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ABSTRACT With the development of marine economy, more marine applications emerge leading to more
deployed sensors and more generated data. However, current marine Internet only provides low transmission
rate constrained by limited communication resources and bad transmission environment. How to efficiently
use these resources and guarantee quality-of-service (QoS) of applications need to be addressed. This paper
proposes an online optimization resource management algorithm to improve the communication resource
efficiency with guaranteed QoSs for different applications. This algorithm needs neither of the resource cost
function nor QoS constraint function at the resource scheduling node. Furthermore, the gradient information,
which is usually needed in learning strategies, is not required either. Instead, this algorithm performs
resource management of both computation and communication resources in each time slot only based on
the observation of the last time slot. With slot-by-slot resource allocation, the communication cost can
be minimized to be suitable for maritime scenarios. In the meantime, a long-term delay constraint can
be satisfied. Results show that the proposed algorithm achieves the goal of reducing communication cost
while guaranteeing the delay-constraint of different applications. Although more computation resources will
improve its performance, this algorithm still can obtain theminimized cost given a low computation resource.

INDEX TERMS Online resource management, data feedback, edge computing, maritime communications.

I. INTRODUCTION
As the increase of human marine activities, more under-
water devices are deployed such as various kinds of sen-
sors and autonomous underwater vehicles (AUVs) for dif-
ferent applications such as fish monitoring, detection and
safeguard [1]–[3]. The detected information of underwater
devices is usually collected by devices at the edge-layer of the
marine Internet such as buoys, ships, marine observation plat-
forms and cellphones [4], [5]. These devices feed collected
data back to remote data centers via wireless Internet access
layer devices such as base stations (BSs), access points (APs)
and satellites [6], [7]. Different from terrestrial communica-
tions, maritime communications are usually suffered from
harsh environment and lacking infrastructure. As a result,
the maritime communication channel is usually with low
capacity. For example, the transmission rates of leo-Internet
of things (IoT) satellite and automatic identification sys-
tem (AIS) are usually tens of kHz to hundreds of kHz. For
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Wide-band techniques such as the fourth-generation (4G) cel-
lular techniques andWiFi, the coverage is usually small com-
pared to the required coverage of maritime communication
scenarios. When integrate wide-band techniques into mar-
itime communications, communication resources are mainly
used for extending the coverage [8].

To realize the feedback of booming data to application
users with very limited maritime communication resources,
a useful tool is resource management, which can appro-
priately adjust available communication resources such as
transmission time and frequency bandwidth to different appli-
cations or users. Most of resource management schemes are
designed for terrestrial Internet such as cellular networks
and wireless local area network (WLAN). Some of the lit-
erature is based on coloring-graph algorithms. For example,
in [9], authors use a vertex list-coloring graph for formulat-
ing the bandwidth allocation problem of multi-cells. A dis-
tributed coloring algorithm is proposed to maximize the use
of the resources and try to keep fair among nodes. In [10],
an interference graph is utilized to describe the sub-band
allocation problem. To guarantee that any two neighbor
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device-to-device (D2D) users cannot use the same resources,
an interference-degree based resourcemanagement algorithm
is proposed. Similarly, the resource management problem of
small cells are also considered based on list-coloring graph
in [11]. Part of literature is based on the game theory. In gen-
eral, via the aid of the game model, resource management
decisions are regarded as actions of players, where resources
such as power [12], sub-channels [13], spectrum [14] and
transmission modes are allocated to maximize the utility or
minimize the cost. Another method is based on the auction
theory, which is a process of resource allocation and price
discovery. For example, in [15], the sleep scheduling decision
of BS is made base on auction. In [16], user association
and scheduling problems in multi-cell multi-user multiple
input multiple output (MIMO) networks are also determined
by using auction and pricing. As the development of artifi-
cial intelligence (AI) and machine learning, some researches
begin the study of utilizing AI for resource management.
With the aid of AI, implicit characteristics such as commu-
nication channels, user demands and user distributions can
be predicted. For example, in [17], the resource allocation
strategy is formulated as a joint optimization problem with
content caching. Then the decision on how to allocate the
dynamic resources is performed by a deep learning approach.
In [18], bacteria foraging algorithm is utilized to select the
most appropriate combination of resource blocks for small
cell users. In addition, some reinforcement learning methods
such as Q-learning [19], [20] and multi-armed bandit (MAB)
[21] are also utilized to improve the performance of resource
management.

