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ABSTRACT Mobile learning (M-learning) has gained tremendous attention in the educational environment
in the past decade. For effective M-learning, it is important to create an efficient M-learning model that can
identify the exact requirements of mobile learners (M-learners). M-learning model is composed of features
that are generated during M-learners’ interaction with mobile devices. For an adaptive M-learning model,
not only learning features are required, but it is also important to determine how they differ for various M-
learners, their weights, and interrelationship. This study proposes a robust and adaptive M-learning model
that is based on machine learning and deep learning (ML/DL) techniques. The proposed M-learning model
dynamically explores learning features, their corresponding weights, and association for M-learners. Based
on learning features, the M-learning model categorizes M-learners into different performance groups. The
M-learning model then provides adaptive content, suggestions, and recommendations to M-learners in order
to make learning adaptive and stimulating. For comparative analysis, the prediction accuracy of five baseline
ML models was compared with the deep Artificial Neural Network (deep ANN). The results demonstrated
that deep ANN and Random Forest (RF) models exhibited better prediction accuracy. Subsequently, both
models were selected for developing the M-learning model which included the performance categorization
ofM-learners under a five-level classification scheme and assigning weights to various features for providing
adaptive help and support toM-learners. Our explanatory analysis has shown that behavioral features besides
contextual features also influence the learning performance of M-learners. As a direct outcome of this
research, more efficient, interactive, and useful mobile learning applications can be developed that accurately
predict learning objectives and requirements of diverseM-learners thus helpingM-learners in enhancing their
study behavior.

INDEX TERMS Deep neural networks, deep learning, machine learning, learners’ classification, early
engagement, adaptive M-learning, feature weights.

I. INTRODUCTION
Mobile devices have become an integral part of life and
society. A current-day challenge is to make Mobile learning
(M-learning) adaptive for those who use mobile devices for
learning purposes. For making M-learning effective, con-
textual and behavioral features of individual learners have
to be considered. Contextual features include learning time,
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background knowledge, and learners’ preferences, etc.
whereas behavior features include M-learners interaction
behavior with mobile devices e.g. discussion group partic-
ipation, preferred learning content types, problems posted
and learning performance, etc. The M-learning features
are important for the input, processing, and output of the
M-learning model. For a comprehensive and operational
M-learning model, these features are essential and act as
fuel. Therefore, development of aM-learningmodel that intu-
itively and intelligently selects learning resources for various
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learners to improve their study behavior is the prime need of
the modern M-learning environments.

In this research, we examine the application of M-learning
model in predicting the learning performance of M-learners.
The specific focus of our research includes M-learners’
performance prediction, learning features weight tuning,
features ranking and their interrelationship for diversified
M-learners. M-learning model uses machine learning and
deep learning (ML/DL) algorithms for features identification,
processing, and analysis. M-learning model based on DL
algorithms is capable of considering the most relevant feature
by themselves, requiring little intervention and guidance by
programmers. DL algorithms can analyze M-learners’ fea-
tures and properly classify them into various groups based
on their learning performance.

The deep learning paradigm uses statistical and machine
learning techniques to find feature hierarchies, weights, the
hidden patterns and features relationships based on Deep
Neural Networks (DNN) [1], [2]. The DNN differs from
Neural Networks (NNs) in the way that they use hidden
layers to find hidden patterns, modeling laws, and features
ranks. The basic idea of DL allows computers to learn from
the experience and apply those heuristics on the new data.
The more the data and experience, the accurate the final
prediction would be. Features weights and hidden patterns are
mathematical which can be easily identified and analyzed by
the ML/DL algorithms. Established on old data, features, and
rules, the DL algorithms can implicitly predict the outcomes
of new data. The accuracy of prediction and creation of rules
from features is an automatic process and improves with
newly obtainable features data.

Business intelligence (BI) refers to the techniques, tools,
procedures, and applications responsible for data elicitation,
analysis, integration and presentation for business informa-
tion [3]. The interest in DL/ML techniques has increased due
to advancements in information technology (IT), computers,
and the Internet. These advancements have triggered the
exponential growth in business centralized and distributed
databases. These databases hold important information suit-
able for making the intelligent decisions for organization suc-
cess. It is very difficult for human experts to analyze the huge
amount of data continuously growing and they may overlook
important business intelligence details. Hence, an alternative
solution is to use ML/DL techniques to extract meaningful
high-level information from raw data for timely and right
decisions.

Mobile devices continuously consume and generate a huge
amount of data offering fertile ground for BI. In M-learning
settings, there are multiple sources of data e.g. learning man-
agement systems (LMS), online study groups, online web and
database servers, etc. DL and BI techniques collectively can
be used to answer several interesting questions. For example,
DL and BI can tell us: which users are the M-learners? How
mobile devices could be used for learning purposes? What
types of learning content are liked by particular learners?
CanM-learning assist the traditional learning approach? How

learning performance of learners can be predicted? and how
M-learning can improve learners’ study performance? The
focus of this research article is to provide suitable answers
to these questions. Modeling the M-learning behavior of
learners is important for both learners and developers since
it can help in a better understanding of the user experience
and ultimately improve it.

The primary challenge in creating the M-learning model is
to decide which learning features best represent the learning
behavior of learners and how to store and use them for input
to ML/DL algorithms. Proper learning features are important
for efficiently modeling the learner’s understanding and for
providing discerning information to M-learning systems [4].
The performance of M-learning systems is directly affected
by the right learning features. The other important challenge
is to decide how to guide M-learners in their learning process
once their features are analyzed and weighted. Moreover,
providing tailored learning content to the learners based on
their learning preferences and inclinations is a significant
need for M-learning environments.

For the last two decades, different ML/DL algorithms have
been developed, evaluated and their performance explored in
online and M-learning settings [5], [6]. It is crucial to decide
which type of ML/DL algorithm to choose for modeling
the learning behavior of M-learners as proper learning algo-
rithm increases/decreases the response time of theM-learning
system [7], [8]. The right algorithm also affects the overall
performance of the M-learning system. For instance, Naïve
Bayes and Expectation Maximization are probability esti-
mation algorithms. Their performance is excellent in pro-
ducing efficient and correct results on training and testing
datasets but they can be quite expensive to implement [9].
Computation of conditional probability on every hypothesis
can be quite costly in terms of time and software resources.
Therefore, other types of ML algorithms are needed to create
anM-learning model. ML algorithms like K-means, Decision
Trees (DT), K-Nearest Neighbors (KNNs), Support Vector
Machine (SVM) and Density-based Spatial Clustering of
Applications with Noise (DBSCAN), etc. use classification
and clustering techniques [10], [11]. These algorithms can
accurately classify and cluster a small amount of dataset.
They are computationally and financially easier to implement
and interpret but the drawback of these algorithms is that they
need complex features engineering processes. They do not
scale with an increase in data and do not report the best results
in terms of performance and accuracy. For example, in mobile
and online learning settings, data related to learning features
is huge and changes frequently while these algorithms are
best for static features and a small amount of data. The
other disadvantages of traditional ML algorithms are that
they are complex, need domain expertise and a lot of human
interventions.

In stark contrast to the ML algorithms, the DL algorithms
use layers to create an artificial neural network similar to the
human brain network. With neurons processing inside each
layer, DL algorithms can learn and make decisions on their
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own without human intervention. They can represent data
at different levels of granularity thus they intrinsically have
a greater level of flexibility and robustness. DL algorithms
are also ahead of the classical ML algorithm due to their
performance and accuracy when trained and tested on a huge
amount of data [12]. One of the prime advantages of DL
algorithms over traditional ML algorithms is their capability
to excerpt abstract features information from low-level data
in an incremental fashion [13]. This technique eliminates the
hardcore features engineering process, human intervention,
and domain expertise. For example, DL algorithms can auto-
matically discover new features to be used for classification
while for ML algorithms, new features have to be provided
manually.

