
Received June 10, 2020, accepted June 29, 2020, date of publication July 7, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007846

A Fast Multi-Objective Particle Swarm
Optimization Algorithm Based on a
New Archive Updating Mechanism
KHALIL ALKEBSI AND WENLI DU
Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai 200237, China

Corresponding author: Wenli Du (wldu@ecust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China through the Basic Science Center Program under
Grant 61988101, in part by the International (Regional) Cooperation and Exchange Project under Grant 61720106008, in part by the
National Natural Science Fund for Distinguished Young Scholars under Grant 61725301, and in part by the National Natural Science
Foundation of China under Grant 61703163.

ABSTRACT Multi-objective optimization has received increasing attention over the past few decades, and
a large number of nature-inspired metaheuristic algorithms have been developed to solve multi-objective
problems. An external archive is often used to store elite solutions in multi-objective algorithms. Since
the archive size is limited, it must be truncated when the number of nondominated solutions exceeds its
maximum size. Thus, the archive updating strategy is crucial due to its influence in the performance of the
algorithm. However, achieving a fast convergence speed while assuring diversity of the obtained solutions
is always a challenging task. In this paper, a novel multi-objective particle swarm optimization algorithm
based on a new archive updating mechanism which depends on the nearest neighbor approach, called
MOPSONN, is proposed. Two archive updating strategies are adopted to update nondominated solutions
in the archive, which are beneficial to accelerate the convergence speed and maintain diversity of the swarm.
The performance ofMOPOSNN is evaluated on several benchmark problems and comparedwith seven state-
of-the-art multi-objective algorithms, including four multi-objective particle swarm optimization algorithms
and three multi-objective evolutionary algorithms. The experimental results demonstrate the significant
effectiveness of MOPSONN in terms of convergence speed and spread of solutions.

INDEX TERMS Multi-objective optimization, particle swarm optimization, evolutionary algorithm,
crowded sorting.

I. INTRODUCTION
In many real-world optimization problems, the problem
involves two or more conflicting objective which need
to be optimized simultaneously [1]–[3]. Such optimization
problem is termed as multi-objective optimization prob-
lems (MOPs). Since there often exists a conflict between
the objectives, in which an optimal solution for one objec-
tive may be the worst solution for another. In other words,
improvement of the fitness of one objective is only possible
by acceptingweakness in the fitness of other objectives which
is referred as Pareto optimality. Therefore, MOPs can only be
described by a set of Pareto optimal solutions called as Pareto
front [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

Multi-objective optimization has received an increasing
attention over the past few decades, and a large number of
nature-inspired meta-heuristic algorithms have been devel-
oped to solve MOPs based on differential evolution (DE) [5],
genetic algorithm (GA) [6], particle swarm optimiza-
tion (PSO) [7], etc. It is worth mentioning that population
based meta-heuristic algorithms have been widely applied
to solve real-word MOPs since they can handle nonlinear,
multimodal and discontinuous problems. Among them, PSO
is a promising swarm intelligence technique that is inspired
by the behavior of birds and fish search for food. Due to it
easy implementation and fast convergence toward the global
optima, it has gained a great interest of researchers and has
been extensively applied to many single-objective engineer-
ing applications. The promising results obtained by appli-
cation of PSO in single-objective problems has proven its

124734 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6900-008X
https://orcid.org/0000-0002-2676-6341
https://orcid.org/0000-0001-8781-7993

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

effectiveness and efficiency [8]. Based on this motivation,
many studies have extended PSO to solve MOPs and numer-
ous of multi-objective PSO (MOPSO) algorithms were pro-
posed and achieved great success [9]–[15].

In order to apply PSO to solve MOPs, we must address
the following two fundamental issues. Firstly, how to
select global best solutions (leaders) to guide the swarm
search. As there is no single solution that outperforms all
other solutions in all objectives, thus many nondominated
solutions can be considered as candidates to be selected as
leaders. To accomplish this task, one must adopt a suitable
selection technique that take into consideration of solutions
diversity and convergence speed. It should be noted that a
suitable leader for one particle may not be suitable to oth-
ers. Therefore, in order to enhance the exploration of the
search space, it is advisable to a use competition technique
between random nondominated solutions to select leader for
each particle of the swarm. Secondly, how to keep balance
between convergence and diversity of particles. Since PSO
based multi-objective optimization algorithms have a fast
convergence speed, they are more likely to be trapped in
local optima [16]. Therefore, achieving balance between con-
vergence and diversity is crucial. Moreover, in the external
elitism archive based algorithms, the update strategy of the
archive has a great influence on search performance. Thus,
an efficient update mechanism is required to enhance the
search performance and maintain balance between conver-
gence and diversity.

To cope up with MOPs, numerous variants of MOPSO
have been extensively developed from different aspects. The
first category is to apply dynamic/adaptive mechanism for
parameter selection (e.g., inertia weight ω or acceleration
coefficients c1 and c2) in MOPSO and thus to keep balance
between convergence and diversity [17], [18]. The second
category is to incorporate multiple swarms to enhance the
search capability in multimodal landscapes [19]–[21]. In the
third category, the authors make use of hybridizing PSO with
other meta-heuristic algorithms to achieve balance between
global and local search [22]–[24]. The fourth category is to
enhance the ranking scheme of the algorithm, in which an
elitism archive is adopted to store elite solutions selected
by the ranking scheme, and these solutions are used as
candidates for leaders. Two representatives of this category
are preference order ranking [25] and global margin rank-
ing [9]. The last category is based on how Pareto fronts are
defined. This category can be roughly divided into two sub-
categories; the first sub-category determines personal best
and global best based on Pareto dominance [26]. The second
sub-category adopts the decomposition strategy to transform
MOPs into a set of single-objective problems SOPs, where
the single-objective PSO is directly applied to solve themulti-
objective problem [27], [28].

Although all aforementioned improvements on MOPSO,
there is still a need to apply a sufficient approach to select
leaders of the swarm. Due to the great influence of leaders
in the search direction and convergence speed, randomly

selecting leaders from the elitism archive may not effec-
tively enhance the search speed and also may cause the
algorithm to get trapped in local optima in complex multi-
modal landscapes [16]. Moreover, as most of domination-
based multi-objective optimization algorithms make use of
infinite external elitism archive to store nondominated solu-
tions found so far, the update mechanism of this archive is
crucial. When the archive reaches the maximum size limit,
in order to add new nondominated solution into the archive,
the nondominated solution in the archive need to be truncated
considering the convergence, diversity and spread preser-
vation [24]. Motivated by above mentioned, and to further
improve the convergence speed and diversity preservation of
PSO in solvingMOPs, we propose a novel variant ofMOPSO
based on a newly developed archive update mechanism,
termed MOPSONN. Moreover, to enhance the selection of
leaders we incorporate the pairwise competition inspired by
the recently developed competitive swarm optimizer [29].
The main contributions of this paper are as follows:

1) Vicinity distancemetric is suggested for the updating of
the external archive at the exploration phase. At the end
of each iteration, nondominated solutions are added
into the archive. When the archive exceeds it maximum
size limit, vicinity distance metric is used compare the
crowding of solutions in the archive and remove the
most crowded one. Then update the crowding of all
solutions in the neighborhood of the removed solutions
(i.e. all solutions whose crowding is changed after
removing a solution need to update according to vicin-
ity distance). This procedure achieves better diversity
and speared preservation in exploration phase.