For maritime communications, most of common resource
management schemes are designed for underwater networks.
For example, in [22], time resources are determined optimally
to maximize the overall channel utilization while preserv-
ing flow limitation and maintaining fairness for underwater
networks. In [23], a spatial reuse resource allocation scheme
is presented for underwater acoustic networks. This scheme
schedules communications so as to avoid destructive col-
lisions. In [24], authors propose a genetic algorithm (GA)
based scheduling scheme to maximize the available band-
width at each transmission period and satisfy the transmission
requirements of both periodical and event-triggered infor-
mation for the AUV. In [25], authors consider multi-hop
underwater acoustic sensor networks suffering from low
throughput caused by unreasonable bandwidth allocation.
They propose a distributed traffic-based scheduling method
to optimize the bandwidth allocation by letting the older
packet be transmitted preferentially. In [26], the downlink of
an underwater sensor network (USN) is considered, a joint
sub-carrier allocation and bit loading algorithm is proposed
to achieve identical data rate for each node in the USN while
satisfy a targeted bit error rate.

As the development of underwater IoT, the amount of
feedback data rapidly increases. This feedback problem is
different with that of terrestrial internets and underwater
internets due to following reasons. Compared with terrestrial

internets, the communication bandwidth of over-water mar-
itime internets is very limited, which restricts the feedback
of abundant collected data at edge nodes. In addition, the
feedback of data is affected by many parameters and the
affecting function is difficult to obtain due to the complication
of marine environment and the lack of appropriate general
channel models. Compared with underwater networks, the
edge nodes of network usually have stronger computation
ability and computation energy, which is more suitable for
performing edge computation. Due to the above differences,
the problem formulation, constraint, target and available
resources will be different with that of terrestrial internets and
underwater internets. Under this situation, how to effectively
schedule available resources at the edge node to improve the
feedback efficiencywith limited resources is still a problem to
be solved. Considering some learning methods have natural
advantages to solving problem without explicit functions,
more strategies are provided to solve tough problems based
on learning methods, such as MAB, Q-learning, natural net-
works, Support VectorMachine and ect.. In this paper, wewill
solve the resource scheduling problem of maritime data feed-
back based on the bandit learning method. Relative to exist-
ing resource management work, we consider the quality-of-
service (QoS) requirements of different applications instead
of that of individuals to design an appropriate resource man-
agement approach for the successful delivery of packets of
different applications. Furthermore, computation resources
are jointly scheduled to make the best of edge computation
and minimize the communication cost. More importantly,
assumptions on the acquisition of cost function and QoS
constraint function are relaxed, which do not need to know
many parameters about the network such as communication
channels, computation patterns, network topology, and etc..
As a result, the operability and practicality of resource man-
agement can be improved. In addition, our proposed algo-
rithm is online, which makes resource management only be
based on the information of the last time slot. Thereby, it is not
only having low overhead cost but also adjusting the resource
management according to the communication environment
and available resources dynamically. The remainder of this
paper is organized as follows. Section II provides system
model followed by the problem formulation of resource allo-
cation. Section III proposes an online resource management
scheme for data feedback with different QoS requirements.
Section IV presents several numerical results to evaluate the
proposed scheme and Section V concludes this paper.

II. SYSTEM MODEL
The notations and symbols used in this paper are listed in
Table 1.

A. A MOTIVATING APPLICATION
This paper is motivated by the inconvenience and inefficiency
of detection information feedback for maritime applications.
For example, offshore aquaculture usually deploys sensors
and cameras under water or on the water platform to monitor
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FIGURE 1. An example of maritime communication scenario.

TABLE 1. Symbols and Notations.

the situation of fish and avoid steal. However, it is very chal-
lenging for the edge node such as mobile phone and leo-IOT
satellite with high latency, limited communication resources
and finite computation capacity to feed enormous data back to
farming enterprises. The current available approaches in prac-
tice are mainly reduced to three folds: i) feedback through
leo-IOT satellite, which compresses video into low-pixels
pictures and transmits them with several kHz rate, ii) feed-
back through existing infrastructure or opportunistic net-
works such as buoys or passing ships with uncertainty or
high latency, and iii) send people to task locations for get-
ting collected data back through 4G for nearsea aquaculture.

In balance, the disadvantages of all above methods can be
attributed to limited communication resources with low trans-
mission rate and high latency. On the other hand, applications
have different QoS requirements such as delay constraints.
Some applications cannot tolerate such high latency espe-
cially for safety detection data.

