper is a sound and non-trivial
Lyapunov analysis of the closed loop system controlled by nonsmooth PI controller. The effectiveness of the
proposed controller is illustrated with the help of numerical simulation on the magnetic suspension system.

INDEX TERMS Nonsmooth PI, stability and stabilization, strict Lyapunov function.

I. INTRODUCTION
Stability, of a perturbed system, is one of the classical prob-
lems in the control literature [1]. There are several ways
to address this problem. For example, consider the system
χ̇ = F(χ, ρ(t)) + G(χ, ρ(t))u; σ = h(χ ) where u is the
control signal, χ is the states of the system, σ is the output,
and ρ(t) represents unknown external perturbations or model
uncertainties. In several practical scenarios, one of the main
objectives is to construct a feedback control law u such that
the output σ robustly tracks a reference signal σ0, despite
unknown external perturbations ormodel uncertainties. There
are several different methodologies already reported in the
literature to simplify the above-mentioned problem for the
design of a feedback control u. One such strategy is known
as a normal form [7], [8]

ζ̇ = f0(ζ, x, d(t))

ẋi = xi+1, i = 1, · · · , n− 1

ẋn = f (ζ, x, t)+ g(ζ, x, t)u+ d(t)

σ = x1 (1)
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where ζ ∈ Rp and x ∈ Rn are the states, f : Rp
× Rn

×

[0,∞) → R and g : Rp
× Rn

× [0,∞) → R are known
nominal nonlinearities, u ∈ R is the control input, subsystem
ζ̇ = f0(ζ, x, d(t)) with f0 : Rp

×Rn
×[0,∞)→ Rp represents

the zero dynamics of the system [7], and d(t) corresponds
to uncertainties/perturbations. It has been already reported
in literature that if subsystem ζ̇ = f0(ζ, x, d(t)) is Input-to-
State stable [1] with respect to x and d(t), then the above
mentioned tracing problem (1) can be reduced to stabilization
of uncertain chain of integrator

ẋi = xi+1, i = 1, · · · , n− 1

ẋn = f (ζ, x, t)+ g(ζ, x, t)u+ d(t)

σ = x1 (2)

about the equilibrium point x = 0.
The main intention of control researchers is to investigate

the problem that, if the above system with known f (ζ, x, t),
g(ζ, x, t) 6= 0 is uniformly asymptotically stable at the
origin, then what can be said about the stability and behaviour
of the perturbed system for d(t) 6= 0 at the equilibrium
point x = 0? There are several approaches available in the
literature to solve this problem. In [1], it is reported that
if d(t) vanishes at the equilibrium point, then classical state
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feedback can guarantee the asymptotic stability. However, for
nonvanishing disturbances at the origin the memoryless state
feedback control (proportional control) doesn’t ensure the
uniform asymptotical stability of the system [1]. It is found
that some classes of nonvanishing perturbations are taken care
by the dynamic state feedback like simple PI (proportional-
integral feedback control), but it fails to handle the time
varying perturbations [2]–[5].

Several delicate controllers have been investigated to
enhance control performance and robustness. Sliding mode
control (SMC) [6] is one of them. It is one of the most promis-
ing control technique for controlling plants under uncertain
conditions [10], [17], [18]. However, this controller is still
not quite popular in industries because of their discontinuous
nature.

In the last two decades, some methods have been proposed
to construct continuous control action based on the sliding
mode. One such idea is coined by Prof. Levant [13], [14]
known as ‘‘Higher order sliding mode’’. The main idea is
to introduce one or more integrators in the system such that
the control signal becomes a continuous function [14]. For
instance, to obtain the absolute continuous control signal for
the system ẋ = f (t, x) + g(t, x) + u, x ∈ R, an integrator
is introduced to increase the order of the system by one and
then discontinuous higher order sliding mode algorithm can
be used. However, the implementation of these controllers
required the knowledge of ẋ. In this case, we can reconstruct
perturbation, by computing g(t, x) = ẋ − f (t, x) − u, and it
would be possible to compensate it without a discontinuous
control [15].

To avoid the above-mentioned drawbacks, a nonlinear PI
controller (the Super-twisting algorithm [13], [16], [21]) has
been proposed. This controller gives finite time stability in
the presence of continuous Lipschitz perturbation for relative
degree one system concerning control. However, recently it is
found in the literature that the chattering is still there because
of the nonlipschitz term in STA which generates the infinite
force at the origin [16]. Furthermore, generalization as well as
practical implementation of Super-twisting is not so straight-
forward because one has to maintain homogeneity in order to
ensured finite time stability also it is difficult to implement
the fractional power in an industrial environment [9], [25].
It is important tomention here that various Lyapunov function
that has been suggested for the popular Super-twisting and its
variant [11], [22], [23], [26] is not applicable if the nonlinear
proportional term is replaced by a linear one. Therefore,
it is important to look into that if a proportional term of
Super-twisting is replaced by linear one then how to give
mathematical guarantee for the convergence of the modified
algorithm? The further question of interest: is it possible to
extend the same structure for a higher order uncertain case
with the mathematical guarantee for the convergence?