In this research, we analyzed the features of M-learners
using the Deep Artificial Neural Network (Deep ANN). The
features of M-learners were identified during their interac-
tion with the M-learning system. M-learners feature data
contained information about M-learners participation in an
online discussion group, type of learning contents accessed,
average study time, online problems posted, online prob-
lems solved, quiz attempts, repetition rate, and module per-
formance. The online M-learning course consisted of three
JAVA and three Python programming modules. The afore-
mentioned features are independent whereas the final per-
formance is a dependent feature that deep ANN would try
to predict. The aim was to predict M-learners’ attainments
and identifying important features that affect the learning
performance of M-learners. M-learners were modeled using
a five-level classification scheme ranging from A (excellent)
to F (insufficient).

The rest of this article is organized as follows. In
Section 2, we review the applications of ML/DL algorithms
in mobile and web learning environments. Section 3 dis-
cusses the dataset, its features and how it was acquired
from the M-learners. Section 4 explains three basic ele-
ments of the M-learning model: 1) the M-learner model,
2) the M-learner domain model, and 3) the M-learner
adaptation model. Understanding these elements is impor-
tant in understanding the working of the M-learning sys-
tem. Section 5 presents the proposed M-learning system
architecture which consists of gathering M-learning fea-
tures, features pre-processing, features weight-tuning pro-
cess, M-learning model generation, and M-learning model
deployment. Section 6 briefly describes baseline multi-class
classification models and their prediction accuracy when
compared to deep ANN. Section 7 presents deep ANNmodel
evaluation using accuracy, precision, recall, and F1 metrics.
Section 8 discusses the early engagement experiment and
M-learning model evaluation using the End-User Computing
Satisfaction (EUCS) instrument. Section 9 summarizes this
article and points to future directions.

II. RELATED WORK
M-learning systems emerged under the inspiration of studies
in the area of Intelligent Tutoring System (ITS), E-learning,

adaptive learning and Computer-Aided Learning (CAD)
[14]–[16]. M-learning system architecture is considered as
an extension of E-learning system architecture, although both
architectures have differences. Unlike in E-learning systems,
the learning in M-learning systems occurs in different con-
texts. Context discovery, background knowledge, learner pro-
filing, learner tracking, learning preferences, content discov-
ery and management, and semantically indexing important
features are important steps during the development of adap-
tive M-learning systems. In contrast to E-learning systems,
M-learning does not occur in predefined space and time but
befall whenever run time problem is created and users need
to get information about it [17]. M-learning allows learners
to address current problems, works independently of social,
temporal, spatial constraints and keep them engaged in con-
tinuous professional development.

The generic ML/DL approaches used in educational set-
tings target prediction of learners’ dropouts [18], [19], perfor-
mance prediction [20]), predicting learners’ engagement [21],
[22], and failures prediction [23], [24], etc. Marbouti et al.,
used linear regression (LR) to assess learners at-risk of fail-
ure [11]. Using attendance, exams, assessment features, the
on-risk learners were predicted in different weeks of their
first year. Moreover, Marbouti and Diefes-Dux used different
ML algorithms including artificial neural networks, support
vector machine, decision tree, and naïve Bayes for predicting
risky learners and compared their results with LR as baseline
algorithm [25]. In educational settings, the use of DL models
is still in its infancy stage with a limited number of studies.
Fei and Yeung evaluated several DL models for prediction
of learners’ dropout [26]. They interpreted features gener-
ated from learners’ interaction with online learning systems
as time-series problems, processed learners’ features week-
wise, to analyze their study behavior and predict at-risk
learners. Using LR and SVM as baseline models, they com-
pared the results of Recurrent Neural Network (RNN), Long
Short-Term Memory (LSTM), and hidden Markov model on
the feature set encompassing data about lectures viewed and
downloaded, assignment submitted, attempted quizzes, and
interaction on online forum platform.

In literature, there has been substantial debate on online
learning environments (M-learning, Virtual Learning Envi-
ronment (VLE)) features that impact the learning perfor-
mance of learners [27], [28]. Various studies in the past
have been carried out that identified the key reasons con-
tributing to the low performance of online learners [18],
[29]. Jagger and Xu in their research study revealed that
student-instructor communication is the key factor that
strongly influences the learning performance of online learn-
ers [30]. Similarly, Shahiri and Husain conducted a com-
prehensive literature review to determine the key features
that contribute significantly to classroom performance pre-
diction [31]. J. Naren argued that assignments, quizzes, back-
ground knowledge prior to final examination are the key
features in predicting the final performance of learners [32].
Another perception incorporates learners’ past performance
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in quizzes/assignments and demographics as important con-
tributors in assessing the final performance. A study carried
out by Daud et al., employed family attributes such as fam-
ily income, family expenditure, learners’ characteristics, and
learner’s study orientation to assess their effect on learners’
performance [33]. They concluded that low income, extensive
family expenditure, job during study and health expenses are
the key features impacting the overall family environment
and ultimately affecting learning performance. Social influ-
ence, family education, learner’s inherent features were also
considered as significant factors in the final performance
prediction.

According to Kahraman et al., the design of adaptive
learning systems require three phases: 1) organizing learn-
ing contents i.e. establishing a relationship between target
learning content and prerequisite learning content, 2) identi-
fying learners needs, requirements, and features, 3) defining
the connection between learners needs and learning con-
tent [34]. The key to the successful adaptive system is to
identify learners’ features, their weights and establishing
weight difference metrics amid learners’ features. In con-
temporary classroom settings, there is a fixed and agreed
curriculum with a single instructor and organized learning
content whereas, in M-learning, the learning environment
consists of temporary learning contexts. The fundamental
challenge in M-learning is to identify the exact requirements
of learners in temporary contexts and assist them accordingly
thus making learning easy, adaptive, and meaningful. Nordin
et al., presented a theoretical mobile learning framework
with the aim to assist M-learners in lifelong learning [35].
Key design factors of their mobile lifelong learning frame-
work included mobile environment issues, learning theories,
mobile learning context, learning objectives and learning
experience. According to V. P. Dennen et al., both behav-
iorism and constructivism learning theories can be used in
designing instructional materials for M-learning [36]. They
identified user mobile environment issues which include col-
lection of M-learners profile data, inspecting learners’ mobil-
ity, considering mobile interface design issues and learning
context. In general, mobile devices are considered as sup-
porting tools when used in the acquisition of knowledge in
a different context. Because of unrestricted time and space
constraints, mobile devices can also be used in different
learning scenarios in pre/post activity mode. The success of
M-learning depends on better usability offering professional
Graphical User Interface (GUI) that presents an appealing
user experience, attractive interaction along with clear goals
and objectives.

Manwaring et al. used a cross-lagged modeling technique
to understand learners’ engagement in higher education
blended classrooms [37]. The study found that learners’
course interest, orientation, course design, and learners’ per-
ception features greatly influence learners’ performance and
engagement in the course. Mutahi et al. used ML and statisti-
cal techniques to determine the relationship between learners’
engagement and learners’ final performance score [38]. They

found that learners’ having high levels of engagement in read-
ing learning content, taking quizzes, submitting assignments
earned higher grades in final examinations. Aguiar et al.
incorporated ML algorithms to investigate the factors that
greatly influence learners’ engagements and performance in
classroom settings [39]. Their results showed that ML algo-
rithms are very good in recognizing learners’ facial expres-
sions, eye gazes, gestures, and head poses and subsequently
categorizing learners’ into different engagement categories.
Atherton et al. found that learners who accessed course
content more often achieved better scores than learners who
accessed less course content [40]. Hamid et al. in their study
employed Support Vector Machine (SVM) and K-nearest
Neighbor (KNN) algorithms to classify learners into differ-
ent performance/engagement categories and the results con-
cluded that SVM and K-NN are appropriate ML algorithms
for predicting learners performance and engagement [6].

