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ABSTRACT The distributed optimization for multi-agent systems with time delay and first-order is
investigated in this paper. The objective of the distributed optimization is to optimize the objective function
composed of the sum of local objective functions, which can only be known by its corresponding agents.
Firstly, a distributed algorithm for time-delay systems is proposed to solve the optimization problem that
each agent depends on its own state and the state between itself and its neighbors. Secondly, Lyapunov-
Krasovskii function is used to prove that the states of each agent can be asymptotically the same, and the
states are optimal. Finally, an example is given for illustrating the analytical results and a comparison is also
gave to illustrate the differences between the algorithm of this paper and other results.

INDEX TERMS Distributed optimization, multi-agent systems, time delay, Lyapunov-Krasovskii function,

zero-gradient-sum algorithm.

I. INTRODUCTION

The problem of optimizing systems in a distributed way has
been intensively investigated by more and more scientists
in control area [1]-[4]. The purpose of the optimization is
to minimize the sum of local objective functions in a dis-
tributed manner. A variety of algorithms in a decentralized
manner have been proposed in [5]-[12] to find the solution
of the optimization problem in various situations, including
different objectives, different dynamic behavior, and so on.
Consensus is a meaningful dynamic behavior in the multi-
agent systems which is applied in formation control [13],
[14]. Moreover, article [15] addressed the output consen-
sus problem for multi-agent system with energy constraints.
In recent years, some researchers have paid much atten-
tion to decentralized consensus optimization problems for
multi-agent systems. For example, in [2], a combination of
sub-gradient and consensus algorithm is used to solve the
convex optimization problem. Moreover, the authors of [3]
proposed a discrete-time projection method for decentralized
convex optimization and that proved all agents converge to
the intersection of their local sets. Then, the result in [3] was
extended in [5] for multi-agent systems with continuous-time
dynamics. In addition, A distributed optimization problem
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with bounded constraint was discussed under the general
step-size in [6]. In particular, under the assumption of the
undirected graph, authors in [7], [8] proposed a decentralized
algorithm to deal with the optimization problem, and articles
[8] proved that the algorithm’s convergence rate has a lower
bound. For balanced directed networks, it is shown in [9], [10]
that the algorithm’s convergence rate was derived.

Recently, by using the Hessian of local objective functions,
a Zero-Gradient-Sum algorithm (ZGS) was introduced
to solve the optimization problems for fixed undirected
connected graphs when the objective functions are not
constrained, detachable and convex [12]. For nonlinear net-
worked dynamical systems, it was proved that the state
converges asymptotically to the unknown minimizer at all
times in which minimize the global objective function in a
distributed way. Moreover, distributed optimization of ZGS
with the event-triggered scheme for directed networks was
studied [16]. A distributed optimization of ZGS for time-
varying topology networks was studied in [17]. The article
[18] extended the algorithm for the distributed optimization
problem in finite time.

It is clear that the above algorithms are suitable for
multi-agent systems without the communication time delay.
But in real control systems, it is interesting that the opti-
mization problem by a distributed manner for the sys-
tems with time-delay. Aiming at the distributed control
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and optimization problems, the effects of communication
delays were discussed in [11], [19]-[28]. The sub-gradient
projection algorithm in [3] was extended to deal with the
optimization problem with time-delays and constraints [11].
Reference [25] proposed a delay optimization algorithm in
view of the push-sum way, which originates from [4]. Some
results for the continuous-time distributed optimization prob-
lem with time delay were also obtained in [26]—[28].

In order to extend the continuous-time ZGS optimiza-
tion algorithm, the effects of communication time delay are
considered in this paper. A delay-independent distributed
optimization algorithm of multi-agent systems is derived.
Our algorithm builds on the work of Guo er al. [27]. It is
well known that the delay-dependent or delay-independent
conditions for time delay systems are often studied. The
aforementioned results in [26]-[28] require establishing the
maximum delay bound that guarantees stability for dis-
tributed optimization. But, in some practical applications,
delay-independent distributed optimization laws are prefer-
able over delay-dependent laws as the robustness in the delay.
In the light of few results on the construction of delay-
independent output feedback laws for distributed optimiza-
tion with input delay, we presented a delay-independent
distributed optimization algorithm in this paper. The main
contributions of this paper are as follows: Firstly, a delay-
independent distributed optimization algorithm is presented,
which is more convenient in practical application. Secondly,
according to the method of constructing the Lyapunov-
Krasovskii function, the consensus and convergence of the
algorithm are proved.