2) Two new rules, Max-cost rule and Sum-of-cost rule,
are proposed for the updating of external archive at
exploitation phase. Max-cost rule is applied to the new
nondominated solutions before adding them into the
archive. This step is beneficial in maintaining only elite
nondominated solution in the archive. Thus, it increases
the convergence speed. After that, Sum-of-cost rule is
implemented to the two most crowded solutions in the
archive and remove the one with less total fitness value
(in a minimization problem). Similar to vicinity dis-
tance update procedure, all solutions whose crowding
distance is changed after removing a solution need to
be updated by calculating their distance to their new
closest solutions. By applying these two rules, we can
achieve better balance between convergence and
diversity.

3) A novel multi-objective particle swarm optimization
algorithm, called MOPSONN is proposed based on a
new archive updating procedure and pairwise competi-
tionmechanism. InMOPSONN, all elite nondominated
solution in the archive are preserved by means of the
proposed archive updating mechanism. Consequently,
MOPSONN has a significant convergence speed while
maintaining obtained solution well-spread along the
true Pareto front.

VOLUME 8, 2020 124735

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

The performance of the proposed MOPSONN is verified
using several benchmarks and compared with seven state-of-
the-art multi-objective algorithms, namely, four PSO based
multi-objective algorithms, SMPSO [30], dMOPSO [31],
MMOPSO [32] and CMOPSO [16], and three MOEAs,
NSGA-II [33], MOAED [34] and NSGA-III [35]. The exper-
imental results show that the proposed algorithm has the
ability to fast converge towards the true Pareto front in a
relatively small number of function evaluations. By contrast,
in many test functions, the compared algorithms fail even to
approach the true Pareto front in such number of function
evaluations.

II. RELATED WORK
A. PARTICLE SWARM OPTIMIZATION
PSO is a nature-inspired optimization algorithm introduced
by Eberhart and Kennedy in 1995 [36]. PSO was devel-
oped inspired by the social behavior of swarm of animals
like birds. In PSO, individuals are called particles and each
particle represents a potential solution. The swarm consists
of a set of particles which flies through the search space
searching for optimal solution, like birds in folks searching
for food. Let X i(t) = (xi1(t), xi2(t), . . . , xin(t)) and V i(t) =
(vi1(t), vi2(t), . . . , vin(t)) be the position and velocity of parti-
cle pi at time t in an n-dimensional hyperspace. Each particle
pi memorizes its historical best solutions as denoted by pbesti
and the best among all particles is acknowledged as global
best solution gbest . Each particle in the swarm is evolved
based on its own experience pbesti and the positional infor-
mation from the global leader in the swarm gbest to update
the position and velocity as defined by

V i(t + 1) = ωV i(t)+ c1r1(Xpbesti − X i(t))

+ c2r2(Xgbest − X i(t)) (1)

X i(t + 1) = X i(t)+ V i(t + 1) (2)

where ω is the inertia weight, t is the generation number, c1
and c2 are the learning factors of the personal best position
and global best position, respectively, and r1, r2 ∈ [0, 1] are
two random numbers [32].

B. EXISTING MOPSO ALGORITHMS
The first MOPSO variant was proposed by Coello et al.
in [37]. The authors incorporated the concept of Pareto dom-
inance into PSO to allow the algorithm to handle problems
with multiple objectives. In the algorithm, an external archive
was adopted to store nondominated solutions obtained in
each iteration as global best particles. In spite of the fact
that the proposed MOPSO algorithm has proven competitive
performance in solving MOPs in comparison with classical
multi-objective evolutionary algorithms (MOEAs) such as
PAES [38] and NSGA-II [33], it was unable to solve MOPs
with complex landscapes.

An improved PSO base multi-objective algorithm, called
OMOPSO, was suggested by Sierra and Coello Coello [26],
which uses Pareto dominance and crowding factor to identify

list of available leader solutions. Different mutation operators
were suggested for different sub-divisions of the swarm to
enhance the algorithm search capability. Moreover, the algo-
rithm keeps all nondominated solution obtained by the swarm
in an external archive and ε-dominance is used to fix the size
of the archive.

A speed-constrainedmulti-objective PSO algorithm, called
SMPSO, was presented by Nebro et al. [30], which uses a
procedure to limit the velocity of the particles by produc-
ing new effective particle solutions to handle MOPs with
multimodal landscapes. Furthermore, polynomial mutation
as a turbulence factor and an external archive are utilized
to collect the nondominated solutions obtained during the
search. As reported in [30], most of MOPSOs fails in solving
multi-frontal problems due to the fact that velocities in such
algorithms are too high. Thus, the speed constrains is and
effective approach to improve the performance of MOPSOs.

Motivated by the decomposition approach adopted in
MOEA/D [34], Peng and Zhang presented the first attempt to
embed the decomposition mechanism into PSO based multi-
objective optimization algorithms, called MOPSO/D [39].
The authors utilized the framework ofMOEA/D and replaced
the genetic operator with PSO search approach. An external
archive based on ε-dominance is used to keep all global best
particles of each SOP. An improved version of MOPSO/D
is presented by Moubayed et al, called SDMOPSO [40].
In SDMOPSO, global best is only picked from the neigh-
borhood of the particle and a crowding archive is adopted to
preserve diversity of swarm leaders.

Martinez and Coello Coello [31] also suggested a multi-
objective particle swarm optimizer based on decomposition
approach, called dMOPSO, in which global particles are
determined based on the scalar aggregated values. In the algo-
rithm, the particles are updated using global best particles.
Moreover, a memory re-initialization strategy is used when a
particle reaches a certain age. The main aim of this approach
is to preserve diversity and to avoid trapping in local fronts.
However, as reported in Moubayed et al. [41], dMOPSOmay
fail to cover the entire PF in some complicated MOPs due to
the absence of dominance relation.

A coevolutionary technique based multi-objective PSO
algorithm, called CMPSO, was proposed by Zhan et al. [21].
In the algorithm, each swarm is associated with only one
objective and an external archive is used to share informa-
tion between the different swarms. This technique aimed at
enhancing the diversity and avoiding local PFs. Moreover,
there are some PSO based multi-objective algorithms pro-
posed on basis of hybridization andmultiple search strategies.
A hybrid teaching learning based particle swarm optimiza-
tion, called HTL-MOPSO, was proposed by Cheng et al. for
solving MOPs [24]. The algorithm in [24] incorporates the
teaching learning approach with the PSO search approach
aiming at achieving good convergence and well-spread non-
dominated solutions along the true PF. The authors use
external archive along with circular crowded sorting to store
nondominated solutions obtained during the swarm search.

124736 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

Algorithm 1 Nearest Neighbor Distance
For each Ai ∈ A do

Compute Euclidean distance Dij between Ai and Aj, i 6= j

DNN 1
i = min (Di) ;

NNi = {j|Dij = DNN 1
i };

Attach DNN 1
i and NNi to Ai;

End For

In contrast to most existing MOPSO algorithms where the
particles are updated according to only one search strategy,
Lin et al. [32] proposed a MOPSO algorithm with multiple
search strategies, calledMMOPSO. InMMOPSO, two search
strategies are suggested to update the velocity of each particle
to enhance the convergence speed and maintain diversity.
The algorithm is based on decomposition approach in which
MOPs are transformed into a set of aggregation problems.

A recent MOPSO algorithm based on the competitive
swarm optimizer, called CMOPSO, is presented by Zhang
et al. [16]. The authors make use of a competitive mechanism
inspired by competitive swarm optimizer [29] to replace the
traditional velocity update equations of PSO. The selections
of leaders are performed on the basis of the pairwise compe-
titions performed in the current swarm at each iteration.

Based on the above, a multi-objective particle swarm
algorithm based a novel archive updating procedure and
pairwise competition is proposed to effectively enhance the
swarm convergence speed and diversity preservation in solv-
ing MOPs. A detailed description of the proposed algorithm
is presented in the following section.