Baker presented a user model for the online adaption
process in which users’ preferences and background knowl-
edge were the key components [41]. Adaptive navigation
paths were established using user preferences and tailored
contents were delivered using background knowledge. With
an increase in a user performance, complex contents and
more challenging tasks were presented to the user so that
the user could control pace over the learning process. Bezold
developed a task model that considered users navigations
and interactions in online systems as a series of events [42].
A ‘Probabilistic Deterministic Finite-State Automata PDFA’
was used to label user behavior in online systems. For pre-
dicting and estimating the user’s next activity ‘first-order
Markov chains’ were used. The first-order Markov chains
converted user interaction history into vector set and used
them as an input parameter for predicting user next activities.
The problem with task-based user modeling is that there is no
settled standard procedure for gauging the methods used [43].

Guo et al. used an unsupervised sparse auto-encoder algo-
rithm to develop a classification model from learners’ unla-
beled data [44]. The classification model was trained and
tested on a relatively large dataset aimed at pre-train hidden
layers. The classification was efficacious in an academic
setting for learners’ pre-warning mechanism. The main dis-
advantage of sparse auto-encoder is their failure to work
with time-series data and have a low network architecture
performance [45], [46].

Bouneffouf used a Markov decision process, a type of
reinforcement learning technique to create a ubiquitous
recommender system established on the user’s changing con-
text [47]. The recommender system delivers appropriate sug-
gestions and recommendations to users based on their diverse
context. A new user is recognized by a recommendation
system based on his/her social group information and then
gradually recommends new suggestions and actions accord-
ing to the user’s interest. The recommendation system links
new actions according to the observed context of the user.
Associations depend on the user’s behavior and feedback to
the recommendation system. The researcher was successful
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FIGURE 1. Proposed M-learning System Architecture.

in solving users cold-start problem that commonly occurs
when new users have little experience with the existing sys-
tem and they hesitate to perform basic interactions.

Sun et al. in their pilot study designed a mobile
service-oriented system based on educational data min-
ing (EDM) techniques, which targets organizing learning
contents in the virtual learning environment (VLE) to support
collaborative and microlearning in a massive open online
course (MOOC) [48]. To make learning easy and self-paced,
learning content was divided into small chunks that were sup-
posed to be learned by students in short time duration. Based
on learners’ preferences, course chunks were sequenced into
series of the identified paths, therefore, to enable learners to
make the best use of fragmented pieces of time, to effectiv-
ity implicate in MOOC learning. Without a doubt, mobile
learning is becoming more and more ubiquitous and a major
means of learning. As a result, MOOC providers frequently
release and update their mobile apps on major mobile oper-
ating systems (i.e. Android, iOS, Windows phones, etc) to
catch mobile learning trends and to make learning easy and
convenient for M-learners.

Arguably, the popularity of M-learning is compelling
MOOC designers to allowM-learners to take MOOC courses
on mobile devices [49], [50]. Standard models of M-learning
look very much like traditional classroom learning where
learners are taken out from normal living environments to
spend five to six hours in learning stuff which they may or
may not encounter in their daily lives [51]. Recently, standard
M-learning models are swept out the door by new learning
methods where not only M-learning takes place inside a nor-
mal work environment but smack right in the middle of it. In a
working environment where mobile devices are considered
an integral part of people, any type of learning activity is
carried out in very short bursts of the period.

In previous research studies, many techniques and method-
ologies have been established to model the behavior of online
learners, however, most of them had not been applied in
real-world situations [52], [53]. The main reason for this

problem turns out to be compelling learners to follow appli-
cation domain constraints and not considering their needs,
learning features and preferences. Most of the time learners
are dependent on complex practices, theoretical models, sys-
tem complexity and low-level details. According to literature,
each learner’s feature is equally important in defining his/her
exact learning behavior [54], [55]. In other words, existing
learner modeling methods ascribe equal weights to each fea-
ture in the learner modeling process. Not considering features
weights and their association is the main reason for misclas-
sification in the learner modeling process. The modern DL
algorithms have enabled the development of a comprehensive
learner model that can identify and represent a broader range
of learner features which were not possible previously. DL
algorithms such as deep Artificial Neural Networks (deep
ANNs) with several hidden layers are capable of determining
significant features along with their weights i.e. importance
in classifying learners in different categories. Assigning a
weight to each feature is called the weight-tuning process.
The weight-tuning process improves learner modeling pre-
diction, classification, and estimation results. M-learning sys-
tem that can properly identify M-learners’ needs and features
will enable them to easily customize learning resources at a
micro-level to meet their demands in real-time.

III. DATASET
Unlike online web-based learning systems and static class-
room settings, the M-learning system faces more challenges
in collecting features dataset. There is a lot of distraction,
ambient noise, and instability for M-learners while they use
mobile devices. M-learning occurs without temporal and spa-
tial constraints. Therefore, it is important to know exactly
what features influence M-learners more and how these fea-
tures can be used for making the M-learning process easy
and adaptive. M-learning system shown in figure 1 collects
features data such as learning content accessed, learning
location, study time duration, navigation paths, and learn-
ers’ responses, etc. 374 M-learners participated in using our
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TABLE 1. Dataset Features for M-Learning Model.

proposed M-learning system to enhance their programming
skills. A programming course each for JAVA and Python
language was presented toM-learners on their Android-based
mobile devices which they had to complete in 2 months. Each
of these courses was further divided into three modules and
after completion of each module, a quiz was conducted. After
completion of each course, a final quiz was conducted to
determine the final grades of M-learners.

Table 1 contains the features of our dataset along with
their corresponding datatype domain values. The features are
divided into three categories namely ’behavioral features’,
’context features’ and ’final grade’. The behavioral features
are concerned with mobile learners’ interaction during a
study process such as participation in an online discussion
group, posting problems, solving problems posted, number
of times quiz was attempted, and topic repetition rate. The
context features contains the learning context information of
M-learners which includes features such as learning location,
types of learning content accessed, average study time in
daily routine, background knowledge, and modules perfor-
mance, etc. The final grade is derived feature acquired from
the final performance score. The final grade is a categorical
feature representing the grades (A, B, C, D, F) of M-learners.

The 13 behavioral and context features are independent fea-
tures that are given as input to the Deep ANN model to
predict the dependent final grades. The task of prediction
consists of obtaining an M-learning model that relates the
values of independent features with the values of dependent
feature i.e. final grade. The actual values of independent
features and their weights describe the mapping between
the independent predictor features and the dependent target
feature.

For the purpose of comparison, , classification and effec-
tiveness of learning performance, five baseline multi-class
classification ML algorithms are used which include Support
Vector Machines (SVM), Random Forest (RF), K-Nearest
Neighbors (K-NN), Multi-class Logistic Regression i.e. soft-
max regression, and Decision Trees (DT) along with Deep
Artificial Neural Network (DANN).

IV. ELEMENTS OF ADAPTIVE M-LEARNING MODEL
The three major elements of our proposed adaptive
M-learning model includes M-learner model, domain model,
and adaptation model. An understanding of these elements
is essential in knowing how the procedure of adaptiveness is
carried out in the M-learning process.
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A. M-LEARNER MODEL
M-learner model is the main source of personalization and
adaptation in the M-learning process [56]. The features
of M-learner define her/his needs in the M-learning pro-
cess. The features of M-learners define a strong associa-
tion between the M-learner model and the domain model
in the M-learning environment. M-learner model stores fea-
ture such as background knowledge, performance states, and
preferences, etc. that are used by the adaptation model to
predict M-learners’ knowledge about target learning object.
The domain-dependent features of learners corresponding to
target learning objects in theM-learning environment are rep-
resented by the set such as<MLO1,MLO2,MLO3,MLOn >

where each element < MLOc > denotes M-learner context
features such as average study time, type of learning content
accessed, performance and places visited. The feature set
also encompasses behavioral features such as online discus-
sion group participation, posting problems, solving problems,
topic repetition rate, and several quiz attempts corresponding
to target learning object Oc.
It is obvious that each feature in the set < MLOc> will

have a different effect on the knowledge and performance
level of M-learner. Considering this fact, the current chal-
lenge is to explore the weight/importance of each feature.
The aim of weight assignment is to find the real-values of
each feature in the set < MLOc > and model them on the
learning behavior of M-learners. The weighted feature set
represents the weight of each feature in the M-learner model
composition.