We organize the rest of this article as follows. In Section 2,
we introduce the basic notation, statement of graph theory,
useful lemma and definite. In Section 3, a new optimiza-
tion algorithm for the multi-agent system with time delay
caused by communication is presented and we proved that
all agents would asymptotically track to the optimal which
minimizes the total objective function and all agents will
reach the same state. Some numerical simulation results are
given in Section 4. The conclusions of this paper are given in
Section 5.

Il. PRELIMINARIES AND NOTATIONS
In this section, the following notations will be used in this
paper. Let f: R — R is a continuously differentiable func-
tion, the gradient of function f is denoted by Vf, the Hessian
of function f is defined as V2f and its inverse is defined as
vl % represents the differential quotient with respect
to time 7, R" is the real vector in n dimension space, R"*"
represents a set of n x n real matrices. The unit matrix is
denoted by I, € R™". Given s € R", |s||; is the 1-norm
of vector s, ||s|| is the 2-norm of vector s, which is called
the Euclidean norm. The transpose of a vector or a matrix
is denoted by “T”.

Here is some basic graph theory in this subsection. The
graph G = (V, £) consists of node set V = {1,2,...N} and
edges set £ C V x Vs called undirected graph. If (i, j) € &,
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then there exist an edge between agents i and j, which means
that they are neighbors. N; = {j € V : (i,j) € &} is
the set of neighbors representing the vertex i. A = [a;] €
RN*Nis adjacent matrix of the graph G, which will satisfy
the conditions (1)a;; = 0; a; = a;; = 1;if (i,j) € £
Ra;j = 0;if (i, )) ¢ €.

In this paper, the system that consists of N agents is con-
sidered. The dynamics of each agent can be expressed by a
single integrator as follows:

X)) =wui(t)y i=12,---,N. (1)
where x;(f) € R™ represents the state vector of agent i,
and u;(t) € R™ is the control input acting on agent i. Let
fi :R™ x RT — R is a local cost function of agent i with
respect to time ¢, which is only known by the agent i. Our
goal is to make a control law for (1) through the exchange
of local information such that each agent can achieve the
same optimal state x*(¢#) which is the optimal point of the
optimization problem in this paper.
x*(t) = argminf (x(¢),1), x() e R" 2)
where f :R™ x Rt — Ris the global objective function and
denoted by f (x(t))éZ?; 1 fi(x(#)). Then, the above distributed
convex optimization problem be rewritten as follows

N
minimize Zf,-(x,-(t)), subject to x;(t) = x;(t). 3)
i=1

Obviously, the problem can be converted to a synchronization
problem and a minimization problem on the global objective
function f(x(z), t) = vaz 1 fi(xi(t), t) in a distributed manner.

Next, some definitions and lemmas concerning strongly
convex functions are presented, which will be used in this
paper.

Definition 1 ( [29]): Let a set K € R™, K is said to be
convex if ax + (1 — a)ye K, forallx,y e Kand 0 <a < 1.
Let a set K is convex, a function f(.) :K — R is convex if
flax+(—a)y) =af )+ -a)f (y),Vx,ye K,0<a = 1.

Definition 2 ( [30]): f(x) is called m-strongly(m > 0)
convex if and only if for all x, y € R"

G=0T Q) = V) zmlly —xIP x#y. @)
If the above inequality(4) is satisfied and f is twice differen-
tiable with respect to x, then sz x) = ml,.

Definition 3: A set D C R" is compact if and only if D is
bounded and closed.