III. THE PROPOSED MOPSONN ALGORITHM
In this section we describe the proposed algorithm
MOPSONN. The algorithm begins with random initialization
of all particles and an initial archive A is generated based
on Pareto dominance. The Euclidean distance between each
solution in A and its nearest neighbor is calculated forming
a distance vector Di for each solution in A. Each solution
is attached a value of its shortest distance to other solutions
DNN 1

i and the index of the corresponding neighbor NNi as
described in Algorithm 1. Thereafter, velocities and positions
of the swarm are updated according to equations (1), (2),
and leaders Xgbest are selected to guide the search in the next
generation.

A. SELECTION OF PERSONAL BEST AND GLOBAL BEST
In MOPSONN, the personal best position Xpbesti is updated
after updating the particle velocity and position using (1) and
(2) iteratively. If the new position Xnewi dominates Xpbesti,
it replaces the latter; otherwise the current Xpbesti is kept; if
neither of them dominates the other, then we randomly select-
ing one of them. For selection of leaderXgbest for each particle
in the swarm, we adopt the competitive mechanism proposed
in [29], which is consist of three main components, elite
particle selection, pairwise selection and particle learning.

FIGURE 1. Illustrative example of pairwise competition. a and b are two
random elite particles and p is the particle to be updated.

In our algorithm, all solutions in A are sorted in a descending
order according to their DNN 1

i . A predefined number of
particles γ is selected from the top particles of the archiveA to
form the elite setE . This step is supposed to preserve diversity
by guiding the search towards the less occupied regions.
After the elite particle set is created, pairwise competition is
performed to select a leader for each particle in the swarm,
in which two particles a and b are randomly selected from the
elite particle set. The angle between a, b and p is calculated,
respectively. The elite particle with the smaller angler with
p wins the competition and is used as leader for particle p.
An illustrative example of pairwise competition is described
in Figure 1 where a and b are two random elite particles
selected for pairwise competition while p the particle to be
updated. As it can be seen, the angle θ1 between a and p is
smaller than the angle θ2 between b and p, such that the elite
particle a is used as leader for particle p. After determining
the winner of elite particles, the particle p will be updated
according to (1) and (2), where Xgbest is the position of the
winner particle. A detailed description of elite particles selec-
tion, pairwise competition, and particles update is presented
in Algorithm 2.

B. UPDATE OF EXTERNAL ARCHIVE
As the number of nondominated solutions in the external
archive is finite and determined by the size of population,
and there are an m number of new nondominated solutions
S = (s1, s2, . . . , sm) added into A in each generation. The
swarm search is divided into two phases, exploration and
exploitation according to a threshold α of the generation
index. It should be noted that the appropriate setting of α
can keep good balance between convergence and diversity.
In each phase, the archive update is performed in a differ-
ent approach. Firstly, the vicinity distance metric is adopted
to compare the most crowded solutions in the archive, this
approach is useful in the exploration phase to maintain diver-
sity. Secondly, the Max-cost rule is applied along with Sum-
of-cost rule are applied to keep balance between convergence

VOLUME 8, 2020 124737

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

Algorithm 2 Elite Particles Selection, Pairwise Competition
and Particles Update
Input: A (current archive), P (current positions), V (current
velocities), γ (size of elite particles set)

Output: P′ (new positions)

/∗Elite particles selection∗/

Sorted all particles in A in a descending order according to
their DNN 1

i ;

E ← select top γ particles from A to form the elite particles
set;

/∗Pairwise competition∗/

For each pi ∈ P do

Randomly select two elite particles a and b from E ;

Calculate the angle θ1 between a and pi, and θ2 between b and
pi;

If θ1 < θ2 then

Xgbest ← a;

Else

Xgbest ← b;

End if

/∗Particles update∗/

v′i← update the velocity of pi according to equation (1);

p′i← update the position of pi according to equation (2);

P′← P′ ∪ {p′i};

End for

Return P′

and diversity in the exploitation phase. The following sub-
sections will explain in details how these two approaches are
implemented.

1) VICINITY DISTANCE
As described in Algorithm 1, all solutions in A are assigned
a distance value DNN 1

i to their nearest neighbors, which is
calculated using Euclidean distance metric. When finding the
shortestDNN 1

k inA, there will always be two solutions having
the same distance value due to the symmetry property of the
metric [42]. In other words, let Ak be the kth solution in A,
and let DNN 1

k and NNk be its distance to the nearest neighbor
and the index of the nearest neighbor, respectively. Therefore,
Ak and ANNk will have the same distance to each other, which
is DNN 1

k . To compare the crowding of Ak and ANNk , we use
vicinity distance metric which takes into account the distance
of second nearest neighbor DNN 2

i for both solutions. More
formally Vicinity distance is defined as:

VDi =
∏m

k=1
DNN k

i (3)

where VDi is the vicinity distance of particle i, DNN k
i is

the Euclidean distance of particle i to it its kth neighbor,
m = 2 is the number of neighbors. If the vicinity distance

Algorithm 3 Archive Updating According to Vicinity Dis-
tance Metric
Input: A (current archive), S (new nondominated solutions)

Output: A′ (new archive)

A′← A ∪ S;

For each Ai ∈ A′ do

Update DNN 1
i and NNi for A′;

End for

While A′ is larger than nA, do

Find A′k with the minimum DNN 1
k ;

j← NNk let j be the index of the nearest neighbor of solution
A′k ;

Find DNN 2
k and DNN 2

j ;

Compute vicinity distance VD for Ak and Aj;

If VDk ≤ VDj do

Remove Ak from A′;

Find Am which its attached nearest neighbor NNm is k;

Update DNN 1
j ,DNN

1
m,NNj and NNm;

Else

Remove Aj from A′;

Find Am which its attached nearest neighbor NNm is j;

Update DNN 1
k ,DNN

1
m,NNk and NNm;

End if

End while

Return A′

of particle k VDk is smaller than the vicinity distance of
its nearest neighbor VDNNk , we consider Ak as the most
crowded solution and remove it from A, and vice versa. When
removingAk fromA, the distances of the remaining neighbors
ofAk will be influenced. Therefore, the distances valueDNN 1

i
(where i is the index of the remaining neighbor) and the
attached indices of the remaining nearest neighbors NNi must
be updated iteratively until the number of solutions in A is
equal to the maximum size of the archive nA. If there exists
another solution Am such that its attached nearest neighbor
index NNm is the same as the index of the removed solution
k , thenDNN 1

m andNNm must be updated as well. The pseudo-
code of this step is presented in Algorithm 3.

The benefit of using vicinity distance against crowding
distance is that the solutions whose ranks DNN 1

i and nearest
neighbor indices NNi are affected by removing a solution
from A are easy to be determined. Thus, Euclidean distance is
recalculated only for the removed solution neighbors instead
whole set of nondominated solutions after each solution
removal.

2) MAX-COST RULE
The second approach is performed to tackle the problem
of losing better candidates when updating the archive after

124738 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

adding new nondominated solutions S. When randomly
removing solutions from the archive or when adopting the
crowding distance as a measure to remove extra solutions,
we do not have a criterion that can compare nondominated
solutions to each other. Thus, the newly added solutions may
be worse than the removed solution in terms of convergence.
For this reason, we adopt the following procedure to tackle
this problem.

In exploitation phase, before adding new nondominated
solutions into the archive the fitness values of each objective
for all new nondominated solutions are tested against the
maximum cost value of each objective. In an m-objective
minimization problem let Fi = (fi1, fi2, . . . , fim) be the
fitness values of newly added solution si, and let Fmax =
[fmax1, fmax2, . . . , fmaxm] be a vector consists of the maximum
fitness values of each objective in the archive A. As shown in
Algorithm 4, Fi is added to A if and only if Fi is less than or
equal to Fmax for all m objectives.