A. MAIN OBJECTIVES
Motivating from the above fact and wide applicability and
acceptability of PI and it’s variants in the industries, it seems

that some more work is required in the area of the classical
PI controller for following goals,
• modify classical PI control and give soundmathematical
proof to tune gains such that it can handle all kind of
Lipschitz disturbances either vanishing or nonvanishing
at the origin. (One can further note that if a disturbance
is discontinuous, no continuous control can handle it).

• design control such that overall control signal is abso-
lutely continuous.

• propose a controller such that it does not require infor-
mation on higher derivatives of the state variables to
compensate for the differentiable matched disturbances.

B. MAIN CONTRIBUTIONS
For achieving the specified goal integral part of PI controller
is replaced by a discontinuous integrator. Adding this extra
integrator overall control is still absolutely continuous rather
than first order sliding mode control, but the property of
invariance concerning Lipschitz matched uncertainties is still
preserved. Finally, we prove the stability of the closed-loop
system via a homogeneous, continuously differentiable and
strict Lyapunov function. Another advantage of the proposed
controller over first order sliding mode is that it is also able
to reject ramp time varying disturbances.

The rest of the paper is organized as follows. The notions
and preliminaries and problem formulation are established in
Section II and IV, respectively. The main results of the paper
and discussion about the proposed controller are presented
in Section IV. The construction of Lyapunov Function along
with the proof of main Theorems and numerical simulation,
are documented in V and VI respectively. Finally, some con-
cluding remarks are included in Section VII.

II. NOTIONS AND PRELIMINARIES
Our notations are standard. We let R denote the real
numbers and R+ denote the nonegative reals. The dilation
operator for x = [x1, · · · , xn] ∈ Rn is defined as 1r

λ :=

(λr1x1, · · · , λrnxn) ,∀λ > 0, where ri > 0 with i =
1, · · · , n are the weights of of the individual coordinate
of x. A functional V : Rn

→ R is said to be (weighted)
r-homogeneous of degree h ∈ R if the following identity
V
(
1r
λx
)
= λhV (x) holds. Homogeneous functions have

several elegant properties, we are going to recall a result
about continuous real-valued homogeneous functions ( [20],
Lemma 4.2), which will be used in the proof of the main
Theorems of this note.
Lemma 1: Suppose V1 and V2 are continuous real-valued

functions Vi : Rn
→ R, homogeneous with the same weights

and degrees l1 > 0 and l2 > 0, respectively, and V1 is
positive-definite. Then for every x ∈ Rn,[

min
{z:V1(z)=1}

]
[V1(x)]

l2
l1 ≤ V2(x) ≤

[
max

{z:V1(z)=1}

]
[V1(x)]

l2
l1 .

Also we have used the Young’s inequality in order to show
the positive definiteness of Lyapunov function, which can be
stated as:
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Lemma 2: The following inequality is always satisfied
ab ≤ cp a

p

p + c
−q bq

q , for any positive real numbers a, b, c > 0
and p, q > 1, with 1

p +
1
q = 1.

Apart from the above two Lemma we use the following
notion. For a positive integer n. The signum vector function
SIGN (x) is a functionRn

→ Rn whose behavior in each coor-
dinate is as per the signum function. Explicitly, it is defined
as the function (x1, · · · , xn) 7→ (sign(x1), · · · , sign(xn)).

III. BACKGROUND AND PROBLEM FORMULATION
In this paper, we consider the nth order uncertain chain of
integrators, given as

ẋi = xi+1, i = 1, · · · , n− 1,

ẋn = u+ d(t), (3)

where X> =
[
x1 x2 . . . xn

]
∈ R1×n are the states, u ∈

R is the control input and d(t) represents the uncertain-
ties/perturbations. Our main is to design a continuous or
at least absolutely continuous controller u such that sys-
tem (3) stabilizes at the origin despite of the uncertainties/
perturbations d(t).
For an illustration of the proposed control strategy consider

a simplified model of the motion of an underwater vehicle
v̇ + v|v| = ū + d where v ∈ R is the vehicle velocity and
ū ∈ R is the control input (the thrust provided by a propeller)
and d is unknown disturbance due to water wave [24]. One
can assume that the disturbance d is an arbitrary combination
of sin(t) and cost(t). Suppose that control objective is to
maintain constant velocity vd in-spite of d . Now suppose
x1 := v− vd and ū := u+ v|v|, then one can write

ẋ1 = u+ d, x1 ∈ R. (4)

In the absence of uncertainties d , a simple proportional con-
tinuous feedback control u := α(x1), α : R → R is able
to stabilize the system (4) at the origin. However, above
mentioned feedback controller fails to stabilize the system (4)
in the presence of non-vanishing perturbation d 6= 0, because
at the origin feedback is zero but perturbations d are nonzero.
Now, suppose the case where perturbation d is non-vanishing
but some unknown constant, then simple continuous PI con-
troller u := α(x1)+