Lemma 1 ( [30]): Let a function f(x) : R" — Ris a
continuously differentiable and convex, f(x) is said to be
minimized if and only if Vf = 0.

Lemma 2 Given a convex and compact set D C R™, f:
R™ — R is a twice continuously differentiable function. f
is said to be locally strongly convex on any D if there exists
a constant @ > 0 such that the following three equivalent
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conditions are obtained [31], [32]

FO) —fG) = V@) (v —x) > %uy —x|%, Vx,yeD

(V@) = V) (v —x) = ally — x||%, Vx,y € D
V2 (x) > aly, Vx,y €D
()

Then, for any positive constant 8 > 0, the equivalent condi-
tions are given ( [30], [32])

FO) = f00) = VEOT (v —x) < §||y x|’ VayeD

(V) — VFe) (v —x) < Blly — xI1%, Vx,y € D
V2f(x) < Bln, Vx,y €D
(6)

Lemma 3 (LaSalle’s Invariance Principle ( [33])): Con-
sider the differential equations as follows:

dx
a =fx, 1) @)

where x, f represent the state vector and the function vector
of n dimension, respectively. Let V : R" — R is a non-
negative and continuously differentiable function, D € R"
is a compact set, if there exists V(x) € C(D, R) such that
2\ < 0. Therefore, let E = {x|%|7y = 0,x € D},
M C E is the largest invariant set of E. If as t — o0,
each solution starting from D will asymptotically converge
to M. In particular, if M = {0}, then the zero solution of the
equations (7) is asymptotically stable.

To facilitate the later analyses, the following assumptions
are necessary.

Assumption 1: The communication topology among
agents regard as undirected graph G which is connected for
all time.

Assumption 2: The each local cost function fi(x;(t)) is
twice continuously differentiable and strongly convex.

Problem 1: For the system (1), design the controller u;(t)
of agent i, such that x;(¢) converges to x*, and x;(¢) = x;(t),
(i,j=1,2,...N), where x* is the optimal which minimizes
the global objective function.

lil. DISTRIBUTED OPTIMIZATION ALGORITHM WITH
TIME-DELAY

In this section, to solve the problem in this article, we propose
a new controller to find an optimal value that minimizes the
sum of the local function. The new distributed controller is
shown as follows:

wi(t) = =2[VACO)N Y ayait) — x5t — 1)) (8)
JEN;

x(0)=x, i=12,...,N. 9)

where x;(t), ( = 1,2,...N) and u;(t) € R™ represent the
state vector and the control input vector of agent i, respec-
tively. T is a positive constant and represents the commu-
nication delays between agents, x;(t — ) G = 1,2,...N)
represents the parameter estimate of agent i, a;; represents
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the connection weight relates to the undirected graph G,
[szi(xi(t))]_1 is the inverse of the Hessian matrix of f; on
x;(1). x;" is the initial position of the agent i(i = 1,2, ..., N)
and satisfies va: | Vfix}) = 0, implying that x7, (i =
1,2, ..., N)is the local optimal values. Meanwhile, we will
give the results of this article as follows.

Theorem 1: For the system (1) with the control algorithm
(8), all agents asymptotically converge to the same position,
which is an optimal solution of the problem in this paper.

Proof 1: Let the positive semi-definite Lyapunov candi-
date function of the system (1) be defined as

N
V() =Y (filx*) — fitxi(6) — V)" (8" = xi(1)))

i=1
N N ;

+ Zzazj/ (xi($)=x*)" (xi(s)—x")ds.  (10)
i=1 j=1 =t

The derivative with respect to ¢ along the system (1) is

N
V@) ==Y 50" (Vi) = xi(0)
i=1

N N
+ Yl — x|

i=1 j=I

N N
2
= YD aglx — 1) —x*|
i=1 j=1

N N

=2) > @) — xi(t — ) (* = xi(1))

i=1 j=I

N N
+ Yl —x*|?