One promising solution to the challenges is to compute
some data at the edge node and appropriately schedule
resources for each application. Meanwhile, take the fact that
some applications have low-latency requirements into con-
sideration. Since the maritime communication environment
is complicated and there is few accurate channel modeling
for maritime communications, it is better to perform resource
management without explicit distribution expresses of chan-
nels, cost and constraint. In addition, it is necessary for the
edge node to make real-time resource management decisions.
It is expected that the decisions are made based on less
overhead and information exchanges.

B. NETWORK MODEL
We consider a maritime communication network where
underwater devices are deployed for monitor, detection and
other applications (see Fig. 1 as an example). We focus on the
feedback of collected data of an edge node such as buoy and
ship, which collects data from nearby underwater devices.
Underwater devices generate streams (a stream is the entity to
which the QoSs are offered. It is a sequence of packets from a
transmitter to a receiver) of different applications during our
observation period T . Usually, the value of observation period
value T of learning schemes is scenario related, which can be
set based on cost and constraint requirements or empirical
values. For example, we can use the value of one or multiple
delay-QoS constraints here for the value of T . In addition,
it can be optimized to maximize utility or minimize cost.
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Similar to popular communication techniques such as WiFi
and 4G, the transmission period is time slotted.We use a Pois-
sonmodel to characterize the distribution of data generated by
different applications, i.e., the arrival of application i follows
Poisson distribution with rate γi. Different applications have
different QoS requirements. For streams of K applications
in the observed time slot t , the QoS requirements here use
delay constraint as an example. Before feeding these data
back to the data users, edge node may pre-process them to
compress and reduce the data amount. However, the compu-
tation capacity of edge node is constrained leading that the
compression of data usually experiences high latency, which
may incur the violation of delay constraint. Thus, before
discussing resource manage, we model resources at the edge
node in the next subsection.

FIGURE 2. An example of two applications and their resource allocation.

C. RESOURCE AND COST MODEL
Fig. 2 gives an example of resource allocation. The available
resources at an edge node include communication resources
and computation resources. For the data transmission, the
edge node can allocate different frequency bandwidth to
different applications with total bandwidth B (t) at t . Before
the data transmission, the edge node also can allocate dif-
ferent computation resources to different applications. For
application i, given the amount of transmission data li and
allocated bandwidthBi, the transmission tim and computation
time can be determined. For example, as shown in Fig.2,
application 2 is allocated with two computation process units
while application 1 is allocated with one computation process
unit. On the other hand, application 1 is allocated more fre-
quency bandwidth than that of application 2. Here application
1 and 2 use 2 and 1 time slots for computation, respectively.
In addition, application 1 and 2 use 1 and 2 time slots for
data transmission, respectively. Since we do not constrict the
processing and transmission to a time slot, the data processing
and transmission which arrive at time slot t also can be
processed and transmitted at time slots after t . However,
the decision still can be made slot-by-slot. This assumption
is made sense due to following reasons. We can know the
amount of data computed and transmitted during slot t . Since
the communication rate (like 4G) and computation rate is

constant, the time used by communication and computation
for data arriving at t can be derived. Thus, we can make
decision at t+1 based on the information obtained at t without
waiting for the accomplishment of transmission and compu-
tation. With allocated bandwidth {B1 (t) ,B2 (t) · · · ,BK (t)}
at t for K applications, the communication latency of i is

dcoi (t) = li (t) /h0 (Bi (t)) , (1)

where li (t) is the amount of i after compression and
h0 (Bi (t)) expresses the transmission rate with bandwidth Bi.
Here we do not specify a channel modeling for both of

large-scale fading and small-scale fading since common mar-
itime channel model such as physical models and stochastic
models [27] are scenario-specified. The accuracy of these
models is heavily discounted. Instead, we leave the channel
model to be unknown and use learning method to provide a
universal solution for the given optimal problem in this paper
without being constrained by a specific channel model.

The compression of packets depends on the computation
resource. As stated in [28], the computation cost is related
to circuits, CPU frequencies, CPU cores, and memory sizes,
which make different nodes have different computation abil-
ity. Given the circuit configuration of edge node, the amount
of allocated computation resources leads to different com-
pression ratio of data. Denote the allocated computation
resources of i to be Pi (t), the compression ratio ηi is a
function of Pi (t), h (Pi (t)). We do not specify the concrete
expression of h, which will not affect our following analyses.
With the compression, the amount of i can be written as

li (t) = Li (t) ∗ ηi = Li (t) ∗ h (Pi (t)) , (2)

where Li is the amount of new arrived data of application i at
slot t before compression. We do not assume that the stream
size is restricted, i.e., the finished stream in one slot can be
fractional, such that the delay computation does not need to be
restricted in one time slot, which is more suitable for practical
cases.