∫ t
0 kI x1(τ )dτ or u := kPx1+

∫ t
0 kI x1(τ )dτ

with proper kP and kI can stabilize the origin because of the
following facts:

The closed-loop system can be written as ẋ1 = α(x1) +∫ t
0 kI x1(τ )dτ + d , which can be further simplified as

ẋ1 = α(x1)+ z, ż = kI x1 (5)

where z :=
∫ t
0 kI x1(τ )dτ + d . The closed-loop system (5)

is a second order disturbance-free system in the transformed
domain. Therefore, using the proper selection of α and kI
it is possible to show that origin is asymptotically stable.
However, if d is not constant, then closed loop system is
no longer disturbance-free. In such case, we need to rethink
about some more appropriate memory based continuous inte-
gral controllers. It is important to note here that memoryless

discontinuous control like first order sliding mode can be a
choice for the solving the above-mentioned problem provided
d is bounded. However, we aim to find some class of contin-
uous controllers keeping in mind that it is very similar to the
existing PI controller and also able to tackle large classes of
non vanishing disturbances.

To get a better insight and for further generalization of
the result, closed loop system (8) has been simulated in
Matlab environment. For the simulation, the controller gains
are selected as k1 = 10, k2 = 3 and the initial condition
of state is chosen as x1(0) = 1. Case-1 of Fig. 1 shows
state evolution, when classical PI control is applied to the
disturbance free system, Case-2 of Fig. 1 demonstrates the
state evolution of the system in the presence of disturbance,
d = 1+3 sin(t) when classical PI is applied and finally, Case-
3 of Fig. 1 shows the state evolution in the case of proposed
nonsmooth PI controller. One can observe that in the presence
of disturbance also the proposed controller provides the same
response as in the disturbance free case. Simulation results
of Fig. 2 in Case-3 also confirm that the control effort is
continuous.

FIGURE 1. Evolution of state: Case-1 classical PI to the disturbance free
system, Case-2 and 3 classical and proposed PI in the presence of
disturbances respectively.

FIGURE 2. Evolution of control signal: Case-1 classical PI to the
disturbance free system, Case-2 and 3 classical and proposed PI in the
presence of disturbances respectively.

Remark 1: The main benefits of the proposed controller
over the first order sliding mode is that overall control is con-
tinuous and property of insensitivity with respect to Lipschtiz
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disturbance is retained. Another advantage of the proposed
controller over first order sliding mode is that it is also able
to reject ramp (time-varying) disturbances.

IV. MAIN RESULTS
A. NONSMOOTH PI FOR THE FIRST ORDER SYSTEM
(FOR n = 1 IN (3)
In this paper, we are going to show that the following Theo-
rem gives the asymptotic stability of the system (4) about the
origin, if the nonlinear proportional term of Super-twisting
controller u := −k1|x1|1/2sign(x1) − k2

∫ t
0 sign(x1(τ ))dτ is

replaced by linear one u = −k1x1 − k2
∫ t
0 sign(x1(τ ))dτ

where k1 and k2 are the designed parameters.
Theorem 1: Consider the system (4) with |ḋ(t)| ≤

d0; ∀t ≥ 0. Then the nonsmooth control law

u = −k1x1 − k2

∫ t

0
sign(x1(τ ))dτ (6)

stabilizes the origin asymptotically in spite of disturbance

d(t) for any k1 > 0 and d0 ≤ k2 ≤ L(t)
(
π1 +

2
3
2
3 π2

)
with

π1 ≥
222

5
6

32
π2 where πi; i = 1, 2 are some positive constants

and L : R+ → R+ is the some positive continuously
differential function with 0 < c−12 ≤ L(t) ≤ c1, and
L̇(t) ∈ [0, c3]; ∀t ≥ 0where c1, c2 and c3 are fixed constants.
Remark 2: System (4) can be re-written as ẋ1 = −k1x1+z,

ż = −
(
k2 − ḋ (t) sign(x1)

)
sign(x1). Therefore, stability of

ẋ1 = −k1x1+ z, ż = −k ′ (t) sign(x1), k ′ : R+→ R+ implies
the stability of system (6). The same is reflected in Theorem 1.

B. NONSMOOTH PI FOR THE HIGHER ORDER UNCERTAIN
CHAIN OF INTEGRATORS
The following Theorem gives the asymptotic stability of the
system (3).
Theorem 2: Consider the system (3) with |ḋ(t)| ≤

d0; ∀t ≥ 0. Then the nonsmooth control law

u = −KpX−
∫ t

0
KI sign (KPX) dτ (7)

stabilizes the origin asymptotically in spite of disturbance
d(t) if KP and KI are selected such that
• all the eigenvalues of matrix Q := (A− BKP) must
be negative and real for any proper selection of Kp =[
k1 k2 . . . kn

]
and

A =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . . 1

0 0 0 · · · 0

 and B =


0

0
...