i=1 j=I

N N
2
= YD aglx — 1) —x*|
i=1 j=1

N N

= 23" 3 ayut) — 2 () — x°)

i=1 j=1
N N
+23 Y aglt — ) — x") (1) — x%)

i=1 j=1

N N
+ 0> ayllxe) — x|

i=1 j=1

N N
2
= YD aglxt — 1) — x*|

i=1 j=1

N N
=2 Z Z agill Ceit) — x|

i=1 j=1
N N
+23 ) aylt — 7) — ) (ui(r) — x%)

i=1 j=1

123021



IEEE Access

Z.Yang et al.: Distributed Optimization for Multi-Agent Systems With Time Delay

+ Z Za,,nx,(r) — x|

llj—

N Z Zaijﬂxi(t — ) —x*|?

i=1 j=1

N N
= =D > allta) = x|

i=1 j=1

N N
+2) ) aylxt — 7) — ) (xi(r) — x*)

i=1 j—l

- ZZ%HW x| (11)

i=1 j=1

Because a;; = aj; = 1(when (i, j) € &), we have

aijll (i) — x*)|1?

M=
Mz

Il
~.

a;(xj(t — ) — x)T (xi(t) — x*)

5
[]= ]
=~

~.
Il

aijllxi(t — ©) — x*|?
J

™M=
[ij

Il
~.
Il

aijll (i) — x*)|?

I
'Plﬁz
[ij

Il
~.
Il

N N
+2) Y aglt — ) = x")T (1) — x%)

i=1 j—l

ZZaﬂux, t—1)—x*|?
Wy
= ZZ ag|Gei(t) — x*))?

N N
+2) ) axt — 7) = x)T (xit) — x¥)

i=1 j=I

N N
= >0 aylxt — 1) — x*|?
i=1 j=1
N N
= —( agjll(xi(t) — x|
i=1 j=1

N N
=23 aylx(t — ) — ) (i) — x7)

l= ]:
N N
2
+ )0 aylxe — 1) —x*|7)
i=1 j=1
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N N
==Y > a(xi(t) — xi(t — ) (ilt) — x5t — 1) (12)

i=1 j=1

The equation (11) can be rewritten by

N N
V() == aylxi(t) — xi(t — o) (xit) — x;(t — 7))
i=1 j=1
<0 (13)

It is clear that V(t) < 0, V7 > 0 and V() > 0. Thus, V()
is a non-increasing function for all time. This implies that
the exist c > O forallr > 0, V(t) < V() < ¢ < oo.
In addition, V(r) < 0 means that V(t) = 0 or V(t) < 0.
On the one hand, if V(7) = 0, then V(7) is positive constant
and x;(t) = x;(t — 1), (i,j = 1,2,...N), Vt > 0, because
of the fact that x;(0) = xl?“, (i =1,2,...,N). Thus, for all
t>0,xi)=x@)=...=xnv@) =x =x5 = ...
This implies x}* is the global optimal point which minimizes
N

— y*
= Xy-

F&x@), 1) = ) fi(xi(r)), which is a contradiction. Therefore,
i=1
V(t) # 0. Moreover, if V(t) < 0, then V(#) is monotonically
decreasing. V(t) > %Hxi(t) — x>"||2 > 0 by Lemma 2 and
V(x*) = 0, we have limV(t) = 0, as t — oo. That is,
x1(t) = x2() = ... = xy(@) = x*, fort — o0. Let the
level set Wi = {x;|V(¢) < ¢, ¢ > 0}, it is clear that the Wy is
bounded closed set, thus W is compact set by Definition 3.
According to Lemma 3, the each solution starting from W;
will asymptotically converge to the set W, = {xi|V(t) = 0}.
This occurs only when x; = x» = ... = xy, which means
that the all agents’ state in the system (1) can reach the same
state. In summary, x| = x» = ... = xy = x*, which implies
that the each agent asymptotically tend to the optimal state

x*. Therefore, it can be seen that as t — oo, f(x(2),t) =
N

> filxi(t), t) will be minimized and x; = xj, forall i,j € N.
lI?llother words, the problems in this paper can be solved.
Remark 1: In this paper, a delay-independent distributed
optimization algorithm is proposed. The results in [26]-[28]
require establishing the maximum delay bound.
Remark 2: In (8), we consider the case that only the state
of neighbor contains time-invariant communication delay.