B. M-LEARNER DOMAIN MODEL
The M-learner domain model comprises the learning objects
in the application domain. In adaptive learning settings, the
domain model represents learning objects that are in the
interest of M-learners [57]. The domain model is designed to
reflect the learner’s goals, topics, and objectives. At a generic
level, the goals and objectives of learning objects are defined
independently of any domain whereas, at a detailed level,
the goals, topics, and objectives are defined at a granular
level. Because of the domain model, the ordered relationship
among different learning objects can easily be defined. The
instruction requirements for different learning objects in the
domain model are also defined and stored in the M-learning
system. The basic relationships in the domain model are the
prerequisite connections among different learning objects.
The prerequisite connections define the instruction require-
ments for different learning objects, which are to be fulfilled
by the M-learners.

According to the domain model, the set of learning objects
is represented by the set O, < O1, O2, O3. . .Om >. ‘m’
represents the total number of learning objects in the domain
model. The learning objects in the set O can be represented
in textual, video, audio, and animation form. The individual
features of a learning object Oc can be represented by the set
FOc < FOc1, FOc2, FOc3. . .FOcn>. ‘n’ denotes the total

number of features of learning object Oc. According to the
generic domain model, the features of learning objects should
be defined accurately to represent the environment where the
learning occurs.

Some of the features of learning object Oc are difficulty
level, learning duration, questions, and repetition number,
etc. The instructor can state the real-values of learning object
Oc features according to a measure of belief of the learner
understanding about the difficulty level of individual learning
objects.

C. M-LEARNER ADAPTATION MODEL
The purpose of the adaptation model is to deliver learn-
ing objects and activities to M-learners according to their
learning features defined in the M-learner model [58], [59].
In our proposed model, the adaptation model consists of
a Deep ANN algorithm that takes M-learner’s features as
input, processes them and based on their values, classify
M-learners into different performance categories. The adap-
tation model generates adapted learning objects, objectives,
and goals that are according to the learning behavior of
M-learner. The customary e-learning and M-learning model
uses a hired-wired implementation which follows the one-
size-fits-all approach. As a result, the hard-wired adapta-
tion model cannot differentiate among varying learners in
providing them with more accurate and appropriate edu-
cational content. Furthermore, hard-wired adaptation mod-
els limit their potential to be scalable and applied to new
types of learners. In stark contrast, our proposed M-learner
adaptation model, which is based on the M-learning
model, adapts to learning content in real-time according
to individual learner’s features and their corresponding
weights.

The goal of the adaptation model is to assist learners in
finding tailored learning objects from a large pool of learning
content (text, video, audio, etc.). For example, the adaptation
model can adaptatively select, sort, annotate, or partly hide
the target learning objects to make it easier for the learner
to choose where to go next. The adaptation model delivers
learning objects to the learner in such a way where a learner
can find an ‘‘optimal path’’ through the learning process.
Furthermore, the adaptation model tries to be more coop-
erative and less directive as opposed to models used in the
traditional learning systems: It leaves learners in a state from
where they can choose which next knowledge item to learn
or which problem to solve. In an M-learning environment
where there is a lot of distraction, adaptive support becomes
both natural and efficient. In the M-learning context, where
there is no human teacher, tutor, or even peer nearby, the
adaptation model has to provide a one-stop solution for all
the learner’s needs. Together with adaptive learning objects
and adaptive information filtering processes, the adaptation
model should be more attractive than interactive due to its
natural fit to small screen size, low memory, and processing
capabilities.
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V. PROPOSED M-LEARNING SYSTEM ARCHITECTURE
Figure 1 shows the architecture of the proposed M-learning
system. It is based on the M-learning model. The modeling
process of M-learners is created and updated in five steps.
The first step collects and stores M-learners’ features data
on the online Google Firebase cloud. M-learning system
tracks and collects M-learners’ features such as learners’ par-
ticipation in problem-solving, learning activities, navigation
paths, performance scores, study time duration, and topic
repetition rate about target learning objects, etc. Initially, the
online data represent a generic profile of the M-learners as
they are not processed, classified and weighted by the Deep
ANN model. In the second step, the stored data is prepro-
cessed, encoded, converted and normalized to useful data
that becomes suitable to be further accepted and processed
by the Deep ANN model. In the third step of the proposed
M-learning system workflow, M-learners are classified by
the deep ANN model depending on real-values of features
about the target learning object. In the fourth step, the features
of M-learners are weighted by the weight-tuning process.
After that optimum weights are assigned to each feature, the
M-learners are further classified based on weighted values
of their features. In the fifth step, the M-learning model
developed for each M-learner is deployed on their mobile
devices for adaptive assistance and recommendations. Each
M-learner has a particular M-learning model that represents
his/her knowledge state, learning behavior and M-learning
interests.

A. EXPERIMENT RESULTS OF DEEP ARTIFICIAL NEURAL
NETWORK (DEEP ANN)
Deep Artificial Neural Network (Deep ANN) is a form of
DL/deep neural network (DNN) algorithm that we have
selected for M-learners’ classification and performance pre-
diction tasks [60]. Deep ANN relays on proper learners’
datasets for its processing and prediction result generation.
In our study, the dataset includes the features records of
learners’ study behavior stored on the online Google Firebase
cloud.

Figure 2 shows deep ANN pictorially along with its input
layer, hidden layers, and an output layer. The deep ANN
has 13 input neurons (for 13 input features instances), 2
hidden layers having 6 neurons each and an output layer hav-
ing 5 neurons. The 5 output neurons in output layers contain
learner’s performance grades i.e. A, B, C, D, F. During deep
ANN implementation process we used Python Sequential
class to map the 13 input features to input layer neurons
and Python Dense class was used for randomly initializing
weights to deep ANN synapses (edges). The output layer
neurons yield learners’ performance represented by five-level
grades.

1) DEEP ANN LEARNING PROCESS
The deep ANN learning process i.e. M-learning model devel-
opment process comprises the following steps.

FIGURE 2. Deep ANN Processing M-learners’ Features.

• Forward Propagation: for passing features instance
through deep ANN.

• ReLU: using rectifier activation function for neuron acti-
vation in deep ANN hidden layers.

• Softmax function: to apportion learners’ performance
into final grades at the output layer.

• Back-propagation: feeding output error back to the ANN
to mitigate the output-generated error.

2) FORWARD PROPAGATION
In the forward propagation technique, the M-learners’ data
flows from input through hidden layers towards the output
layer. For four-layered deep ANN (1 input layer, 2 hidden
layers, and 1 output layer) the learned function would be:

f (x) = f 1(f 2(f 3(x))) (1)

where:
f 1(x) = learning process occurred at hidden layer 1
f 2(x) = learning process occurred at hidden layer 2
f 3(x) = learning process occurred at output layer
At each layer, the deepANN learns different representation

and weights of input features that gets more complex with
later hidden layers. Initially, the features instances are of
the form n ∗ 13, where n is the total number of feature
instances and 13 are M-learners’ features. To speed up the
input process and to feed multiple inputs features records
at one time to the deep ANN input layer we used matrix
multiplication techniques. For performing matrix multiplica-
tion, first, we defined two matrices namely X and W1. The
input features are represented by matrix X having an N ∗M
dimension. N is the number of records in features dataset
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whereas M represents a total number of M-learners’ fea-
tures, which in our case are 13. At the input layer, the weights
of synapses are represented by the matrix W1 matrix having
13 ∗ 6 dimensions. 13 denote the input neurons whereas 6 are
the values of synapses weights attached to each neuron (6
synapses per neuron) at hidden layer 1. At the start of deep
ANN operation, the Python Dense class randomly initialized
the values of the weights on synapses. Initially, the values of
the weights chosen by Python Dense class are close to zero.
Mathematically, the matrix X and W1 are represented as:

X =


X11, X21, X31, X41, . . . X131
X12, X22, X32, X42, . . . X132
X13, X23, X33, X43, . . . X133

. . . . . . .