1

 ,

• and gainKI satisfy d0≤KI ≤L(t)
(
−π1 ‖B‖ + 2

3
2
3 π2B

)
with 2

3
2
3 ‖π2‖ ≥ π1 ≥

222
5
6

32
‖π2‖ where π1 is any

positive constant and L : R+ → R+ is the some

positive continuously differential function with 0 <

c−12 ≤ L(t) ≤ c1, and L̇(t) ∈ [0, c3]; ∀t ≥ 0
where c1, c2 and c3 are fixed constants and π2 =[
π21 π22 . . . π2n

]
with some positive constants π2i > 0

for i = 1, . . . , n.
Remark 3: The main benefit of the proposed con-

troller over the first-order sliding mode is that overall
control is continuous, and property of insensitivity
concerning differentiable disturbance is retained. Another
advantage of the proposed controller over the first-order
sliding mode is that it can also reject ramp time-varying
disturbances.

V. CONSTRUCTION OF LYAPUNOV FUNCTION AND
PROOF OF MAIN THEOREMS
Next result states the detailed proof of Theorem 1.
Proof 1: On substitution of the proposed controller (6)

into (8), the closed loop system is given by

ẋ1 = −k1x1 + z, ż = −k2sign(x1)+ ḋ (8)

where z(t) := −k2
∫ t
0 sign(x1(τ ))dτ + d. The solution of (8)

is understood in the sense of Fillipov [19]. By introducing
time-varying change of variables

z1(t) =
x(t)
L(t)

, z2(t) =
z(t)
L(t)

, L(t) > 0, ∀t ≥ 0 (9)

In the new co-ordinates, system (8) is given by

ż1=−
(
k1+

L̇
L

)
z1 + z2, ż2=−

k2
L
sign(z1)+

ḋ
L
− z2

L̇
L
(10)

In general, an algebraic equivalence of systems (8) and (10)
does not preserve the stability properties of a dynamical
system. For this, it is necessary and sufficient to have topo-
logical equivalence: algebraic equivalence plus the condition
|L(t)| ≤ c1 and |L−1(t)| ≤ c2 where c1 and c2 are fixed
constants [12]. Also, system (8) and (10) are not homogenous
or weighted homogeneous. Still, one can use the weighted
homogeneous Lyapunov function to prove stability. Also,
the various Lyapunov function that has been suggested for
the Super-twisting is not straightforwardly applicable to the
proposed nonsmooth PI. Therefore, we have looked at some
different Lyapunov analysis which is also the main technical
contribution of this note. Consider the following Lyapunov
function in the new coordinates

V (z) =
(
π1 |z1| +

1
2
z22

) 3
2

+ π2z1z2

≥

(
π1 |z1| +

1
2
z22

) 3
2

− π2|z1||z2| (11)

Applying norm inequality to
(
π1 |z1| + 1

2 z
2
2

) 3
2
and Young’s

inequality (see Lemma 2) to term π2|z1||z2|, we are going to
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show that proposed Lyapunov function (11) is bounded from
below by zero.

V (z)≥ (π1 |z1|)
3
2+

(
1
2
z22

) 3
2

−π2

(
2
3
g

3
2 |z1|

3
2+

1
3
g−3 |z2|3

)
=

(
π

3
2
1 −

2
3
π2g

3
2

)
|z1|

3
2+

((
1
2

) 3
2

−
1
3
π2g−3

)
|z2|3 .

where g ≥ 0.
It is important to note here that V ≥ 0 for all z if each

of
(
π

3
2
1 −

2
3π2g

3
2

)
and

(
1
2

) 3
2
−

1
3π2g

−3 should be greater

than 0. Suppose

2
1
2

(π2
3

) 1
3
< g <

(
3

2π2

) 2
3

π1,

which implies (
3

2π2

) 2
3

π1 > 2
1
2

(π2
3

) 1
3
.

Thus, π1 ≥ 2
1
2 2

2
3

3 π2. Selecting g to be the linear combination

of 2
1
2
(
π2
3

) 1
3 and

(
3

2π2

) 2
3
π1 will lead to V ≥ 0. Thus g =

α2
1
2
(
π2
3

) 1
3 + (1− α)

(
3

2π2

) 2
3
π1, 0 ≤ α ≤ 1. Now our

next aim is to show V̇ < 0,

V̇ =

{
3
2

(
π1 |z1| +

1
2
z22

) 1
2

π1sign(z1)+ π2z2

}
ż1

+

{
3
2

(
π1 |z1| +

1
2
z22

) 1
2

z2 + π2z1

}
ż2

= −
3
2

(
π1 |z1| +

1
2
z22

)
χ + π2z22 − π2

(
k1 +

L̇
L

)
z1z2

−π2
k2
L
sign(z1)z1 + π2z1

ḋ
L
− π2z1z2

L̇
L
,

where χ := π1sign(z1)
((
k1 + L̇

L

)
z1 − z2

)
+ z2

(
k2
L sign(z1)+ z2

L̇
L −

ḋ
L

)
. One can also rewrite V̇ as,

V̇ = −W1 (z)
(
L̇
L

)
+W2 (z)