Let di (t) denote the delay of i arriving at t , which includes
communication delay (including scheduling delay here) and
computation delay. As shown in (1), the communication
delay is a function of Bi (t) and li (t). In addition, as shown
in (2), li (t) is a function of Pi (t). Then, the communication
delay can be expressed by a function of Bi (t) and Pi (t),
say, dcoi (t) = z1 (Bi (t) ,Pi (t)). The computation delay is a
function of Pi (t), which is expressed as d

cp
i (t) = z2 (Pi (t)).

Thus, the total delay is

di (t) = dcoi (t)+ dcpi (t)

= z1 (Bi (t) ,Pi (t))+ z2 (Pi (t)) , (3)

which is dependent on resource management decisions made
in each slot.

D. PROBLEM FORMULATION
Intuitively, in order to reduce consumed communication
resources, processing streams as many as possible will be
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beneficial. However, the QoS of applications (such as delay
requirements, data rate and successful delivery probabil-
ity) are different and computation resources are limited.
To make full use of maritime communication resources,
resources are managed at each slot in our scheme. The
slot length can be optimized for different scenarios which
is out of our scope and is fixed to be a constant in our
work. At the beginning of each slot, edge node can col-
lect new arrival application data, and determine the resource
allocation for them. Denoting the resource allocation action
set as xt , it consists of the allocated computation and
communication resources for each application, i.e., xt :=
{B1 (t) ,P1 (t) , · · · ,Bi (t) ,Pi (t) , · · · ,BK (t) ,PK (t)}.

The object here is to minimize the average communication
cost per stream. That is, the following cost

f (xt) =
T∑
t=1

K∑
i=1

Bi (t) /Li (t) , (4)

is targeted to be minimized.
Since there is a trade-off between computation delay and

communication delay, and the total delay of an application
is affected by both of them, the sum of computation delay
and communication delay should be constrained to guarantee
the QoSs of applications. Although data arrived in a time
slot may experience different time slots for transmission and
computation, the computation and communication time can
be known based on information obtained at the time slot
t . Then, in t + 1, the learner can make a new decision
based on these time delay and cost information obtained
in t . Thus, the online total delay can be obtained slot by
slot. The delay-constraint of each application can be written
as D0 =

{
d01 , . . . d

0
K

}
. Denoting the constraint function as

gt (xt) =
{
g1t (xt) , · · · , g

i
t (xt) , · · · , g

K
t (xt)

}
, the instanta-

neously considered constraint is not necessarily equal to the
QoS threshold. Instead, a long-term constraint is common
to ensure that the cumulative amount of QoS metric is no
larger than the threshold at the edge node over time, i.e.,∑T

t=1 di (t) ≤ d
0
i . The long-term constraint can be expressed

by (5), where git (xt) is the constraint of i. Given the total
resources of applications at an edge node, the choice of
resource allocation of different applications will affect with
each other. That is, the choice of Bi (t) and Pi (t) will be
affected by the value of Bj (t) and Pj (t) for all i 6= j. Thus,
here the constraint of each application is a function of action
set xt .

T∑
t=1

git (xt) =
T∑
t=1

di (t)− d0i ≤ 0 for i = 1 · · ·K . (5)

III. ONLINE RESOURCE MANAGEMENT ALGORITHM
We target to realize online resource management, in which
the edge node can determine resource allocation dynamically
based on available resources, requirements of applications,
prior cost and constraints. With the action set xt , the resource
allocation decision of i is determined, which is denoted by xi.

With this allocation, the cost and constraint of application i
at t can be obtained after the transmission from the following
expressions,

ft (xi) = Bi (t) /Li (t) , (6)

and

git (xi) = di (t)−
d0i
T

= z1 (Bi (t) ,Pi (t))+ z2 (Pi (t))−
d0i
T
. (7)

Of course, we can use other metrics for ft (xi) and git (xi),
while the methodology illustrated follows will be similar.
Clearly, the explicit expressions of Bi (t) and di (t) are
unknown to the edge node. Thus, we assume that the detailed
functions of both cost function ft and constraint functions
gt are unavailable. Only the values of functions at a queried
point are known since the edge node can observe the results of
data delivery after the resource allocation and transmission.
Although in our model, data may experience several time
slots for computation or transmission, resources also can be
allocated at the beginning of each slot based on the obser-
vation of the prior slot since the rates of transmission and
computation of a given stream is invariant after its resource
allocation.