X1n, X2n, X3n, X4n, . . . X13n



W1 =


W11, W12, W13, W14, . . . W16
W21, W22, W23, W24, . . . W26
W31, W32, W33, W34, . . . W36

. . . . . . ..

W131, W132, W133, W134, . . . W136


Multiplication of matrix X with W1 produces matrix c2

having dimension n ∗ 6 as shown in equation 2. This
matrix multiplication technique would enable multiple fea-
tures instances to pass through deep ANN at the same time.

c2 = XW1 (2)

During the deep ANN forward propagation process, the
neurons at hidden layer 1 perform two operations. First, the
input matrix X representing the features instances is mul-
tiplied by the weights of the corresponding synapses and
then multiplication result is added with other multiplication
results at a neuron where the synapses are connected to it.
Secondly, neurons at hidden layer one perform activation
function. We used Rectifier activation Function (ReLU) to
perform activation function on each entry inmatrix c2. Apply-
ing the ReLU activation function on c2 deduce new equation
as shown below.

e2 = f (c2) (3)

The result of the ReLU activation function is stored in
a new matrix e2. The ReLU activation function is applied
at each neuron in deep ANN hidden layer 1. To complete
the forward propagation process, deep ANN propagates the
values of e2 all the way to the output layer. The result at the
output layer is represented by ŷ which is deep ANN predicted
grades values for M-learners’ performance. The operation at
hidden layer 2 is the same as that of hidden layer 1. First,
the result generated from hidden layer 1 neurons i.e. e2 is
multiplied by hidden layer 1 synapse weights using matrix
multiplication technique. The dimension of matrix e2 is n ∗
6 whereas the dimension of the W2 matrix is 6 ∗ 6.6 ∗ 6
represents synapses weights and neurons at hidden layer 2.
The matrix e2, when multiplied by matrix W2, yields matrix
c3 having size n ∗ 6 and can be denoted by the subsequent

equation 4

c3 = e2 ∗W2 (4)

At the hidden layer 2, the ReLU activation function is
applied on each entry of the c3 matrix resulting in new matrix
e3. The dimension of e3 is same as c3 and can be written as:

e3 = f (c3) (5)

The resultant matrix e3 is further multiplied by
layer 2 weights and the multiplication results are further
added up at the output layer. The multiplication and addition
process at the output layer produces matrix c4. At the output
layer, the Softmax function is applied to the entries of the
c4 matrix that generates the e4 matrix which represented by
equation 6.

e4 = f (c4) (6)

Here e4 is the predicted final grades representing learners’
performance. The predicted final grades can also be rep-
resented ŷ. For improving the accuracy of the deep ANN,
we must minimize the difference between predicted final
grades ŷ and actual final grades y. The difference between
ŷ and y can also be measured by cost function C.

3) TRAINING DEEP ANN-BASED M-LEARNING MODEL:
BACK-PROPAGATION
The goal of the back-propagation technique is to optimize
synapses weights so as to minimize the difference between
predicted result ŷ and actual result y. Cost function C tells
us how wrong the predicted result was when compared to
the actual result. The cost function can be expressed by the
following equation 7.

C = 6 1/2(y− ŷ)2 (7)

In the back-propagation technique, the weights on the deep
ANN synapses get updated causing the predicted result to
come closer to the actual result. There are only two possibili-
ties for minimizing the value of cost function; 1) changing the
values of input features, 2) changing weights of deep ANN
synapses. We do not have control over changing the values of
input features, therefore, the only choice left for us is to adjust
synapses weights values. To lessen time and computation
resources, we used a technique called Stochastic Gradient
Descent (SGD) to find optimal values for synapses weights.
Assigning optimal values for synapses weights ensures min-
imum error in the predicted results. SGD updates synapses
weights after every single record propagation through deep
ANN, therefore, they have much higher fluctuation and abil-
ity to find global minimum values for synapses weights. SGD
works well on higher dimension data and training models
where the weights of the synapses have to be updated after
each training sample. The following steps were carried out in
back-propagation technique:
• Initialized synapses weights with random values and
calculated the error in the predicted result.
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• Compared to the predicted result with an actual result
and measured the generated error.

• Generated error back-propagated from the output layer
to the input layer through hidden layers.

• Updated synapses weights according to how much they
are responsible for the generated error.

• Repeated the steps from 1 to 4 and updated synapses
weights after each observation.

• The whole training dataset is passed through deep ANN
which is an epoch.

• Redo more epochs until deep ANN gets suitable
synapses weights values that generate a minimum error
in the predicted result.

During the initial phases of the deepANN learning process,
it may not find the proper association between independent
features and dependent feature. Therefore, deep ANN has
to be train with a back-propagation technique where if the
predicted result is not closer to the actual result, the error
is back-propagated into the entire deep ANN. The lower the
value of cost function C is, the lower will be the difference
between y and ŷ.

VI. EXPERIMENTAL RESULTS OF BASELINE MULTI-CLASS
CLASSIFICATION ALGORITHMS
In this section, we will discuss and apply baseline multi-class
classification algorithms to our problem dataset and later will
compare their prediction accuracy results with the deep ANN
results.

A. SUPPORT VECTOR MACHINES (SVM)
SVM can produce significant classification accuracy with
less computation power [61]. In practice, the SVM
multi-class classification tasks (k > 2) are disintegrated into
a series of binary tasks where the normal SVM technique is
directly applied. Two popular SVM ensemble schemes are
one-versus-all and one-versus-one [62].

1) ONE-VERSUS-ALL STRATEGY
In the SVM one-versus-all (OVA) strategy, a single model
is trained for one class. The samples of the class selected
are labeled as positive samples whereas other class sam-
ples are labeled as negatives. The following pseudo-code
demonstrates how we used SVM OVA in learners’ grades
classification.

1) Inputs: M, a model (SVM OVA algorithm for binary
classifiers)

2) Samples: (N: M-learner grades)
3) Labels y where yi belong to 1, . . .K is the label for Ni

learner grade

Although SVM OVA is a popular strategy, its implemen-
tation suffers from several problems. Firstly, the accuracy
of predicted value may differ between different binary clas-
sifiers. Secondly, if equal numbers of the class exist in a

problem set, the OVA see unbalanced distributions because
typically the negative classes it observes are much larger than
the positive classes.

2) ONE-VERSUS-ONE STRATEGY
In our dataset, the M-learners’ performance is categorized
into five classes (A, B, C, D, F), and thus OVOwill create n(n-
1)/2= 10 binary classifiers i.e. (A, B), (A, C), (A, D), (A, F),
(B, C), (B, D), (B, F), (C, D), (C, F), (D, F). If a learner’s
performance is to be classified, the obtained performance
grade is presented to each binary classifier of the ensemble to
create an array of individual classification, e.g. (A, A, A, A,
B, B, B, C, C, D). Finally, a win for one class is the number
of votes for that class. The class that has most votes wins.
In our scenario, A class has most votes, therefore, the learner
performance is classified into A class.

B. DECISION TREES (DT)
DT is a very common, simple and powerful technique for
multi-class classification [63]. The working of decision trees
is based on IF/ELSE conditional statements where if the
condition is true, a direction in tree construction is followed
else if the condition is false, an opposite direction is followed.