(
ḋ
L

)
−W ∗3 (z) , (12)

where

W1 (z) =
3
2

(
π1 |z1| +

1
2
z22

) 1
2 (
π1 |z1| + z22

)
+ 2π2z1z2

W2 (z) =
3
2

(
π1 |z1| +

1
2
z22

) 1
2

z2 + π2z1

W ∗3 (z) =

(
3
2

(
π1 |z1| +

1
2
z22

) 1
2

k1π1 + π2
k2
L

)
|z1|

+
3
2

(
π1 |z1| +

1
2
z22

) 1
2
(
k2
L
− π1

)
sign (z1z2) |z2|

−π2z22 + π2k1z1z2. (13)

We are going to show that W ∗3 (z) would dominate over
W2 (z), given that

∣∣ḋ∣∣ < k2. Since,

3
2

(
π1 |z1| +

1
2
z22

) 1
2

|z2| ≥
3
2

(
1
2

) 1
2

z22,

therefore,

π2 (2)
1
2

(
π1 |z1| +

1
2
z22

) 1
2

|z2| ≥ −π2z22 and W
∗

3 ≤ W
′

3,

where,

W ′3 =

{
3
2

(
π1 |z1| +

1
2
z22

) 1
2

k1π1 + π2
k2
L

}
|z1|

+

{
3
2

(
π1 +

1
2
z22

) 1
2

χ1

}
|z2| + π2k1z1z2, (14)

where χ1 :=

(
k2
L sign (z1z2)− π1sign (z1z2)+

2
3
2
3 π2

)
.

Again, as z1z2 ≤ 2
3c

3
2 |z1|

3
2 +

1
3c
−3 |z2|3, so W ′3 ≤ W3, where

W3 can be written as

W3 =

{
3
2

(
π1 |z1| +

1
2
z22

) 1
2

k1π1 + π2
k2
L

}
|z1|

+

{
3
2

(
π1 |z1| +

1
2
z22

) 1
2

χ1

}
|z2|

+π2k1

(
2
3
c
3
2 |z1|

3
2 +

1
3
c−3 |z2|3

)
. (15)

Since
(
π1 |z1| + 1

2 z
2
2

) 1
2
|z1| ≥ π

1
2
1 |z1|

3
2 , 2

(
π1 |z1| + 1

2 z
2
2

)
|z2| ≥ |z2|3, W

f
3 ≥ W3, where W

f
3 can be written as,

W f
3 =

{
χ2

(
k1π1 +

4
9
π2k1π

−
1
2

1 c
3
2

)
+ π2

k2
L

}
|z1|

+χ2

(
χ1 +

4
9
π2k1c−3

(
π1 |z1| +

1
2
z22

) 1
2
)
|z2| , (16)

where χ2 := 3
2

(
π1 |z1| + 1

2 z
2
2

) 1
2
. For W f

3 to be greater
than zero ∀z, both the coefficients of equation (16) should be
independently greater than zero, that is, if

χ2

(
k1π1 +

4
9
π2k1π

−
1
2

1 c
3
2

)
+ π2

k2
L
≥ 0,(

k2
L
−π1

)
sign (z1z2)+

2
3
2

3
π2+

8
27
π2k1c−3χ2≥0. (17)

These two inequalities are satisfied if,

k2
L
− π1 +

2
3
2

3
π2 +

8
27
π2k1c−3χ2 ≥ 0

−
k2
L
+ π1 +

2
3
2

3
π2 +

8
27
π2k1c−3χ2 ≥ 0, (18)
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which can be rewritten as

0 ≤ k2 ≤ L

(
π1 +

2
3
2

3
π2

)
. (19)

Since,

W f
3 (z)≥

∗

W f
3 (z)

1
= α |z1|+β

(
π1 |z1|+

1
2
z22

) 1
2

|z2| , (20)

with

α = min
z

[
χ2

(
k1π1 +

4
9
π2k1π

−
1
2

1 c
3
2

)
+ π2

k2
L

]
≥ 0

β = min
z

[
χ1 +

8
27
π2k1c−3χ2

]
≥ 0, (21)

∗

W f
3 (z) is a continuous and homogeneous positive definite

function. According to Lemma 1, it follows that ∀z ∈ R2,

W2 (z) ≤ γ
∗

W f
3 (z) is satisfied, with γ = max{

z:
∗

W f
3 (z)=1

} > 0,

because both W2 (z) and
∗

W f
3 (z) are continuous and homoge-

neous with same weights and degree. Finally,

W1 (z) =
3
2

(
π1 |z1| +

1
2
z22

) 1
2 (
π1 |z1| + z22

)
+ 2π2z1z2

≥
3
2
(π1 |z1|)

