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ABSTRACT The netted radar systems are known for being able to provide higher target detection
probabilities, more accurate measurements, and better multi-target tracking performance than the mono-
static/bistatic radar systems by exploiting information fusion processing. Simple radar networks made of
multiple independent monostatic radars with decentralized processing have been around for several decades.
In contrast, sophisticated radar networks with centralized data fusion only emerged during the last few years
thanks to the development in high-speed digital processing and precise time/phase synchronization. Although
the advanced radar networks offer the potential ability to detect stealth targets and low probability of intercept
radar signal, there are many technical challenges to be solved before they could evolve from concepts in
the research paper to implementable systems in the real-world. By presenting the various target detection
and parameter estimation approaches adopted by the distributed MIMO radar, the passive radar network, the
hybrid active-passive radar network, and theMIMO synthetic aperture radar (SAR), we lay out the foundation
for the future research to be conducted to solve the key issues limiting the practical performance of these
advanced radar networks.

INDEX TERMS Multistatic radar, MIMO radar, passive radar, radar network.

I. INTRODUCTION
Netted radar systems consisting of multiple transmitting and
receiving facilities that are widely separated have been the
subject of a high degree of interest for many years [1].
The evolution of radar networks with increasing levels of
sophistication is shown in FIGURE 1 [2], [3]. Simple radar
networks composed of independent monostatic radars oper-
ating at different frequencies have been around for several
decades, which usually employ decentralized data fusion at
the track level. For example, in a typical target-tracking sce-
nario, multiple moving target tracks obtained from different
incident angles by multiple widely-separated radars could be
fused to improve the multi-target tracking performance [4].
The National Weather Service WSR-88D Next-Generation
Radar (NEXRAD) used for nationwide weather observa-
tion in North America also belongs to this group of sim-
ple radar network [5]. Another form of conventional radar
network is the multistatic radar made of multiple receivers
(RXs) and single transmitter (TX) that could either be co-
located with one of the RXs or not (note: the former con-
figuration provides both monostatic and bistatic operation
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results), where target positioning could be carried out by
measuring the time-difference-of-arrival (TDOA) and using
the spherical-intersection (SX) method given that the number
of RXs is greater than 3 [6]. Target detection and localization
with multistatic radar composed of multiple TXs and RXs
with decentralized processing at the post-detection level have
been detailed in [7]. However, centralized processing at the
pre-detection raw data level was only briefly discussed in [7]
due to the various technical difficulties involved in practi-
cal implementation 20 years ago, such as the limited speed
of digital processing, the limited capacity of data transmis-
sion lines, the errors in time/phase synchronization, etc. The
U.S. has been exploring the possibility of combining sepa-
rate national radar networks into one multi-function phased
array (MPAR) network since 2007 [8]. More recently, both
Rockwell Collins, Inc. and Honeywell International Inc. have
filed patents on methods to merging the weather data from
multiple ground-based NEXRAD radar systems and airborne
weather radar systems to provide more accurate weather
information to the aircrafts [9]–[11]. By picking the optimum
radar waveform ‘‘on the fly’’ from the waveform set (e.g. via
adaptive pulse compression [12]), the airborne weather radar
systems could be upgraded to support multi-mission (weather
observation, sense-and-avoid, imaging) [13], [14]. Hence it is
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FIGURE 1. Evolution of radar networks. (a) Conventional radar network
composed of simple monostatic radars with decentralized processing.
(b) Distributed MIMO radar with centralized data fusion. (c) The hybrid
coherent/distributed MIMO radar made of ground-based co-located
MIMO radars. (d) The hybrid coherent/distributed MIMO radar as a
mixture of ground-based and airborne TX/RX nodes equipped with MIMO
antennas.

reasonable to predict that a more sophisticated and powerful
air-ground netted radar system is around the corner.

A. ORTHOGONAL NETTED RADAR SYSTEMS
With the recent technology advancement in high-speed digital
processing and precise time/phase synchronization, advanced
radar networks with RXs that are capable of processing the
reflected signals associated with the probing signals from
all the TXs (i.e. cooperative signal reception) become tech-
nically feasible [1]. The orthogonal netted radar systems
(ONRS) proposed in [15] consists of N pulse radar stations
with co-located TX-RX, and the signals transmitted from
different TXs are orthogonal to each other. Each RX in the
ONRS is equipped with N parallel matched filters, so that
the reflected signals associated with the illuminations from
different TXs could be separated and extracted for further
processing. For simple radar networks, each RX can only
receive and process the reflected signals associated with the
probing signals from a specific TX, hence the number of inde-
pendent echoes from the same target is linearly proportional
to the number of receivers (N ), i.e. O(N ) [15]. In compari-
son, for an ONRS the number of independent echoes from
the same target is increased to O(N 2). The ONRS has a
series of advantages over the conventional monostatic/bistatic

radar, which include 1) improved detection performance;
2) ad-hoc configuration; 3) more accurate target mea-
surement; 4) simultaneous measurement of target loca-
tion, velocity, & acceleration rate; 5) more effective target
identification; and 6) enhanced capabilities in countering
sophisticated anti-radar techniques [15].