C. RANDOM FOREST (RF) ENSEMBLE METHOD
RF is considered as the most popular, simple, and flexible
multi-class classification algorithm [64]. RF develop a forest
consisting of several decision trees. The robustness and accu-
racy of RF increase with increasing the number of decision
trees. The RF creates an ensemble of decision trees learning
models which increases the overall accuracy result. As the
number of trees increases, randomness is increased in the
model which enables RF to select the most important feature
while deciding at the node.

We have used RF in the M-learning model to measure
the weights or the relative importance of each feature on
M-learners’ performance grades prediction. By looking at
features’ weights and importance, the M-learning model
decides which learning path to recommend to M-learners
thus making their learning interesting and adaptive. The
M-learning model may also drop those features that do not
contribute enough to the prediction process.

D. K-NEAREST NEIGHBORS (KNN)
KNN is a supervised ML algorithm used commonly both
for classification and regression problems prediction [65].
When used for classification problems, KNN learning is
based on ‘‘how similar’’ is object features to neighbor objects
features. Initially, KNN chooses the number K of neighbors.
Upon receiving the unclassified data, the KNN algorithm
measures the distance (Manhattan, Euclidean, Minkowski,
or Weighted) from the new data point to all the other data that
has already been classified. Because KNN is based on fea-
tures similarity, the KNN model classifies a new M-learner’s
performance grade based on how much her/his learning fea-
tures are like already classified M-learners.
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E. MULTI-CLASS LOGISTIC REGRESSION I.E. SOFTMAX
REGRESSION
Like SVM, multi-class logistic regression can also be used
for multi-class classification using two approaches: one-vs-
rest also known as one-vs-all and one-vs-one [66]. In this
study, we have 5 output classes (A, B, C, D, and F) there-
fore, multi-class logistic regression will train 5 classifiers.
For the classification task, the probability of each class is
predicted and the class with maximum probability is selected.
For example, we have five model classifiers namely classi-
fier_A, classifier_B, classifier_C, classifier_D, classifier_F
and the probability we get during prediction/training phase
is classifier_A = 40%, classifier_B = 45%, classifier_C =
50%, classifier_D = 35% and classifier_F = 37%. As the
probability of class C in classifier_C is the highest therefore
we predicted class C and class C generated in the output
result.

In one-vs-one approach, a total of n*(n-1)/2 classes are
trained, so if we have 5 classes, we train 5∗(5-1)/2= 10 clas-
sifiers. During the training process, binary pairs of classes are
considered, and the model classifier is trained on a subset of
data containing those pairs of classes. As a contrast to the one-
vs-rest approach, where each classifier predicts probability,
in a one-vs-one approach, each classifier predicts one class
during the classification phase. The class has been predicted
the most in the output class. 10 classifiers trained for 5 grades
could be classifier_AB, classifier_AC, classifier_AD,
classifier_AF, classifier_BC, classifier_BD, classifier_BF,
classifier_CD, classifier_CF, and classifier_DF. During clas-
sification, let’s say the output of each classifier is: classi-
fier_AB assign A, classifier_AC assign A, classifier_AD
assign D, classifier_AF assign A, classifier_BC assign C,
classifier_BD assign B, classifier_BF assign B, classifier_CD
assign C, classifier_CF assign F, and classifier_DF assign F.
As class A is predicted the most, therefore class A is pre-
dicted.

F. BASELINE MULTI-CLASS CLASSIFICATION ALGORITHMS
PREDICTIVE ACCURACY RESULTS
The parameters adjusted for the six ML models were
RF (e.g. T = 500), deep ANN (E = 150 epochs using
forward-propagation and back-propagation algorithm), KNN
(manhattan_distance (l1), K = 3), SVM (kernel = RBF, C
= 1.0, degree = 3, gamma = 0.0, random_state = none),
MCLR (One-vs-all, Softmax, Optimizer = stochastic gradi-
ent descent (SGD)). All DMmodels were evaluated using the
following four configurations:

Model 1: This model accepts all features as input except
the final grades (the output to be predicted);

Model 2: This model is similar to Model 1 except mod-
ule 3 performance;

Model 3: This model is similar to Model 2 except mod-
ule 2 performance; and

Model 4: This model is similar to Model 3 except mod-
ule 1 performance.

TABLE 2. Multi-Class Classification Models Prediction Accuracy Results of
Final Grades in JAVA Course.

TABLE 3. Multi-Class Classification Models Prediction Accuracy Results of
Final Grades in Python Course.

To produce optimal predictive models, 10 runs of 10-cross
validation (a total of 100 simulations) were applied to
each configuration. Under the 10-cross validation scheme,
a dataset is shuffled randomly and is split into 10 equal
groups. At a time, each group is taken as a test group whereas
the rest of the nine groups are fitted into the model (acts as
training data). This way each group is assigned to testing set
once whereas it is assigned to training set 9 times. In the
end, the results of 10 rounds were averaged to estimate the
predictive accuracy of each model. The prediction accuracy
results are shown for each DM algorithm with four configu-
rations in the JAVA and Python courses in table 2 and table 3.
Looking at the results, we observed that the accuracy of ANN
and RF models was the highest in both the courses whereas
the MCLR model showed inferior accuracy. As expected,
the Model 1 in both courses achieved the highest accuracy.
The predictive accuracy of all the model decreases as we
remove the module 3 performance score (Model 2) module
2 performance score (Model 3), and module 1 performance
score (Model 4). These results revealed that the intermediate
performance score plays an important role in increasing the
final grades and are directly correlated to it.

Besides module scores, it is important to know how much
other learning features affect the final grades i.e. what is
the weight/importance of other features in increasing the
final grades of m-learners. We used Random Forest (RF)
ensemble model to determine the weight of each feature
in predicting the final grades of M-learners. As compared
to other ML/DM models, RF gives better accuracy, robust-
ness, and control over under-fitting and over-fitting problems.
Looking at feature weights and importance helps in under-
standing the strength/weaknesses of M-learners during their
interaction with the M-learning system. Table 4 presents the
relative importance of independent features in percentage in
increasing the final grades of M-learners in the JAVA and
Python course. The result analysis revealed that modules
performance scores i.e. MP1, MP2, and MP3 overall have
38% (in JAVA course) and 43.4% (in Python course) impact
on learning outcomes ofM-learners which indicates that indi-
vidually these features are the most important and relevant
ones in increasing the final grades. Moreover, behavioral and
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TABLE 4. Features Relative Importance in the JAVA and Python Course in Percentage.

FIGURE 3. Short RF Tree for JAVA Course Important Features.

FIGURE 4. Short RF Tree for Python Course Important Features.

context features overall contribute 62.01% (in JAVA course)
and 56.53% (in Python course) in increasing the learning
behavior of M-learners. For instance, NTAQ (Number of
times attempted quiz) feature has 7.35% and 7.16% impact
on final grades in JAVA and Python course. Similarly, NTRA
(Number of times text resource accessed) feature has 7.25%
and 6.41% impact on final grades in JAVA and Python course.
We also noticed that TRR (Topic repetition rate) feature has
the lowest impact with 4.80% for the JAVA course and 4.08%
for the Python course which indicates that M-learners give
less importance to revising topic while they are using mobile
devices.

Figure 3 and 4 plot the best decision trees for the RF
algorithm. Again, the modules’ performance MP1, MP2, and
MP3 are the most important features appearing at the root of
the trees whereas less important features such as TRR, SPV,
NPP, ODGP, and NTAQ appears at the bottom of the trees.
MLmodels that identify the most important features has three
benefits. First, the ML model is easy to understand. Second,
the overfitting of the model is reduced with the reduction of
the variance of the model. Finally, the computational cost and
time are reduced when we are training the model.