For this problem, communication resources can be seen as
a player, and its allocation can be regarded as player action.
On the other hand, pre-process can be seen as an opponent,
and its allocation can be regarded as its action. Their different
actions lead to different results. However, they can only play
an action at a time slot and their actions can only refer results
observed from prior time slots. Thus, we can use online
learning to solve this problem, where the resource allocation
at each slot can be seen as an action set xt , which is decided
by the learning of prior cost. The optimization problem based
on above context is written as follows.

min ft (xt) =
T∑
t=1

K∑
i=1

Bi (t) /Li (t)

s.t.
T∑
t=1

z1 (Bi (t) ,Pi (t))+ z2 (Pi (t))− d0i ≤ 0

for i = 1 · · ·K . (8)

For the optimization objective ft (xt) in each slot with con-
straint gt (xt), this online optimal problem can be solved step
by step by using gradients of cost and constraint functions
when the full information of functions can be obtained [29].
That is, given the primal iterate xt , the decision of next slot
xt+1 is generated by

xt+1 = argmin
x∈X

OT
x Lt (xt , λt) (x− xt)+

1
2α
‖x− xt‖2 ,

(9)

where α is a pre-defined constant for adjusting step size and
X is the feasible set. Lt (xt , λt) is the online Lagrangian of (8),
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which can be expressed as

Lt
(
xt , λT

)
= ft (xt)+ λTt gt (xt) . (10)

The gradient of Lt (xt , λt) with respect to the primal vari-
able x at x = xt can be expressed as

OxLt (xt , λt) = Oft (xt)+ OT gt (xt) λt . (11)

Including (11) into (9), the minimization of (9) can be
written as follows (the detailed derivations can refer to
Appendix A).

xt+1 = 8X (xt + αOxLt (xt , λt))

= 8X

[
xt + α

(
Oft (xt)+ OT gt (xt) λt

)]
, (12)

where 8X (y) = argminx∈X ‖x− y‖2 denotes the projection
operator. In addition, the iteration of Lagrangian multiplier
can be written as

λt+1 = [λt + µ
(
gt (xt )+ OT gt (xt ) (xt+1 − xt)

]+
, (13)

where µ is a positive step size, and OλLt (xt , λt) = gt (xt) is
the gradient of the gradient of OλLt (xt , λ) with respect to λ
at λ = λt . [x]+ = max {x, 0}.

From (12) and (13), we can see that the player needs to
know the gradient of ft (xt ) and the constraint gt (xt ) at each
slot t to make the decision at t+1. However, the functions of
cost and constraints are unknown in our setup. Gradient-free
methods will be leveraged to tackle this problem. The key
idea here is using observations in t to estimate gradients.
In the online setting, the functions change gradually over
time and we only can evaluate each function once. Thus,
we use a one-point estimate of the gradient in this paper.
Different from stochastic gradient descent, stochastic gradi-
ent estimation evaluates gradient of all samples and estimate
gradient without knowing the function of optimal problem.
Intuitively, the performance of estimation will improve if
multiple evaluations are available per time slot. As indicated
in [30], the optimal is d + 1. But this increase of information
feedback will increase the overhead and delay. Although only
one feedback is used here, it is certified that this one-point
biased estimate is sufficient to approximate gradient descent
on the sequence of functions in [31]. In addition, simulation
results show that our scheme achieves similar performance
with that of the scheme knowing the gradient. Thus, we use
the value of ft (x) inquired at a single point x at a slot to
estimate the gradient. In detail, for a random unit vector u
with dimension d , and a small constant δ > 0, the derivative
of ft at x can be approximated by [30]

Oft (x) ≈
d
δ
Eu [ft (x+ δu)] . (14)

For example, for one-dimensional case (d = 1), (14) can
be simplified as

Oft (x) ≈ Eu
[u
δ
ft (x + δu)

]
=

ft (x + δ)− ft (x − δ)
2δ

. (15)

Since the constraint function in our setup is also unknown,
the gradient of constraint is similarly obtained by

Ogt (x) ≈
d
δ
Eu [gt (x+ δu)] . (16)

Based on (14) and (16), (12) can be approximated as

xt+1

=8βX

{
xt+

αd
δ

{
Eu [ft (x+δu)]+ETu [gt (x+δu)] λt

}}
,

(17)

where β ∈ [0, 1) is a pre-selected constant depending on δ
(see Appendix B) and βX is a subset of X. From (17), we see
that the actually inquired point is yt = xt + δut .

Similarly, we can obtain the recursion of Lagrange factor
as

λt+1 =

[
λt +

dµ
δ
ETu [gt (x+ δu)] (xt+1 − xt)

]+
. (18)

Based on (17) and (18), the player actions can be deter-
mined sequentially. Particularly, in our resource management
problem, the steps of bandwidth and computation are as
follows, where Bt and Pt denote communication resource
allocation set and computation resource allocation set at slot
t , respectively.