3) SUM-OF-COST RULE
After evaluating all new nondominated solutions against the
Max-cost rule, the number of nondominated solutions in
the external archive may exceeds the maximum size limit.
Tomaintain the number of nondominated solutions within the
maximum size of the archive in a way that assure preserving
balance between convergence and diversity, another approach
termed as Sum-of-cost rule is proposed. As presented in
Algorithm 4, let Ai and Aj be the two solutions with the
minimum Euclidean distance to each other (i.e. DNN 1

i =

DNN 1
j), and Fi and Fj are their fitness values, respectively.

In an m-objective minimization problem, if∑m

k=1
Fi ≤

∑m

k=1
Fj,

Fi = (fi1, fi2, . . . , fim), Fj =
(
fj1, fj2, . . . , fjm

)
(4)

then Ai is remained and Aj is removed. Similarly, the rank
DNN 1

i and the attached nearest neighbors’ indices NNi of
the any influenced solution must be updated iteratively until
the number of solution in A is equal to the defined size of
nA. A detailed pseudo-code of Max-cost rule and Sum-of-
cost rule is presented in Algorithm 4. The major advantage
of using such mechanism is that it overcomes the issue of
convergence in MOPs algorithms which use the concept
of nondomination sorting in an external archive. Moreover,
the experimental results show that it enhances the ability of
the algorithm to fast convergence towards the true Pareto front
while preserving a relatively high diversity.

C. THE COMPLETE MOPSONN ALGORITHM
The above subsections have described the procedure of
selection of leader and archive update, which compose the
main component of MOPSONN. Furthermore, the com-
plete pseudo-code of MOPSONN algorithm is presented in
Algorithm 5, where N is the population size and α is a thresh-
old that control the two search phases, exploration phase
and exploitation phase. The algorithm begins by randomly

Algorithm 4Archive Updating According to Max-Cost Rule
and Sum-of-Cost Rule
Input: A (current archive), S (new nondominated solutions)

Output: A′ (next archive)

/∗ Max-cost rule ∗/

Find Fmax from the current archive A;

For each si ∈ S do

If all fj(si) ≤ fmax j, 1 < j < m, where j is the objective index
do

A′← A ∪ {si};

Else

reject si;

End for

/∗ Sum-of-cost rule ∗/

While A′ is larger than nA, do

Find A′k with the minimum DNN 1
k ;

j← NNk let j be the index of the nearest neighbor of solution
A′k ;

Calculate
∑m

k=1 Fi and
∑m

k=1 Fj;

If
∑m

k=1 Fi ≤
∑m

k=1 Fj do

Remove Aj from A′;

Find Am which its attached nearest neighbor NNm is j;

Update DNN 1
i ,DNN

1
m,NNi and NNm;

Else

Remove Ai from A′;

Find Am which its attached nearest neighbor NNm is i;

Update DNN 1
j ,DNN

1
m,NNi and NNm;

End if

End while

Return A′

initializing the swarm with N particles and the external
archive is initialized to be empty. After evaluating the fit-
ness function for all particles, the nondominated sorting is
employed to select initial nondominated solutions to be stored
in the archive. Then, the algorithm turns into loop of evolution
process until the termination criterion is fulfilled.

To generate elite particles set, the Euclidean distance is
employed to calculate the distance of each particle in the
archive to its corresponding nearest neighbor such that each
particle in the archive is attached a value that represents
its distance to the nearest particle as well as the index of
the nearest particle as described in Algorithm 1. Thereafter,
all particles in the archive are stored in a descending order
according to the distance to their nearest particles. An elite
particles set is selected from the top γ particles in the archive
in which the leaders are chosen according to the pairwise
competition approach. Then, the particles are updated using
formula (1) and (2) as introduced in Algorithm 2. After

VOLUME 8, 2020 124739

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

Algorithm 5 General Framework of MOPSONN
Input: N (population size)

Output: A (non-dominated solutions in the archive)

P← random Initialize (N);

V ← random Initialize (N);

A← check Dominance (P);

Compute nearest neighbor distance for all solutions in A;
(Algorithm 1);

While termination criterion is not fulfilled do

P′← update particles (A,P,V , γ), according to Elite

particles selection, Pairwise competition and

Particle updates (Algorithm 2);

S ← check Dominance (P′);

If the number of the index of current generation is less

than a threshold t < α do

A′← update archive (A, S), according to Vicinity

distance value (Algorithm 3);

Else

A′← Update archive (A, S), according to Max-cost

rule and Sum-of-cost rule (Algorithm 4);

End If

End while

Return A′

evaluating the swarm particles, the archive updating process
is accomplished in two ways determined by the predefined
threshold α. In the exploration phase (i.e. when the iteration
index is less than α), the archive is updated by applying
the vicinity distance metric as illustrated in Algorithm 3.
After that, in the exploitation phase (i.e. when the iteration
index is equal or larger than α), Max-cost rule and Sum-of-
cost rule are employed to update the nondominated solution
in the archive as presented in Algorithm 4. At the end of
algorithm, the nondominated solutions in the external archive
are reported as the final approximated Pareto front.

IV. EXPERIMENTAL STUDY
A. STANDARAD BENCHMARK PROBLEMS
A total of fifteen benchmarks from two test suits, ZDT [43]
and DTLZ [44] are used to evaluate the performance of the
algorithms, where ZDT1 to ZDT4 and ZDT6 are bi-objective
problems and DTLZ2, DTLZ4 to DTLZ7 are two-/three-
objective problems. For all ZDT problems, the number of
decision variables is 30. For bi-objective DTLZ problems
the number of decision variables is 11 except for DTLZ7 is
21. For the three-objective DTLZ problems, the number of
decision variables is set to 12. For each benchmark, 30 inde-
pendent runs are conducted using a personal computer with
an Intel Core i7-8650 1.90GHz 2.11GHz CPU and win-
dows 10 operating system. The mean values and standard

TABLE 1. The parameter settings for all the algorithms.

deviations (std) for each test instance are reported, where the
best results are highlighted with bold font in the comparison
tables.

B. PERFORMANCE METRICS
In order to examine the performance of multi-objective opti-
mization we consider the following two Pareto Frontier qual-
ity metrics:

1) INVERTED GENERATIONAL DISTANCE
In multi-objective optimization, the inverted generational dis-
tance (IGD) is used to measure the convergence and to assess
how far are the obtained nondominated solutions from true
Pareto Frontier assuming it is known [32]. This metric is
useful when the solutions obtained are good in terms of
optimality but do not cover the entire space. IGD can be
defined as:

IGD(A′,A) =

∑|A′|
i=1 d(A

′
i,A)

|A′|
(5)

where A′ is a subset uniformly selected from the true Pareto
front, A is the approximated set, and d(A′i,A) is the Euclidean
distance between each solution in the obtain Pareto Front font
so far and its nearest solution in the true Pareto Front. A value
of zero indicates that all optimal solutions are within the true
Pareto Front.

2) SPACING
Spacing metric evaluates the spread of solutions throughout
the Pareto Front found so far. it measures the range variance
of the distance between each solution and its neighbors [45].
A value of zero indicates that all Pareto-optimal solutions are
uniformly distributed in the objective space.

S =

√√√√ 1
n− 1

n∑
i=1

(d̄ − di)2 (6)

where di = min
i,i6=j

∑m
k=1

∣∣∣f ik (Ex)− f jk (Ex)∣∣∣, i, j = 1, . . . , n, d̄ is

the mean of all di, m is the number of objectives and n is
number of the Pareto-optimal solution found so far.