1
2 π1 |z1| +

3
2

(
1
2
z22

) 1
2

z22

− 2π2

(
2
3
g

3
2 |z1|

3
2 +

1
3
g−3 |z2|3

)
=

(
3
2
π

3
2
1 −

4
3
π2g

3
2

)
|z1|

3
2 +

(
3

2
3
2

−
2π2
3
g−3

)
|z2|3

(22)

W1 (z) is positive-definite if 3
2π

3
2
1 −

4
3π2g

3
2 > 0 and 3

2
3
2
−

2π2
3 g−3 > 0 or equivalently

2
5
6

3
2
3

π
1
3
2 < g <

3
4
3

22
π1

π
2
3
2

and such a g exists if π1 > 2
5
6 22

32
π2. Thus π1 should be

selected such that π1 > 2
5
6 22

32
π2. It can be noted that it also

fulfills π1 ≥ 2
1
2 2

2
3

3 π2 required for V ≥ 0. This completes the
proof. �

A. PROOF OF THEOREM 2
Proof 2: After applying proposed controller (7) into (3),

the closed loop system is given by

Ẋ = AX− BKPX+ BZ

Ż = −KI sign (KPX)+ ḋ (23)

where, Z = −
∫ t
0 KI sign (KPX) dτ + d. On apply-

ing the following time-varying change of variables,
Z1(t) :=

X(t)
L(t) , Z2(t) :=

Z (t)
L(t) , one can rewrite the (23) as

Ż1 = −

(
L̇
L
I+ BKP − A

)
Z1 + BZ2

Ż2 = −
L̇
L
Z2 −

KI
L

KPZ1

‖KPZ1‖
+
ḋ
L
, (24)

where I is an identity matrix and L(t) is some continuously
differentiable time varying positive function C1 i.e., L (t) >
0 ∀t ≥ 0 and L̇ > 0 exists. Also, to maintain topologi-
cal equivalence so that stability of transferred system (24)
implies stability of original closed loop system (23) we are
further assuming that |L(t)| ≤ c1 and |L−1(t)| ≤ c2 (where
c1 and c2 are fixed constants [12]).
Now consider the V (Z ) be a Lyapunov function in the new

co-ordinates

V (Z ) =
(
π1 ||Z1| | +

1
2
Z2
2

) 3
2

+ π2Z1Z2, (25)

where Z := [Z>1 Z2]>, π1 > 0 and π2 =
[
π21 π22 . . . π2n

]
with π2i > 0 for i = 1, . . . , n. Next using Young’s (see
Lemma 2) and norm inequalities, we are going to show that
proposed Lyapunov function (25) is bounded from below by
zero.

V (Z ) ≥ (π1 ‖Z1‖)
3
2 +

(
1
2
Z2
2

) 3
2

− ‖π2‖

(
2
3
g

3
2 ‖Z1‖

3
2 +

1
3
g−3 |Z2|3

)
, g ≥ 0

=

(
π

3
2
1 −

2
3
‖π2‖g

3
2

)
‖Z1‖

3
2

+

((
1
2

) 3
2

−
1
3
‖π2‖g−3

)
|Z2|3 . (26)

For V ≥ 0; ∀Z, we have selected π1 ≥ 2
1
2 2

2
3

3 ‖π2‖ and

g = α2
1
2
(
π2
3

) 1
3 + (1− α)

(
3

2‖π2‖

) 2
3
π1, 0 ≤ α ≤ 1 same

as first order case.
Time derivative of Lyapunov function (25) along the system

trajectory (24)

V̇ (Z )=
(
2π1SIGN

(
Z>1
)
+π2Z2

)
Ż1 + (2Z2 + π2Z1) Ż2

=

(
2π1SIGN

(
Z>1
)
+ π2Z2

)
(
−

(
L̇
L
I+ BKP − A

)
Z1 + BZ2

)
+ (2Z2 + π2Z1)

(
−
L̇
L
Z2 −

KI
L

KPZ1

‖KPZ1‖
+
ḋ
L

)
,

(27)

where

2 :=
3
2

(
π1 ‖Z1‖ +

1
2
Z2
2

) 1
2
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or

V̇ (Z ) = −W1

(
L̇
L

)
+W2

(
ḋ
L

)
−W ∗3 , (28)

where,

W1=
3
2

(
π1 ||Z1| |+

1
2
Z2
2

) 1
2 (
π1 ||Z1| |+Z2

2

)
+2Z2π2Z1

(29a)

W2=
3
2

(
π1 ||Z1| | +

1
2
Z2
2

) 1
2

Z2 + π2Z1 (29b)

W ∗3 =
3
2

(
π1 ‖Z1‖ +

1
2
Z2
2

) 1
2

4+ π2Z2 (BKP − A)Z1

−Z2
2π2B+

KI
L
π2Z1sign (KPZ1) (29c)

where

4 :=π1
Z>1 (BKP−A)Z1

‖Z1‖
−π1Z2

Z>1 B
‖Z1‖

+Z2
KI
L
sign (KPZ1) .