IV. SIMULATION RESULTS

Example 1: In this section, we take a example to illustrate
the effectiveness of the results of this article. Simulation is
performed with six agents moving in a 1D plane. In simula-
tion, a connected undirected topology is considered, the adja-

cency matrix A = [a;] and the local objective functions
fi(xi(2)) are assumed as follows [27]:
0o 1 0 1 0 1
1 0 1 0 1 1
0o 1 0 1 1 O
A=11 0 1 0 1 0
o 1 1 1 0 1
1 1. 0 0 1 O
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Agent x1
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Agent x3
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Agent x5
4571 Agent x6
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Time(s)

FIGURE 1. The states of 6 agents evolving.

Agent x1
Agent x2
Agent x3
Agent x4
Agent x5
Agent x6

Errors between x and x*

Time(s)

FIGURE 2. The errors between agents’ and the optimal state.

1
ﬁ(x,-)=§<xl-—i>6+6(x,-—i)2, i=1,2,3,4,56 (14

Our objective is to minimize the function f(x(¢),t) =

N

> filxi(¢), t) in distributed method. Note that fi, f>, f3, fa,
Jl‘;,] fe are twice differentiable and strongly convex, i.e., we can
get the Hessian of f1, f>, f3, f4, f5, fe and unique minimizer
of the global objective function Z?:l fi(xi(®)). According
to Lemma 1 and by simple calculations, we have that the
minimum value of the total cost function Z?:l filxi(2)) is
168.887 and the optimal solution is x* = 3.5. The initial
states are chosen as x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) =
4,x5(0) = 5,x6(0) = 6. In the algorithm (8), choosing
the time-invariant delay t is taken as 0.2s. The numerical
simulations are given in Figure. 1-2. Obviously, we can see
that the state of six agents converge to the same state, and
the error between the state and the optimal value converges to
zero asymptotically. The simulation shows that our algorithm
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Agent x1
Agent x2
Agent x3
Agent x4
Agent x5
Agent x6

Time(s)

FIGURE 3. The states of 6 agents evolving by using the algorithm in [27]
when 7 = 10s.

Agent x1
Agent x2
Agent x3

\ Agent x4
45| Agent x5
Agent x6

Time(s)

FIGURE 4. The states of 6 agents evolving by using (8) when = = 10s.

can achieve consistency and the global objective function to
obtain the optimal. In a word, the algorithm (8) can do with
the problem of (3).

Comparisons 1: Until now, many algorithms based on
the ZGS method are given for solving (3). By comparison,
the innovation of our paper is that it does not require the
communication delays to be bounded. To verify this point,
we compare our controller with the ZGS algorithm in [27].
Let’s consider a large time delay, which is chosen as T = 10s.
The network topology and initial conditions are the same as
those in the above example. Similar to the above calcula-
tions, we get the same results as above, such as x* = 3.5,
33 fixi(t)) = 168.887. By using the algorithm in [27]
and our control scheme (8), the numerical simulations are
given in Figure. 3- 4. The simulation shows that our algorithm
can achieve consistency and the global objective function to
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obtain the optimal, but the algorithm in [27] can not achieve.
In summary, the above simulation results verify our theorems.

V. CONCLUSION

This paper investigate the distributed optimization problem
for multi-agent system. The systems with the communica-
tion delays and first-order dynamics are considered. We pro-
pose a control protocol that rests on the local information
between each agent and its neighbors. By constructing the
Lyapunov-Krasovskii function approach, it is proved that all
agents can track the optimal state and reach the same state.
Finally, we illustrate the results by a numerical simulation.
Our future works are concerned on the convergence speed
and implementation complexity of the proposed algorithm,
distributed optimization for multi-agent systems with time-
varying communication delay and directed networks.
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