The mean values and standard deviations (Std.) of IGD
and Spacing metrices are collected for each test instance.
Moreover, the Wilcoxon rank sum test is performed at a

124740 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

TABLE 2. IGD results of the proposed MOPSONN and four existing multi-objective PSO algorithms, SMPSO, dMOPSO, MMOPSO and CMOPSO on ZDT and
DTLZ test suits. The best values are highlighted with bold fonts.

significance level of 0.05 to examine that where the results
obtained by MOPSONN are statistically different from that
obtained by other algorithms. The symbols ‘+’, ‘=’ and ‘−’
indicate that the result obtained by MOPSONN is signifi-
cantly better, statistically similar, and significantlyworse than
that obtained by the compared algorithm, respectively.

C. EXPERIMENTAL SETTING
The performance of the proposed MOPSONN algorithm is
verified by comparison with four existing multi-objective
PSO algorithms, SMPSO, dMOPSO, MMOPSO and
CMOPSO, and three popular MOEAs, NSGA-II, MOAED
and NSGA-III. It is noted that the source code of all com-
pared algorithms can be found in PlatEMO [46]. For fair
comparison, the parameter setting of all compared algorithms
are set to the recommended values in the original papers as

summarized in Table 1. For SMPSO, the coefficient c1 and
c2 are randomly chosen from [1.5, 2.5] and the inertia weight
ω is also randomly chosen from [0.1,0.5]. In MMOPSO and
dMOPSO, the coefficient c1 and c2 are randomly chosen from
[1.5, 2.0] and the inertia weight ω is also randomly chosen
from [0.1,0.5]. In CMOPSO the parameter γ is set to 10.
In NSGA-II, the crossover probability pc and the mutation
probability pm are set to be 0.9 and 1/n (where n is the number
of decision variables), respectively, and distribution index for
crossover and mutation operators are ηc = 20 and ηm = 20,
respectively. In MOEA/D, the mutation probability pm is set
to 1/n, distribution index for mutation operators ηm is set to be
20. The size of the neighborhood in the weight coefficients T
is set to be 20 and the maximum number of parent solutions
that are replaced by each child solution nr is 2. In NSGA-III,
the crossover probability pc and the mutation probability

VOLUME 8, 2020 124741

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

FIGURE 2. The Pareto front of ZDT test suit obtained by MOPSONN. (a) ZDT1; (b) ZDT2; (c) ZDT3; (d) ZDT4; (e) ZDT6.

pm are set to be 1 and 1/n, respectively, and distribution
index for crossover and mutation operators are ηc = 30
and ηm = 20, respectively. In the proposed MOPSONN, the
coefficient c1 and c2 are set to1and 2, respectively, the inertia
weight ω is to be 0.5 with an inertia weight damping rate
ωdamp = 0.99, the number of elite particles set γ is set be
10 and the threshold α is set to be 0.8. It should be noted
that the size of both population and the external archive are

set to be 100 for all algorithms. The number of generations
is adopted as a termination criterion for all algorithms. The
maximal number of generations is set to 50 for all ZDT test
instances, and to 100 for all bi-objective DTLZ test instances.
For three-objective DTLZ problems, the maximal number of
generations is set to 100 in DTLZ2, DTLZ6 and DTLZ7 and
to 250 in DTLZ4 and DTLZ5. It is noted that the IGD of each
benchmark is calculated using roughly 5000 and 10000 points

124742 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

FIGURE 3. The Pareto front of bi-objective DTLZ test suit obtained by MOPSONN. (a) DTLZ2; (b) DTLZ4; (c) DTLZ5; (d) DTLZ6;
(e) DTLZ7.

uniformly sampled on the Pareto fronts for bi-objective and
three-objective test problems, respectively.

D. COMPARISON WITH EXSITING MULTI-OBJECTIVE PSO
ALGORITHMS
Table 2 summarizes the mean and standard devia-
tion of IGD of SMPSO, dMOPSO, MMOPSO and

CMOPSO compared with MOPSONN for all test problems.
It can be observed that MOPSONN obtains the best
results on all bi-objective test problems of ZDT test
suit in such relatively low number of evaluations. Fig-
ure 2 shows the nondominated solutions obtained by the
proposed MOPSONN on ZDT1 to ZDT4 and ZDT6.
For the bi-objective DTLZ benchmarks, it can be seen that

VOLUME 8, 2020 124743

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

TABLE 3. Spacing results of the proposed MOPSONN and four existing multi-objective PSO algorithms, SMPSO, dMOPSO, MMOPSO and CMOPSO on ZDT
and DTLZ test suits. The best values are highlighted with bold fonts.

MOPSONN performs best on DTLZ4 and DTLZ7 while
CMOPSO gets best on DTLZ2, DTLZ5 and DTLZ6.
Figure 3 presents the nondominated solutions obtained
by MOPSONN. For three-objective DTLZ test problems,
we can see that MOPSONN achieves the best IGD val-
ues on DTLZ4 to DTLZ7 and CMOPSO obtains best IGD
on DTLZ2. To visualize the performance of MOPSONN
on the three-objective DTLZ test suit, the best results of
MOPSONN on these benchmarks are plotted in Figure 4.
In Table 3, the mean and standard deviation of spacing
are presented where the sign ‘−’ means that the algorithm
fails to approximate an acceptable Pareto front at one or
more time among 30 runs. It is clear that MOPSONN
achieves the best performance in all bi-objective ZDT prob-
lems. On bi-objective DTLZ test problems, it is shown
that CMOPSO has better spacing on DTLZ2, DTLZ5 to

DTLZ7 and MOPSONN achieves best on DTLZ4. For three-
objective problems, it is shown that CMOPSO obtains best
spacing values on DTLZ2, ZDTLZ4 and DTLZ5, while on
DTLZ6 and DTLZ7, our algorithm MOPSONN performs
best. Although, CMOPSO achieves better spacing in four
bi-objective DTLZ problem, but one can see that the spac-
ing values of MOPSONN are still within an acceptable
range.

It is important to point out that the existing multi-objective
PSO algorithms fail in finding the Pareto front on ZDT2 and
ZDT4 in some runs due to the low number evaluations, while
MOPSONN is capable to fast converge towards the true
Preto front and achieves great IGD and spacing values. From
above empirical results, we can conclude that MOPSONN
has a promising performance compared with exciting
MOPSOs.

124744 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

FIGURE 4. The Pareto front of three-objective DTLZ test suit obtained by MOPSONN. (a) DTLZ2; (b) DTLZ4; (c) DTLZ5; (d) DTLZ6; (e)
DTLZ7.

Moreover, another crucial performance metric is the
convergence speed. In the following, we compare the
convergence speed of the proposed MOPSONN and the
exciting PSO based multi-objective algorithms on two
benchmark problems, namely ZDT1 and ZDT3. Figure 5
shows the convergence trajectory of the compared algo-
rithms on ZDT1 and ZDT3 averaging 30 runs. The

nondominated solution sets obtained by all algorithms are
plotted in Figure 6. It can be seen that MOPSONN is
capable to produce a well-spread set of solution along the
pareto front after only 50 generation (i.e., 5,000 function
evaluations), whereas the compared algorithms either still
far from convergence or fails to cover the entire Pareto
front.

VOLUME 8, 2020 124745

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

TABLE 4. IGD results of the proposed MOPSONN and four MOEAs, NSGA-II, MOAED and NSGA-III, on ZDT and DTLZ test suits. The best values are
highlighted with bold fonts.

FIGURE 5. Convergence trajectory of MOPSONN and four existing MOPSOs, SMPSO, dMOPSO, MMOPSO and
CMOPSO, on ZDT1 and ZDT3.