Bt+1

=8βX

{
Bt+

αd
δ

{
Eu [ft (Bt+δu)]+ETu [gt (Bt+δu)] λt

}}
,

(19)

and

Pt+1

=8βX

{
Pt+

αd
δ

{
Eu [ft (Pt+δu)]+ETu [gt (Pt+δu)] λt

}}
.

(20)

The detailed proposed resource management algorithm
based on above analyses is listed in Table 2, which is per-
formed on the edge node. It shows that the online method
of allocating resources, which minimize the communication
cost with guaranteed QoSs of different applications. In the
proposed online resourcemanagement scheme, resource allo-
cation is performed at the edge node slot by slot to assign
appropriate computation and communication resources to
data of different applications collected by the edge node.
To achieve this goal, edge node firstly selects a random
slot as the first time slot, and the edge node will randomly
select primate values of allocated computation resource and
communication resource. Then the transmission delay and
communication delay can be obtained based on the amount
of transmitted data and computed data during the observed
time slot. These time delay and occupied resources will be
treated as cost and constraint, which will be used for making
decision in the next time slot based on (19) and (20). When
the data process ability and communication ability change,
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TABLE 2. Resource Management Algorithm.

the edge node can observe them from prior slots, and then the
edge node updates them for the following cost and constraint
calculation. With step by step resource allocation as shown in
step 6, the online optimal problem is transferred into offline
minimization problem, i.e., calculating allocated resources
only with the aid of the result of resource allocation at t .
It does not need the future information although it tries to
obtain a guaranteed long-term QoS.

The offline minimization problem can be seen as the least
distance problem (LDP) and its solution is listed in the
Table 3 [32].

TABLE 3. Least Distance Problem Solving Steps.

When ψ = F, it expresses that there is no solution to
the current constraint. Otherwise, set ψ = T. The solution
of ŵ can be calculated by steps listed in the Table 4 [32],
which gives a solution of non-negative least squares (NNLS)
problem as follows.

min ‖Ax− e‖

s.t. x ≥ 0. (21)

Until now, the resource management problem is solved.
However, it is not clear the degree of the constraint satisfac-
tion. In some practical scenarios, delay guarantee is impor-
tant, e.g., safety detection. To evaluate the degree of constraint
satisfaction, fit metric is usually used [33], which measures
the accumulated violation of constraints, and is defined as
follows.

FitT =

∥∥∥∥∥
T∑
t=1

gt (xt)

∥∥∥∥∥ . (22)

From the definition, we can see the smaller FitT is, the
constraint violation is smaller. Inspired by the classic online
convex optimization framework of Zinkevich [34], the online
optimal problem with constraint is solved step by step here

TABLE 4. Non-negative least squares Solution.

by using estimated gradients of cost and constraint functions.
The essence of this optimization method is transforming the
optimal problem of observed period T (shown in (8)) into
the optimal problem of each time slot (shown in (9)) as
proved in [29]. Byminimizing the right-hand of (9), the action
decision of next time slot t + 1 will be executed towards the
goal of minimizing the gap between the optimal action and
the actual action for the optimal problem with guaranteed
constraint in (8). The guarantee of long-term constraint of (8)
is then embodied in the online Lagrangian function (shown
in (10)) of the right-hand of (9), which makes accumulated
violation of constraints be less than QoS requirement during
period T . Thus, here the long-term constraint is satisfied for
each element

∑T
t=1 gt (xt) ≤ 0 instead of constraint in each

slot.
Since the proposed scheme is a central scheme per-

formed at the edge node, which determines the allocation
of its resource pool to different applications, there is no
data exchange between nodes for the information obtaining.
Instead, the edge node only observes the QoS satisfaction
degree and cost value without extra communication overhead.
In order to perform the resource allocation scheme, the edge
node should pay computation cost on it. Next, we analyze
the computation cost occurs in the process. For each slot,
the edge node firstly determines action (resource allocation)
based on iteration value, the computation time of which is
O(K ). Then, the cost value and constraint value are collected
by the edge node. Then, the edge node updates dual variable
with computation time O(K ). Lastly, the edge node updates
iteration values with computation times O(K ) + 3(LDP),
where 3(LDP) is the computation time of LDP. For the last
step, the update of iteration values are calculated based on
the computation complexity of LDP, i.e., 3(LDP). From the
solution step in table 3 and table 4, we see that the compu-
tation complexity of LDP is O(K ). Thus, the all computation
time complexity is O(K ), which has linear complexity.