We are going to show that W ∗3 would dominate over W2,
given that

∣∣ḋ∣∣ < KI .
Since, we have selected KP such that Q := BKP − A

has positive eigenvalues. Then using Rayleigh inequality one
can write λmin {Q} ‖Z1‖

2
≤ Z>1 QZ1 ≤ λmax {Q} ‖Z1‖

2,
where λmin {Q} and λmax {Q} are the minimum and max-
imum eigenvalues of the matrix Q. One can further

write π1
Z>1 (BKP−A)Z1

‖Z1‖
≤ π1λmax {Q} ‖Z1‖. Furthermore,

KI
L π2Z1sign (KPZ1) ≤

KI
L ‖π2‖ ‖Z1‖, provided KI ≥ 0 and

π1Z2
ZT
1B
‖Z1‖
≤ π1 ‖B‖ |Z2|. Therefore, W ∗3 < W ′′3 , where

W ′′3 :=
3
2

(
π1 ‖Z1‖ +

1
2
Z2
2

) 1
2

21 + π2Z2 (BKP − A)Z1

−Z2
2π2B+

KI
L
α1 ||KP‖ ||Z1‖ . (30)

where α1 := π2K>P
(
KPK>P

)−1
> 0 and 21 :=

π1λmax {Q} ‖Z1‖+π1 ‖B‖Z2+KI
L sign (Z2KPZ1) |Z2| . Since,

3
2

(
π1 ‖Z1‖ +

1
2Z

2
2

) 1
2
|Z2| ≥ 3

2

(
1
2

) 1
2
z22, therefore,

W iv
3 =

3
2

(
π1 ‖Z1‖ +

1
2
Z2
2

) 1
2

22 + π2Z2 (BKP − A)Z1

+
KI
L
α1 ‖KP‖ ‖Z1‖ , (31)

where

22 := π1λmax {Q} ‖Z1‖ + π1 ‖B‖Z2

+
KI
L
sign (Z2KPZ1) |Z2| +

2
3
2

3
π2B |Z2| . (32)

Again, as

‖Z1‖ |Z2| ≤
2
3
c
3
2 ‖Z1‖

3
2 +

1
3
c−3 |Z2|3 ; c > 0, (33a)(

π1 ‖Z1‖ +
1
2
Z2
2

) 1
2

‖Z1‖ ≥ π
1
2
1 ‖Z1‖

3
2 , (33b)

2
(
π1 ||Z1| | +

1
2
Z2
2

)
|Z2| ≥ |Z2|3 . (33c)

So W iv
3 ≤ W

vi
3 , where W

vi
3 can be written as

W vi
3 =

(
223 +

KI
L
α1 ‖KP‖

)
‖Z1‖

+2

(
24 +

8
27
c−32(‖π2‖ ‖BKP − A‖)

)
|Z2| , (34)

where,

23 :=π1λmax {Q}+
4
9
c
3
2π
−1
2

1 (‖π2‖ ‖BKP − A‖) , (35)

24 :=π1 ‖B‖ sign (Z2)+
KI
L
sign (Z2KPZ1)+

2
3
2

3
π2B (36)

For W vi
3 to be greater than zero ∀Z, both the coefficients 23

and24 of equation (34) should be independently greater than
zero, that is, if

±π1 ‖B‖ ±
KI
L
+

2
3
2

3
π2B ≥ 0. (37)

For inequality 24 ≥ 0 to be satisfied, all of inequalities (37)
have to be satisfied, which can be re-written as

0 ≤ KI ≤ L

(
−π1 ‖B‖ +

2
3
2

3
π2B

)
. (38)

Furthermore, (38) is satisfied only if 2
3
2
3 ‖π2‖ ≥ π1. Since,

W vi
3 (Z )≥

∗

W vi
3 (Z )

1
=α ‖Z1‖+β

(
π1 ‖Z1‖+

1
2
Z2
2

) 1
2

|Z2| ,

(39)

with

α = min
Z

[
223 +

KI
L
α ‖KP‖

]
≥ 0

β = min
Z

[
24 +

8
27
c−32(‖π2‖ ‖BKP − A‖)

]
≥ 0, (40)

∗

W vi
3 (Z ) is a continuous and homogeneous positive def-

inite function. According to Lemma 1, it follows that

∀Z ∈ Rn+1, W2 (Z ) ≤ γ
∗

W vi
3 (Z ) is satisfied, with γ =

max{
Z :

∗

W vi
3 (Z )=1

} > 0, because both W2 (Z ) and
∗

W vi
3 (Z ) are

continuous and homogeneous with same weights and degree.