124746 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

FIGURE 6. The nondominated solutions associated with the best performance of MOPSONN and four exciting
PSO based multi-objective algorithms, averaging 30 runs. (a) SMPSO on ZDT1; (b) dMOPSO on ZDT1;
(c) MMOPSO on ZDT1; (d) CMOPSO on ZDT1; (e) MOPSONN on ZDT1; (f) SMPSO on ZDT3; (g) dMOPSO on ZDT3;
(h) MMOPSO on ZDT3; (i) CMOPSO on ZDT3; (j) MOPSONN on ZDT3.

VOLUME 8, 2020 124747

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

FIGURE 6. (Continued.) The nondominated solutions associated with the best performance of MOPSONN and four
exciting PSO based multi-objective algorithms, averaging 30 runs. (a) SMPSO on ZDT1; (b) dMOPSO on ZDT1;
(c) MMOPSO on ZDT1; (d) CMOPSO on ZDT1; (e) MOPSONN on ZDT1; (f) SMPSO on ZDT3; (g) dMOPSO on ZDT3;
(h) MMOPSO on ZDT3; (i) CMOPSO on ZDT3; (j) MOPSONN on ZDT3.

FIGURE 7. Convergence trajectory of MOPSONN and three MOEAs, NSGAII, MOEAD and NSGAIII, on ZDT1 and
ZDT3.

E. COMPARISON WITH EXISTING MULTI-OBJECTIVE
MOEAS
Table 4 presents the mean and standard deviation of IGD val-
ues for NSGA-II, MOAED, NSGA-III and the MOPSONN
on bi-objective ZDT1 to ZDT4 and ZDT6, and two-/three-
objective DTLZ2, DTLZ4 to DTLZ7 where the best mean
for each benchmark is highlighted with bold fonts. It can
be seen that MOPSONN produces the best approximation
along the Pareto front on all ZDT test problems. On bi-
objective DTLZ problems, we can see that MOPSONN per-
forms best on DTLZ4, DTLZ6 and DTLZ7 and NSGA-III
has better IGD values on DTLZ2 and DTLZ5. On three-
objective DTLZ problems, NSGA-III achieves better IGD
value on DTLZ2 while MOPSONN programs the best IGD
performance on DTLZ4 to DTLZ7. Although NSGA-III
performs better IGD values on three test functions, but
the difference between IGD values obtained by NSGA-III
and MOPSONN is not significant. It is evident that MOP-
SONN has also achieved promising overall IGD performance
on the test instances in comparison with state-of-the-art
MOAEs, where it has the best performance on 12 out of
15 benchmarks.

Table 5 shows the mean and standard deviation of spac-
ing values for the compared algorithms. As evidenced by
the results, nondominated solutions obtained by MOPSONN
are spread throughout the Pareto fronts on all test problems
and the obtained spacing values are the best among the
compared algorithms except on DTLZ4. The overall Spac-
ing results show that MOPSONN outperforms NSGA-II,
MOEAD and NSGA-III on all benchmarks. Although,
MOAED and NSGAIII outperform the IGD value of MOP-
SONN on three benchmarks, but MOPSONN has the overall
IGD and spacing best performances compared with existing
multi-objective PSO algorithms and state-of-the-art MOEA
algorithms.

In the following, the convergence speed of the pro-
posed MOPSONN is verified against the compared MOEAs,
namely, NSGA-II, MOEA/D and NSGA-III. The con-
vergence trajectory of these algorithms on ZDT1 and
ZDT3 after 50 generations is shown in figure 7. It is evi-
dence that MOPSONN can approximate the true Pareto front
while the compared algorithms cannot converge towards
the true Pareto front in such small number of function
evaluations.

124748 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

TABLE 5. Spacing results of the proposed MOPSONN and four MOEAs, NSGA-II, MOAED and NSGA-III, on ZDT and DTLZ test suits. The best values are
highlighted with bold fonts.

The produced nondominated solution sets by all compared
algorithms on ZDT1 and ZDT3 are plotted in figure 8. The
comparison results show that MOPSONN has a promising
convergence speed, which manifests that the pairwise com-
petition and the proposed archive updating mechanism are
capable to speed up the convergence speed and producing
a high spread of nondominated solution along the Pareto
front.

F. BENEFITS OF VICINITY DISTANCE METRIC
In the exploration phase of the proposed MOPSONN algo-
rithm, we adopt the vicinity distance metric to measure the
crowding of solutions in the archive such that the archive
is updated by removing the most crowded solutions. In this
subsection, we demonstrate the benefits of using this metric

by comparing it with crowding distance which is adopted in
most of multi-objective optimization algorithms. Figure 9 (a)
shows the original solutions in the archive before truncation.
Figure 9 (b) and (c) present the selected solutions to be kept
in the archive by crowding distance and vicinity distance,
respectively. Comparing Figure 9 (b) to (c) at the same solu-
tion scale, we can clearly see that the solution maintained by
vicinity distance metric have a better spacing and diversity
than those obtained by crowding distance metric. According
to the analysis, we can conclude that truncating the archive
using vicinity distancemetric is beneficial tomaintain a better
diversity and spacing performance of solutions in the archive.
Consequently, the elite particles set which is used to select
global best particles to guide the swarm has a better diversity.
Therefore, the diversity of the overall swarm is enhanced.

VOLUME 8, 2020 124749

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

FIGURE 8. The nondominated solutions associated with the best performance of MOPSONN and three
MOEAs, averaging 30 runs. (a) NSGAII on ZDT1; (b)MOEAD on ZDT1; (c) NSGAIII on ZDT1; (d)MOPSONN on
ZDT1; (e) NSGAII on ZDT3; (f) MOEAD on ZDT3; (g) NSGAIII on ZDT3; (h)MOPSONN on ZDT3.

124750 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

FIGURE 9. Comparison of the archive truncation using crowding distance and vicinity distance. (a) original solution; (b) selected
solutions by crowding distance; (d) selected solutions by vicinity distance.

FIGURE 10. Comparison of nondominated solutions on DTLZ2. (a) MOPSONN-I; (b) MOPSONN-II; (c) MOPSONN.

G. BENEFITS OF THE PROPOSED ARCHIVE UPDATING
APPROACH
In order to evaluate the benefits of the proposed archive
updating approach in MOPSONN, a comparison is con-
ducted with two variants of MOPSONN i.e. MOPSONN-
I and MOPSONN-II, which both have the same compo-
nent of MOPSONN, except that MOPSONN-I adopts only
Max-cost rule along with Sum-of-cost rule to update the
archive and MOPSONN-II adopts only vicinity distance
metric. Table 5 presents the IGD values of the three com-
pared algorithms (i.e. MOPSONN-I, MOPSONN-II and

MOPSONN) on all adopted benchmark problems. It can be
observed that MOPOSNN has the best IGD performance on
10 out of 15 test problems which validates the benefits of
MOPSONN against MOPSONN-I and MOPSONN-II. It is
noted that, in the test problems which the two variants outper-
form MOPSONN, the difference of the IGD values between
MOPSONN and its two variants are not significant.

Figure 10 plots the obtained nondominated solution set
of MOPSONN and its two variants on DTLZ2. Observed
from Figure 10, the nondominated solutions obtained by
MOPSONN-I are concentrated at the boundary of the true

VOLUME 8, 2020 124751

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

TABLE 6. IGD results of MOPSONN-I, MOPSONN-II and MOPSONN, on ZDT and DTLZ test suits. The best values are highlighted with bold fonts.