VII. DEEP ANN MODEL EVALUATION
As the deep ANNmodel was deployed onmobile devices, the
next task that we performed was evaluating the performance
of the deep ANN model via accuracy, precision, recall, and
F1 score metrics [67]. Model evaluation delineates how well
is the model doing? Is it a useful model? How the model
performs on new data? How good the model predictions are?
Moreover, these measures help models in providing help and
adaptive content to the right person. For example, if the deep
ANN model is helping a low average M-learner, the model
must be sure that the M-learners it is helping has a low
average performance. Further, the model also wants assist to
all low average M-learners. The model is making sure that no
low average M-learner is ignored/missed while guiding low
average M-learners.

Figure 5a and 5b presents the confusion matrices gener-
ated for the JAVA and Python course datasets using numpy,
sklearn, and seaborn ML libraries. The confusion matrices
were generated after the deep ANN model training process.
The deep ANN model was fitted on 85% training set in both
cases whereas 15% data was allotted for the test set. The FG
(final grades) predictions were compared to test data and each
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FIGURE 5. M-learning Model Confusion Matrices.

prediction was identified as one of the 25 possible outcomes
of the confusion matrix.

The three main metrics selected for deep ANN model
evaluation are accuracy, precision, and recall. Accuracy is the
percentage of correct grade predictions made by the model on
the test data. Accuracy is calculated by dividing the number
of correct grades predictions by the total number of grades
predictions.

Accuracy =
Correct Grades Predictions

Total number of Grades predictions

Calculating the accuracy of the deep ANN model for the
JAVA and Python course confusion matrices gives the results
as shown at the bottom of the page.

Putting values from confusion matrix A into the above
equation yields

Accuracy (matrix A) =
2+ 9+ 10+ 5+ 23

57
Accuracy (matrix A) = 85.96
Now calculating accuracy for matrix B

Accuracy (matrix B) =
(3+ 7+ 9+ 7+ 25)

57
Accuracy (matrix B) = 89.47
For the JAVA and Python course datasets, we cannot solely

rely on accuracy metrics as the data is not balanced which
means that final grades (FG) are not distributed equally.
Increasing only the model accuracy is not enough, it should
also be useful, reliable, and valuable. If a small percentage
of M-learners (let’s say 1%) are getting F grade, we could
build a model that almost always accurately predicts whether
M-learners are getting passing grades or not, we would have

designed a model that is 99% accurate but 0% reliable and
useful. Therefore, we increase the performance of a model by
introducing other metrics such as precision and recall which
are discussed in the following section.

Precision is obtained by dividing true positive predicted
upon true positive predicted and false-positive predicted.

Precision =
True Positives

True Positives + False Positives

While calculating precision, first individual grade preci-
sion is obtained and then we calculate the average precision
of a model.

Precision (matrix A) =
TP

TP+ FP
P(A) = .66 P(B) = 1 P(C)

= .71P(D) = .62 P(F) = 1

AveragePrecision(matrix A)

=
P(A)+P(B)+P(C)+P(D)+P(F)

5
Average Precision (matrix A)

=
.66+1+.71+.62+1

5
Average Precision (matrix A)

= .80

Similarly, we calculate the precision of matrix B.

Precision (matrix B) =
TP

TP+ FP
Average Precision (matrix B)

=
P(A)+P(B)+P(C)+P(D)+P(F)

5

Accuracy (matrix A) =
True Positives+ True Negatives

True Positives+ False Positives+ False Negatives+ True Negatives

Accuracy (matrix A) =
TP+ TN

TP+ FP+ FN + TN
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P(A) = 1P(B) = .77P(C)

= 1P(D) = .87P(F) = .89

Average Precision (matrix B)

=
1+.77+1+.87+.89

5
Average Precision (matrix B) = .90

and in percentage it is = 90%
Calculating the recall of matrix A and matrix B yields the

following results.

Recall (matrix A) =
True Positives

True Positives+ False Negatives

First, individual grade recall is determined formatrix A and
then the average recall value is calculated for the model.

Recall (matrix A) =
TP

TP+ FN
R(A)=1, R(B)= .64, R(C)= .83,

R(D) = .83, R(F)=1

AverageRecall (matrix A)

=
R(A)+ R(B)+ R(C)+ R(D)+ R(F)

5
Average Recall (matrix A)

=
1+ .64+ .83+ .83+ 1

5
Average Recall (matrix A)

= .86

In percentage the average recall = 86%
Next, the recall value for matrix B is calculated.

Recall (matrix B) =
TP

TP+ FN
First, individual grade recall for matrix B is determined and

then the average recall value is calculated for the model.

R(A) = .6, R(B) = 1, R(C) = .9,

R(D) = .7, R(F) = 1

AverageRecall (matrix B)

=
R(A)+ R(B)+ R(C)+ R(D)+ R(F)

5
Average Recall (matrix B)

=
.6+ 1+ .9+ .7+ 1

5
Average Recall (matrix B)

= .84

In percentage the average recall = 84%
Recall metric ensures that we are not overlooking few

M-learners who are getting low or high-performance grades.
Suppose if only 1% of M-learners are getting F grade and
99% are getting A, B, C, D grades then the model would
predict the grades of M-learners having A, B, C, and D with
99% accuracy. This means that the accuracy of the model is
99% and it is very likely that M-learners having F grades may

be categorized in higher grades. Recall metric ensures that
we are not overlooking those 1%M-learners having F grades.
On the other hand, the precisionmetric ensures that we are not
misclassifying too many M-learners as having F grade when
in fact they don’t. Thus it is very important to evaluate the
ML model in terms of both precision and recall metrics. The
last metric which we used to evaluate our ANNmodel was the
F1 score. F1 score maintains a balance between precision and
recall for the M-learning model. The equation for calculating
the F1 score is:

F1 score = 2 ∗
Precision ∗ Recall
Precision+ Recall

Calculating F1 score for matrix A and matrix B yields:

F1 Score (matrix A) = 2 ∗
.80 ∗ .86
.80+ .86

F1 Score (matrix A) = .82

In percentage, the F1 score for matrix A = 82%.
Similarly, we calculate the F1 score for matrix B

F1 Score (matrix B) = 2 ∗
.90 ∗ .84
.90+ .84

F1 Score (matrix B) = .86

In percentage the F1 score for matrix B = 86%
As the F1 score for matrix B is greater than the F1 score

of matrix A, this means that the model built on the Python
course dataset will give better results and will work well on
unbalanced datasets.

VIII. EARLY ENGAGEMENT EXPERIMENT
After training and testing the deep ANN-based M-learning
model, an early engagement experiment was performed on
those M-learners who achieved grade D and F in the JAVA
and Python course. The purpose of the early engagement
experiment was to determinewhether early engagement in the
learning process improves learning performance or not. The
total number of M-learners who obtained grades D and F in
the JAVA course were D = 52 and F = 146 whereas the total
number ofM-learners who obtained grades D and F in Python
course was D= 46 and F= 168. M-learners obtaining D and
F grades in the JAVA course were divided equally into control
(the control group for JAVA course M-learners, CJ = 99)
and experimental (the experimental group for JAVA course
M-learners, EJ = 99) groups. Similarly, M-learners obtain-
ing D and F grades in Python course were divided equally
into control (the control group for Python M-learners, CP =
107) and experimental (the experimental group for Python
course M-learners, EP= 107) groups. The early engagement
experiment lasted for one month where CJ and CPM-learners
were independent of early engagement and received normal
programming exercises and learning material. On the other
hand, the EJ and EP M-learners were intervened during their
learning process by providing them adaptive programming
content, motivational/adaptive messages, and adaptive navi-
gational paths. The M-learning model can help both new and
old M-learners in providing them adaptive help and making
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FIGURE 6. Performance Comparison of EJ and CJ Groups.