W1 (Z )

=
3
2

(
π1 ‖Z1‖ +

1
2
Z2
2

) 1
2 (
π1 ‖Z1‖ + Z2

2

)
+ 2Z2π2Z1

≥
3
2
(π1 ||Z1| |)

1
2 π1 ||Z1| | +

3
2

(
1
2
Z2
2

) 1
2

Z2
2

− 2 ||π2| |
(
2
3
g

3
2 ||Z1| |

3
2 +

1
3
g−3 |Z2|3

)
=

(
3
2
π

3
2
1 −

4
3
‖π2‖ g

3
2

)
‖Z1‖

3
2+

(
3

2
3
2

−
2 ‖π2‖

3
g−3
)
|Z2|3 .

(41)
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W1 (z) is positive-definite if 32π
3
2
1 −

4
3 ‖π2‖ g

3
2 > 0 and 3

2
3
2
−

2‖π2‖
3 g−3 > 0 or equivalently 2

5
6

3
2
3
‖π2‖

1
3 < g < 3

4
3

22
π1

‖π2‖
2
3

and such a g exists if π1 > 2
5
6 22

32
‖π2‖. Thus π1 should be

selected such that π1 > 2
5
6 22

32
‖π2‖. It can be noted that it also

fulfills π1 ≥ 2
1
2 2

2
3

3 ‖π2‖ required for V ≥ 0. This completes
the proof. �

VI. SIMULATION
We demonstrate the robustness of nonsmooth PI control
for the third order uncertain chain of integrators containing
constant or time-varying matched disturbances. Consider the
following magnetic suspension system [1]

ż1 = z2

ż2 = −
kF
m
z2 + gc −

kM
2m

(
z3

z1 + q

)2

ż3 = −
R

L(z1)
z3 +

kM
L(z1)

(
z2z3

(z1 + q)2

)
+

u
L(z1)

(42)

where L(z1) = L1 +
KL
q+z1

with KL = 0.01[H .m], q =
0.05[m], z1 = σ ∈ R+ is the vertical distance of the ball
measured from the coil, z2 = σ̇ is the velocity, z3 = i is
the electrical current and the control u is the voltage applied
and the control objective is to bring the ball position to z1 =
0.1[m]. Other model parameters are given in the Table 1.

TABLE 1. Model parameters for magnetic-levitation system.

In order to convert system (42) into normal form following
transformation is defined

x :=2(z)=

σ (z)σ̇ (z)
σ̈ (z)

=


z1
z2

−
kF
m
z2+gc−

kM
2m

(
z3

z1+q

)2

 (43)

where σ (z) := z1 is the output of system. It can
be verified that 2(z) is a diffeomorphism in D :=

{z1 + q > 0 and z3 > 0}. In the transformed co-ordinate sys-
tem can be represented as

ẋ1= x2
ẋ2= x3

ẋ3=−
kF
m
x3−

kM z3
mL(z1)(z1+q)2

[
−Rz3+

L1z2z3
(z1+q)

+u
]

(44)

Now selecting control u as

u = Rz3 −
L1z2z3
(q+ z1)

+
mL(z1)(z1 + q)2

kM z3

(
ν +

kF
m
x3

)
(45)

to obtain

ẋ1 = x2, ẋ2 = x3, ẋ3 = ν + d(t),

where d(t) is comes into picture due to uncertainties in grav-
ity, systems parameters and external noise. For the current
simulation we have considered d(t) = 0.5+0.1t+ sin(t) and
controller ν as

ν := −k1(x1 − 0.1)− k2x2 − k3x3

+

∫ t

0
−k4sign(k1(x1 − 0.1)+ k2x2 + k3x3)dτ (46)

in order to track x1 = z1 := z1d = 0.1, where k1 =
2000, k2 = 400, k3 = 30, and k4 = 10. In order to simulate
the system (42), the initial conditions are chosen as Z1 =
0.01, z2 = 0, and z3 = 2.2. Tracking of position z1 = 0.1
is shown in the Fig. 3 using nonsmooth PI in the presence of
disturbance d = 0.5+0.1t+ sin(t). It is also confirmed from
the simulation shown in Fig. 4, that the control is continuous.

FIGURE 3. Evolution of position with respect to time.

FIGURE 4. Evolution of control with respect to time.

VII. CONCLUSION
The stabilization of systems with nonsmooth PI controller
under uncertainty is studied in this paper. The proposed
method completely rejects the Lipschitz matched distur-
bances. The insensitivity to the disturbances is obtained by
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incorporating the nonsmooth part in the controller. The stabil-
ity of the proposed nonsmooth PI controller for an uncertain
chain of an integrator is established for first order system via
non-trivial strict Lyapunov function; then it is extended to an
uncertain chain of an integrator. Finally, the performances of
the controller are demonstrated using Matlab simulations of
a magnetic suspension system.
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