IV. NUMERICAL RESULTS
To evaluate the proposed scheme, we give some numeri-
cal results in this section. We consider 5 applications with
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different delay constraints which will be processed and
relayed by the edge node. The delay constraints vary with
different applications [35]. For example, for UMTS, the min-
imum delay constraint of conventional class traffic is 100
ms, that of stream class traffic can be 300 ms, and that
of Interactive class traffic can be longer. For time sensitive
application, the delay constraint will be 1 millisecond or
more shorter [36]. Here the delay constraints are randomly
selected from [0.5, 500]ms unless specified. The time slot
(a resource allocation period) unit here is 10 milliseconds,
which includes 10 frames (in practice, a frame usually lasts 1
millisecond [37]). The observation time is 1000ms, which is
100 resource allocation periods. If not specified, the arrived
data of application i follows Poisson process with γi = 1000∗
i. The available resources of edge node are B = 104 and
P = 8000, with the transmitted data and processed data
per unit resource are 1 and 10, respectively. The observation
time T = 1000 ms, and the step size µ = α = 0.05/T .
In this simulation, the observation time, resources and ability
(that of communication and computing) of edge node here
are only an example, the unit and amount of which can be
adjusted for different scenarios. For example, for shore-based
AIS networks, the unit of available bandwidth is kHz, the unit
of delay constraint of safety detection can be several minutes
while that of the ordinary video can be from several minutes
to hours.

FIGURE 3. Cost comparison based on different resource management
schemes.

Fig.3 compares the average cost of each slot for the pro-
posed scheme, uniform scheme where resources are allo-
cated equally to streams of each application, and random
scheme, where resources are allocated randomly to streams
of each application. In this figure, the unit of time is the
number of resource allocation periods (RAPs) and the unit
of cost is Hz/bit, respectively. From this figure, we can
see that the proposed scheme largely reduces the average
cost compared to other two schemes. At some burst points
(the amount of data increases in some slots), the propose
resource management can also keep lower cost. The cost of
random scheme increases significantly at some points since

it allocates resources at random, leading to less allocated
resources to high-requirement streams. However, the pro-
posed scheme can adjust resources based on their require-
ments based on the cost of last slot.

FIGURE 4. Cost comparison among proposed scheme, IDE-based scheme
and gradient-based scheme.

In Fig.4, the proposed scheme is compared with other
relatedworks. Since there are fewworks considering the same
problem, we select similar works for comparison here. One
is a recent work [38], which considers the optimal allocation
of computation resources and proposes an improved differ-
ential evolution (IDE) method for resource allocation (called
IDE-based scheme here). In addition, gradient-based scheme
is also compared here as an upper bound [39]. From this
figure, we see that the cost of these schemes is low com-
pared those lower bound scheme such as random scheme and
uniform scheme. Although the gradient information cannot
be obtained, the proposed scheme performs nearly to the
gradient-based scheme. Compared to IDE-based scheme, the
computation complexity of proposed scheme is lower while
the performance is better.

Before introducing the edge computation to traditional
communication network, relay nodes usually play the act of
communication without computation. To evaluate the effect
of computation on the cost, Fig.5 compares the scheme with-
out computation (i.e., no compress scheme) and the pro-
posed scheme as well as uniform scheme. The computation
and communication resources are further enhanced to 3 ∗
107 to evaluate the effect of pre-process and the effect of
resource capacity. We can see that appropriately compression
is very useful for reducing the cost. Comparing Fig.3 to Fig.5,
we see that the proposed scheme is better when there is
enough computation ability. However, the proposed scheme
can also achieve the low cost although computation resource
is reduced.

Fig.6 evaluates the proposed scheme under different
parameters. From this figure, we can see that as the increase
of applications, the cost is only slightly increased. The step
size can affect the performance of scheme, as analyzed in
this paper. Large step size will destroy the astringency of the
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FIGURE 5. Comparison of different resource allocation schemes with no
compression scheme.

FIGURE 6. Comparison the proposed scheme at some different settings.

scheme. Thereby, appropriate selection of step size also can
improve the scheme.