FIGURE 7. Perfomance Comparison of EP and CP Groups.

their learning self-paced. The M-learning model does not
have information about new M-learners but it has learned
from its experience/training about the features of different
M-learners. Based on its experience, the M-learning model
can guide new M-learners proactively and adaptively before
they give their final examination thus motivating and guiding
M-learners to increase their study performance. The EJ and
EP group M-learners were engaged in their learning process
through the following measures:
• Sending adaptive messages to EJ and EP M-learners
according to their M-learning preferences. The purpose
of sending adaptive messages to M-learners was to pro-
vide them adaptive learning material and support during
their M-learning process. Some examples of adaptive
messages are 1. ‘‘Please revise the earlier topics if you
want to study the new topic’’. This adaptive message is
provided to those M-learners who do not revise their
study. 2. ‘‘Please see chapter 5, 6 of Deital & Deital
book to know more about classes and objects in JAVA’’.
This message is sent to those M-learners who like read-
ing textbooks as oppose to watching educational videos
during their study.

• Sending motivational messages to EJ and EPM-learners
according to their M-learning performance. The aim
of sending motivational messages was to increase

M-learners’ motivation towards learning. Some exam-
ples of motivational messages are 1. ‘‘Continues poor
performance will put you in a ceased/relegation state’’.
2. ‘‘Programming is learned by doing it. Try to practice
programming exercise daily for at least 2 hours’’. 3.
‘‘Congratulations! You have improved your program-
ming skills and now you are in the top 10 in your
class’’. 4. ‘‘Please see the newly uploaded video by your
instructor on the Google Groups regarding exception
handling’’.

In motivational messages, the factors of fear, hope, and
suggestions were included in order to increase the M-learners
inspiration towards learning [68].

A. EARLY ENGAGEMENT EXPERIMENT RESULTS
After one month, the performance results of the 4 groups
were compared in pairs. The performance results of the CJ
group was compared to the performance results of the EJ
group. Similarly, the performance results of the CP group
was compared to the performance result of the EP group. The
results in figure 6 and 7 concluded that engaged M-learners
(EJ, EP groups) overall showed a better performance than
unengaged M-learners. These results revealed that early
engagement of M-learners through motivational and adaptive
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TABLE 5. End-User Computing Satisfaction (EUCS) Survey Result.

messages do motivate them in improving their learning per-
formance. Overall it was noticed that EJ group performance
was 7.78% higher than the CJ group in the JAVA course
whereas in Python course the EP group outperformed the CP
group by 8.64%.

B. ANALYZING M-LEARNERS CONTENTMENT THROUGH
EUCS INSTRUMENT
End-User Computing Satisfaction (EUCS) is a well-known
and frequently used instrument to measure the end-user con-
tentment and experience of using a software system [69].
End-user contentment/experience specifically includes soft-
ware application usefulness, user-engaging experience, soft-
ware ease of use, timeliness, software adaptively, and user
attitude towards using a software system. Several research
studies have introduced modified and customized versions of
the EUCS instrument but all versions focus on determining
end-users satisfaction about software systems after they have
used it [70], [71]. We used a modified version of the EUCS
instrument to elicit M-learners’ contentment after using
the M-learning system supported by the M-learning model.
Using the Google Form survey administration app, the EUCS
survey was conducted with 206 EJ and EP group M-learners.
Total 12 questions covering 6 dimensions of EUCS instru-
ment namely usefulness, engaging, ease of use, timeliness,
adaptiveness, and attitude towards using the M-learning sys-
tem were administered on EJ and EP group M-learners.
Five-point Likert-scale was used to measure M-learners’ sat-
isfaction toward using the M-learning system where 5 means
‘‘strongly agree’’ and 1 means ‘‘strongly disagree’’. Con-
sidering the assigned five-points on Likert-scale, the mean

M-learners contentment was set to 4 (agree) or greater, which
implies that overall the M-learners were satisfied with the
M-learning system and M-learning system did increase their
job performance. Table 5 presents 6 evaluation dimensions
of the M-learning system, corresponding questions and mean
score.

The response to questions 1 and 2 indicated that the
M-learning system along with early engagement measures
was successful in increasing the programming skills of
M-learners (m = 4.65, m = 4.54). The response to ques-
tions 3 and 4 presented that during the early engagement
experiment the M-learners were persuaded to take time to
learn computer programming (m = 4.23, m = 4.11). The
answer to questions 5 and 6 revealed that the M-learning
system was user-friendly and easy to use during its interac-
tion with M-learners (m = 4.51, m = 4.45). Similarly, the
response to questions 7 and 8 indicated that the M-learning
system considered M-learners preferred learning time and
delivered help and studymaterial accordingly (m= 4.43, m=
4.55). Likewise, the riposte to questions 9 and 10 showed that
the M-learning system was successful in delivering adaptive
and tailored learning content/guidance to M-learners accord-
ing to their learning behavior and performance (m = 4.34,
m = 4.56). Lastly, the response to questions 11 and 12
specified that the M-learners agreed to use the M-learning
system or similar type of systems in the future to increase
their programming skills (m = 4.14, m = 4.23).

IX. CONCLUSION AND FUTURE WORK
In this research study, we developed and proposed
the M-learning model which when integrated with the
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M-learning system provides an adaptive learning experience
to the M-learners. For developing the M-learning model,
we first trained it on 85%M-learners features data, generated
while M-learners were taking the JAVA and Python course.
When tested on 15% test-size data, the M-learning model
classified M-learners into A, B, C, D, and F grades with
85.96% accuracy for the JAVA course and 89.47% for Python
course. Moreover, the M-learning model achieved 80% pre-
cision, 86% recall, and 82% F1 score for the JAVA course
whereas it achieved 90% precision, 84% recall and 86% F1
score for the Python course.

For determining the weights of M-learners’ features,
we used the Random Forest (RF) ensemble method. Results
revealed that modules performance score i.e. MP1, MP2,
and MP3 contributes significantly in predicting the final per-
formance of M-learners. Moreover, behavioral and context
features such as NTAQ, NTRA, AST, and NPP also plays a
significant role in performance prediction.

When compared with 5 baseline multi-class classification
models, we noticed that the deep ANN-based model outper-
formed others by predicting M-learners’ grades with more
accuracy. We noticed that the closest multi-class classifica-
tion model with the deep ANN model in terms of prediction
accuracy was RF.

This study also determines the effectiveness of the
M-learning model in early engagement/intervention of M-
learners. The early engagement process can help university
administration and instructors in providing timely guidance,
support, and counseling to the learners. Generally, traditional
classroom settings and virtual learning environment (VLE)
follows a one-size-fits-all approach where it is very difficult
for the institute and instructors to know the exact needs
and problems of the individual learners. On the other hand,
mobile devices andM-learning features can help institute and
instructors in knowing learners’ performance state, prefer-
ences, needs, and problems. Moreover, M-learning features
can help the institute in formulating helping committees for
learners’ timely support and provision thus increasing their
overall productivity and maintaining their decorum.

These results demonstrate the effectiveness of our pro-
posed M-learning system in predicting M-learners’ perfor-
mance and determining significant features with high impact
on learning outcomes. Our predictive models are useful for
institutions in formulation of a proactive analytics model, that
supports their decision-making process. In future, we intend
to incorporate additional deep learning algorithms such as
Long Short-Term Memory (LSTM), Recurrent Neural Net-
work (RNN), Self-Organizing Maps (SOMs), etc. in training
and testing our M-learning model with the aim to increase the
accuracy and bring more improvement in the effectiveness of
M-learning model. In this research study, 374M-learners par-
ticipated in using the M-learning system and took the JAVA
and Python course. The number of M-learners was kept low
as the programming courses were delivered on their mobile
devices. We intend to increase the number of M-learners by
integrating theM-learningmodel with LearningManagement

System (LMS) in the future. We hope that increasing the
number of M-learners and their corresponding features will
help in improvement of accuracy and effectiveness of our
M-learning model because the deep learning algorithms pro-
duce better results on larger dataset containing hundreds of
features and dimensions.
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