Pareto frons due to the aggressive usage of Max-cost rule
and Sum-of-cost rule which may influence the diversity and
spacing of obtained solutions. The nondominated set of solu-
tions obtained by MOPSONN-II are still a bit far from the
boundary of the true Pareto front. This demonstrates the fact
that there is a need to adopted another strategy to enhance the
convergence of solutions which is solved in MOPSONN by
using the Max-cost rule and Sum-of-cost rule.

H. IMPACT OF PARAMETER SETTING
In the proposed MOPSONN, the setting of the parameter α is
crucial due to its influence in the performance of MOPOSNN
by controlling the balance between convergence and diversity
of the swarm. As mentioned above, when the generation
index exceeds the threshold α the swarm search changes
from exploration phase into exploitation phase by changing
the archive updating strategy. Before the generation index

exceeds the threshold α the archive is updated according to
vicinity distance metric described in 3.2.1. Adopting vicinity
distance in this step is advantageous to preserve diversity of
the archive and swarm by allowing all new nondominated
solution to be added to the archive and then truncate solu-
tions in the archive according to their crowding. When the
generation index exceeds the threshold, the archive is updated
usingMax-cost rule along with Sum-of-cost rule as presented
in 3.2.2 and 3.2.3. The Max-cost rule enhances the conver-
gence speed by filtering the new nondominated solutions
before adding them into the archive. The Sum-of-cost rule
preserve diversity of solutions in the archive by comparing
the total fitness value of the all objectives of the two most
crowded solutions in the archive and remove the one with less
total fitness value (in aminimization problem). Consequently,
the diversity of the elite particles set in which the global best
solution is selected is also enhanced. In order to carefully
set the value of the threshold α such that we can achieve

124752 VOLUME 8, 2020

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

FIGURE 11. IGD values of the proposed MOPSONN with different setting
of the threshold α on DTLZ2 and DTLZ4 to DTLZ7.

better balance of convergence and diversity we perform a
sensitivity test analysis of this parameter. Figure 11 shows
the IGD value of MOPSONN on three-objective DTLZ2 and
DTLZ4 to DTLZ7, averaging 30 independent runs, where α
varies from 0.2 to 1.

It can be seen that the performance of MOPSONN is sensi-
tive to the value of α, where the IGD value of all test instances
are high when α is small except for DTLZ5 where the
IGD values increases when alpha increases. For DTLZ2 and
DTLZ4, it is observed that the IGD values decrease when α
increases to reach their minimumwhen α is 0.7 and then turns
to increase by increasing α. For DTLZ5 and DTLZ7, we can
see that the IGD values decrease when increasing α to reach
theirminimum at 1 and 0.9, respectively. ForDTLZ6, the IGD
value is behaving in a different way where its minimum and
maximum are achieved at α = 0.2, α = 1, respectively.
From the graph in Figure 11, we can observe that a moderate
IGD value for all test instances can be achieved at α = 0.8.
Therefore, we suggest the value of alpha to be 0.8 in the
proposed MOPSONN to solve MOPs.

V. CONCLUSION
In this paper, a novel multi-objective particle swarm opti-
mization MOPSONN based on a new archive updating
mechanism is presented. Two archive updating strategies
are designed to enhance the performance of the algorithm.
In early generations, the archive is updated according to
vicinity distance metric which has proven its capability
to enhance the diversity of solutions. In later generations,
the archive is updated using two new rules, namely, Max-
cost rule and Sum-of-cost rule, to accelerate the convergence
speed. The performance of MOPSONN is verified by bench-
mark comparison with several state-of-the-art multi-objective
algorithms. The IGD and Spacing values has evidenced how
MOPSONN is a competitive algorithm where it outperforms
the performance of the compared algorithms on most of the
benchmarks. The capability of MOPSONN to fast converge

towards the true Pareto front within a relatively small number
of evaluations is also demonstrated.

The selection of the generation index which controls
archive updating strategies is investigated by conducting a
sensitivity test analysis on DTLZ test suit. The benefits
of using vicinity distance metric against the most common
crowding distance metric to measure the crowding of solu-
tions is presented. The performance of MOPSONN is also
validated by comparison with to variant of MOPSONN i.e.
MOPSONN-I and MOPSONN-II. The experimental results
demonstrate the promising performance of MOPSONN and
justify the benefits of incorporating of two archive updating
strategies.

REFERENCES
[1] L. Zhang, H. Pan, Y. Su, X. Zhang, and Y. Niu, ‘‘A mixed representation-

based multiobjective evolutionary algorithm for overlapping community
detection,’’ IEEE Trans. Cybern., vol. 47, no. 9, pp. 2703–2716, Sep. 2017.

[2] A. Ponsich, A. L. Jaimes, and C. A. C. Coello, ‘‘A survey on multiobjec-
tive evolutionary algorithms for the solution of the portfolio optimization
problem and other finance and economics applications,’’ IEEE Trans. Evol.
Comput., vol. 17, no. 3, pp. 321–344, Jun. 2013.

[3] X. Zhang, F. Duan, L. Zhang, F. Cheng, Y. Jin, and K. Tang, ‘‘Pattern rec-
ommendation in task-oriented applications: A multi-objective perspective
[application notes],’’ IEEE Comput. Intell. Mag., vol. 12, no. 3, pp. 43–53,
Aug. 2017.

[4] Q. Lin and J. Chen, ‘‘A novel micro-population immune multiob-
jective optimization algorithm,’’ Comput. Oper. Res., vol. 40, no. 6,
pp. 1590–1601, Jun. 2013.

[5] X. Chen, W. Du, and F. Qian, ‘‘Multi-objective differential evolution
with ranking-based mutation operator and its application in chemical
process optimization,’’Chemometric Intell. Lab. Syst., vol. 136, pp. 85–96,
Aug. 2014.

[6] D. Han, W. Du, W. Du, Y. Jin, and C. Wu, ‘‘An adaptive decomposition-
based evolutionary algorithm for many-objective optimization,’’ Inf. Sci.,
vol. 491, pp. 204–222, Jul. 2019.

[7] T. Guan, F. Han, and H. Han, ‘‘A modified multi-objective particle swarm
optimization based on levy flight and double-archive mechanism,’’ IEEE
Access, vol. 7, pp. 183444–183467, 2019.

[8] X. Chen, B. Xu, and W. Du, ‘‘An improved particle swarm optimization
with biogeography-based learning strategy for economic dispatch prob-
lems,’’ Complexity, vol. 2018, pp. 1–15, Jul. 2018.

[9] L. Li, W. Wang, and X. Xu, ‘‘Multi-objective particle swarm optimization
based on global margin ranking,’’ Inf. Sci., vol. 375, pp. 30–47, Jan. 2017.

[10] J. Liang, Q. Guo, C. Yue, B. Qu, and K. Yu, ‘‘A self-organizing multi-
objective particle swarm optimization algorithm for multimodal multi-
objective problems,’’ in Proc. Int. Conf. Swarm Intell., 2018, pp. 550–560.

[11] S. Cheng, H. Zhan, and Z. Shu, ‘‘An innovative hybrid multi-objective
particle swarm optimization with or without constraints handling,’’ Appl.
Soft Comput., vol. 47, pp. 370–388, Oct. 2016.

[12] Y.-X. Su and R. Chi, ‘‘Multi-objective particle swarm-differential evo-
lution algorithm,’’ Neural Comput. Appl., vol. 28, no. 2, pp. 407–418,
Feb. 2017.

[13] R. J. Kuo, M. Gosumolo, and F. E. Zulvia, ‘‘Multi-objective particle swarm
optimization algorithm using adaptive archive grid for numerical associa-
tion rule mining,’’ Neural Comput. Appl., vol. 31, no. 8, pp. 3559–3572,
Aug. 2019.