The fit metric give in (22) is used for evaluating the
degree of constraint satisfaction. That is, low fit illustrates
that constraints of the optimization problem are well satisfied.
Thereby, to guarantee the delay-constraints, the fit metric is
expected to be zero. From Fig.7, we see that fit values of both
the uniform scheme and the proposed scheme are much less
than that of random scheme. However, the value is between
30 and 40 instead of near zero. The reason is that the fit
metric uses normalization in its definition. Although gi in
the proposed scheme is less than zero (i.e., satisfy the delay
constraint), its normalization value is larger than zero. For
more clearly show the comparison of delay satisfaction, Fig.8
shows the delay satisfaction probability in each slot. This
probability is the division between the number of applications
with delay guarantee and the number of all applications. It is
shown that the probability of delay guarantee of proposed
scheme is in close proximity to 1. Hence, it can provide the
low cost with guaranteed QoS requirements.

From Fig.9, we see that the probability of delay
guarantee of proposed scheme is similar to that of

FIGURE 7. Fit comparison based on resource management schemes.

FIGURE 8. Delay constraint satisfaction of different resource
management schemes.

FIGURE 9. Delay constraint satisfaction of proposed scheme, IDE-based
scheme and gradient-based scheme.

gradient-based scheme. However, the gradient-based scheme
needs gradient information which may be not acquirable
sometimes. For the IDE-based scheme, which also
needs no gradient information, its delay constraint can-
not be well guaranteed since it allocates resources to
minimize the cost without the consideration of delay
constraint.
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V. CONCLUSIONS
Motivated by challenges faced by the feedback of mass of
detected data for maritime applications, we study the rapid
online resource management approach without the informa-
tion of cost and constraint functions. It makes the implemen-
tation of resourcemanagement be easier. This scheme is more
appropriate for maritime scenarios since many parameters of
networking at the marine environment are difficult to obtain.
We explore the following efforts to realize the above merits.
Firstly, the information feedback problem is appropriately
modeled. Time is slotted for easily tackling decisions at each
slot. Streams of applications can be tackled and transmitted
without the constraint of time slot. Secondly, the online solu-
tion to the optimization problem jointly schedules compu-
tation and communication resources while guarantees delay
constraints. Last but not the least, with the aid of estimation
of gradients, we can allocate resources without explicit func-
tions of both cost and constraint, which is suitable for existing
maritime communication networks.

With the consideration on some powerful underwater
nodes, the proposed scheme can also be used for underwater
nodes by regarding them as edge nodes. With information
exchange among edge nodes and underwater powerful nodes,
this scheme can be further improved by appropriately allo-
cating the total computation resources and communication
resources of these nodes, which will be further considered
in the future work.

APPENDIX A
The proof generalizes the result in [29] with full-information
gradient feedback. Re-written the minimization problem as
follows.

xt+1 = arg minx∈XO
T
x Lt (xt , λt) (x− xt)

+
1
2α
‖x− xt‖2 . (23)

Let ATt = 2α2OT
x Lt (xt , λt), the minimization of (23) is

equal to minimizing the following equation. That is, xt+1 is
the optimal value of (24)

minATt x + α ‖x− xt‖2 , (24)

which can also be written as

xt+1

= arg minx∈X
{
ATt x+ α ‖x− xt‖2

}
= arg minx∈X

{
‖At‖2

4α
+ ATt (x− xt)+ α ‖x− xt‖2

}

= arg minx∈X

∥∥∥∥√α (x− xt)−
At

2
√
α

∥∥∥∥2
= arg minx∈X

∥∥∥∥x− (xt + At
2α

)∥∥∥∥2
= arg minx∈X

∥∥∥x− (xt + αOT
x Lt (xt , λt)

)∥∥∥2
= 8X (xt + αOxLt (xt , λt)) , (25)

which yields to (12).

APPENDIX B
Here we simply describe the principle to determine β. The
fundamental purpose of selecting these parameters is to min-
imize the communication cost. However, there is always a
gap (usually called as regret) between selected actions (deci-
sions) and optimal actions (decisions). Thus, it is expected the
smaller regret is, the better is. Let It = d

δ
ft (xt + δut)ut +

λt
d
δ
gt (xt + δut)ut , and then the iteration can be written as

xt+1 = 9βX (xt + αIt) , (26)

where α = νδ/d and ν is a constant. Since

‖It‖ ≤
dC
δ
= G, (27)

whereC is the bound of Lt (xt , λt ). By appropriate choice of ν,
we have α = R/G

√
T . Then the regret is bounded by RdC

√
T

δ
.

Integrating it to the regret expression, we can get the bound
of regret and the corresponding parameter values, i.e., δ =(
a2
bc

) 1
3
, β = 1 −

(
ab
c2

) 1
3
, where a = RdC

√
T , b = 6CT/r

and c = 2CT .
Here we do not give the concrete derivation of regret bound

since it is not our focus in this paper, which can be referred
to Theorem 1 of [30].
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