[14] V. Trivedi, P. Varshney, and M. Ramteke, ‘‘A simplified multi-
objective particle swarm optimization algorithm,’’ Swarm Intell., vol. 14,
pp. 83–116, Jul. 2019.

[15] J. Meza, H. Espitia, C. Montenegro, E. Giménez, and R. González-Crespo,
‘‘MOVPSO: Vortex multi-objective particle swarm optimization,’’ Appl.
Soft Comput., vol. 52, pp. 1042–1057, Mar. 2017.

[16] X. Zhang, X. Zheng, R. Cheng, J. Qiu, and Y. Jin, ‘‘A competitive mech-
anism based multi-objective particle swarm optimizer with fast conver-
gence,’’ Inf. Sci., vol. 427, pp. 63–76, Feb. 2018.

[17] P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, ‘‘Multi-objective parti-
cle swarm optimization with time variant inertia and acceleration coeffi-
cients,’’ Inf. Sci., vol. 177, no. 22, pp. 5033–5049, Nov. 2007.

VOLUME 8, 2020 124753

K. Alkebsi, W. Du: Fast MOPSO Algorithm Based on a New Archive Updating Mechanism

[18] H. Han, W. Lu, and J. Qiao, ‘‘An adaptive multiobjective particle swarm
optimization based on multiple adaptive methods,’’ IEEE Trans. Cybern.,
vol. 47, no. 9, pp. 2754–2767, Sep. 2017.

[19] W.-F. Leong and G. G. Yen, ‘‘PSO-based multiobjective optimization with
dynamic population size and adaptive local archives,’’ IEEE Trans. Syst.,
Man, Cybern., B (Cybern.), vol. 38, no. 5, pp. 1270–1293, Oct. 2008.

[20] G. G. Yen and W. F. Leong, ‘‘Dynamic multiple swarms in multiobjective
particle swarm optimization,’’ IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 39, no. 4, pp. 890–911, Jul. 2009.

[21] Z.-H. Zhan, J. Li, J. Cao, J. Zhang, H. S.-H. Chung, and Y.-H. Shi,
‘‘Multiple populations for multiple objectives: A coevolutionary technique
for solving multiobjective optimization problems,’’ IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 445–463, Apr. 2013.

[22] G. Xu, Y.-Q. Yang, B.-B. Liu, Y.-H. Xu, and A.-J. Wu, ‘‘An efficient
hybrid multi-objective particle swarm optimization with a multi-objective
dichotomy line search,’’ J. Comput. Appl. Math., vol. 280, pp. 310–326,
May 2015.

[23] J. Luo, Y. Qi, J. Xie, and X. Zhang, ‘‘A hybrid multi-objective
PSO-EDA algorithm for reservoir flood control operation,’’ Appl. Soft
Comput., vol. 34, pp. 526–538, Sep. 2015.

[24] T. Cheng, M. Chen, P. J. Fleming, Z. Yang, and S. Gan, ‘‘A novel hybrid
teaching learning based multi-objective particle swarm optimization,’’
Neurocomputing, vol. 222, pp. 11–25, Jan. 2017.

[25] Y. Wang and Y. Yang, ‘‘Particle swarm optimization with preference
order ranking for multi-objective optimization,’’ Inf. Sci., vol. 179, no. 12,
pp. 1944–1959, May 2009.

[26] M. R. Sierra and C. A. C. Coello, ‘‘Improving PSO-based multi-objective
optimization using crowding, mutation and ε-dominance,’’ in Proc. Int.
Conf. Evol. Multi-Criterion Optim., 2005, pp. 505–519.

[27] C. Dai, Y. Wang, and M. Ye, ‘‘A new multi-objective particle swarm
optimization algorithm based on decomposition,’’ Inf. Sci., vol. 325,
pp. 541–557, Dec. 2015.

[28] X. Yu, H. Wang, and H. Sun, ‘‘Decomposition-based multi-objective
comprehensive learning particle swarm optimisation,’’ Int. J. Comput. Sci.
Eng., vol. 18, no. 4, pp. 349–360, 2019.

[29] R. Cheng and Y. Jin, ‘‘A competitive swarm optimizer for large scale opti-
mization,’’ IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204, Feb. 2015.

[30] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello, F. Luna, and
E. Alba, ‘‘SMPSO: A new PSO-based Metaheuristic for multi-objective
optimization,’’ in Proc. IEEE Symp. Comput. Intell. Milti-Criteria Decis.-
Making, Mar. 2009, pp. 66–73.

[31] S. ZapotecasMartínez and C. A. Coello Coello, ‘‘Amulti-objective particle
swarm optimizer based on decomposition,’’ in Proc. 13th Annu. Conf.
Genetic Evol. Comput. (GECCO), 2011, pp. 69–76.

[32] Q. Lin, J. Li, Z. Du, J. Chen, and Z.Ming, ‘‘A novel multi-objective particle
swarm optimization with multiple search strategies,’’ Eur. J. Oper. Res.,
vol. 247, no. 3, pp. 732–744, Dec. 2015.

[33] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[34] Q. Zhang and H. Li, ‘‘MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[35] K. Deb and H. Jain, ‘‘An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
I: Solving problems with box constraints,’’ IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Aug. 2014.

[36] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw. (ICNN), 1995, pp. 1942–1948.

[37] C. A. C. Coello and M. S. Lechuga, ‘‘MOPSO: A proposal for multi-
ple objective particle swarm optimization,’’ in Proc. Congr. Evol. Com-
put. (CEC), May 2002, pp. 1051–1056.

[38] J. D. Knowles and D. W. Corne, ‘‘Approximating the nondominated front
using the Pareto archived evolution strategy,’’ Evol. Comput., vol. 8, no. 2,
pp. 149–172, Jun. 2000.

[39] W. Peng and Q. Zhang, ‘‘A decomposition-based multi-objective par-
ticle swarm optimization algorithm for continuous optimization prob-
lems,’’ in Proc. IEEE Int. Conf. Granular Comput., Aug. 2008,
pp. 534–537.

[40] N. Al Moubayed, A. Petrovski, and J. McCall, ‘‘A novel smart
multi-objective particle swarm optimisation using decomposition,’’
in Proc. Int. Conf. Parallel Problem Solving Nature, 2010,
pp. 1–10.

[41] N. Al Moubayed, A. Petrovski, and J. McCall, ‘‘D2MOPSO: MOPSO
based on decomposition and dominance with archiving using crowding
distance in objective and solution spaces,’’ Evol. Comput., vol. 22, no. 1,
pp. 47–77, Mar. 2014.

[42] S. Kukkonen and K. Deb, ‘‘A fast and effective method for pruning of
non-dominated solutions in many-objective problems,’’ in Parallel Prob-
lem Solving From Nature—PPSN IX. Cham, Switzerland: Springer, 2006,
pp. 553–562.

[43] E. Zitzler, K. Deb, and L. Thiele, ‘‘Comparison of multiobjective evo-
lutionary algorithms: Empirical results,’’ Evol. Comput., vol. 8, no. 2,
pp. 173–195, Jun. 2000.

[44] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, ‘‘Scalable multi-objective
optimization test problems,’’ in Proc. Congr. Evol. Comput. (CEC),
May 2002, pp. 825–830.

[45] J. R. Schott, ‘‘Fault tolerant design using single and multicriteria genetic
algorithm optimization,’’ M.S. thesis, Dept. Aeronaut. Astronaut., Mas-
sachusetts Inst. Technol., Cambridge, MA, USA, 1995.

[46] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, ‘‘PlatEMO: AMATLAB platform
for evolutionary multi-objective optimization [educational forum],’’ IEEE
Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017.

124754 VOLUME 8, 2020