B. MIMO RADAR
Although the concept ofMIMO radar is relatively new (it was
introduced in [16] in 2004), it could be regarded as part of a
continuum of different types of netted radar systems instead
of a separate subject [2], [3], [15]. MIMO radar systems
could be classified as two types: coherent/co-located MIMO
radar composed of closely spaced transmit/receive antenna
elements and statistical/distributed MIMO radar employ-
ing widely separated transmit/receive antennas [17], [18].
Although co-located MIMO radar may be regarded as a spe-
cial form of netted radar system with each transmit/receive
station shrinking into a MIMO antenna element [15], in this
work we focus on the distributed MIMO radar (DMR),
which observes the same aspect of a target from different
angles. The DMR is different from conventional multistatic
radar appeared in early literatures in the sense that the
reflected signals associated with illuminations from differ-
ent transmit antennas could be identified and separated at
each receiving antenna so that centralized processing could
be implemented. Hence the ONRS proposed in [15] could
be regarded as an embodiment of the DMR. Compared
with monostatic radar, the DMR provides better detection
performance against fluctuating target [19], tailored cover-
age area [20], more accurate target position and velocity
estimation [21], [22], richer signal information [23], and
increased reliability [23]. A more sophisticated type of DMR
is the hybrid co-located/distributed radar network presented
in [1], [24]–[27]. In [25], [26], a hybrid radar network com-
posed of one monostatic coherent MIMO radar, one bistatic
coherent MIMO radar, and two bistatic phased-array radars
was formulated by exploiting the MIMO and phased-array
antenna arrays mounted on four airborne moving platforms.
In [27], an airborne hybrid co-located/distributed MIMO
radar network consisting of multiple transmit and receive
MIMO antenna arrays mounted on widely separated moving
platforms was considered. Interested readers are referred to
these works for more details.

C. PASSIVE RADAR NETWORK (PRN)
Passive radar could be used as a supplement to the active
radar since 1) it doesn’t require dedicated transmitter or spec-
trum allocation; 2) it offers superior detection performance
against the stealth targets and is immune to the antiradiation
missiles (ARMs). Potential candidates for illuminators of
opportunity (IOs) include analogue communications systems
(e.g. FM [28], [29] & analogue terrestrial TV [30]), digi-
tal communications systems (e.g. Wi-Fi [31], [32], digital
video broadcasting-terrestrial (DVB-T) [33]–[35], & mobile
phones base stations [36], [37]), satellite-borne illuminators
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(e.g. Global Navigation Satellite System (GNSS) [38] &
Satellite TV (DVB-S) [39]), and terrestrial positioning sys-
tems (e.g. [40], [41]). Since the signals transmitted from the
IO are generally not known a priori, the passive radar receiver
is usually equipped with a dedicated reference channel (RC)
to collect the direct-path signal from the IO as a reference
of the transmitted signal [42]. With the advancement in
MIMO radar technology, there has been a steadily increasing
interest in developing PRN with widely separated IOs and
RXs [36], [37], [43]–[49].

D. HYBRID ACTIVE-PASSIVE RADAR NETWORK (APRN)
The APRN is defined in this work as a radar system that
exploits both the dedicated radar transmit waveforms and
signals from the IOs. It usually offers better target detection
performance than the PRN due to the increased level of con-
trol over the sensor geometry and the more flexible transmit
waveform design. In [50], it was proposed that an active
fallback component (AFC) transmitting low-probability-of-
intercept (LPI) signals could be used in conjunction with
the passive bistatic radar (PBR), which is capable of oper-
ating as a fallback in case the IOs are destroyed in a con-
flict situation. In [31], [51], [52], APRNs composed of the
frequency-modulated continuous wave (FMCW) radar and
the WiFi-based passive radar have been considered for short
range monitoring. In [53], an APRN consisting of a mono-
static coherent MIMO radar and several IOs was proposed,
with the TX and the RX assumed to be co-located. Another
example of APRN is the deployable multiband passive/active
radar (DMPAR) proposed for air surveillance and air defense
in [54]–[56], which employs decentralized data fusion pro-
cessing. Joint radar-communications (JRC) system may be
considered as a special form of APRN, which generally offers
better performance than the PRN but worse than the active
DMR [57]–[65].

E. MULTISTATIC SAR AND MIMO SAR
Synthetic aperture radar (SAR) synthesizes a large phased
array antenna aperture by moving an individual antenna
array element or the conventional antenna through mul-
tiple successive locations in space [66]. Multistatic SAR
offers higher mapping rate than the monostatic SAR and
could be classified as two types: fully active system and
semi-active system [67], [68]. In fully active system, multiple
sensors are employed and each sensor has both transmit
and receive capabilities, e.g. [69]. In semi-active system,
only one sensor is transmitting, and multiple widely dis-
tributed sensors are employed to receive the echoes from
different angles, e.g. [70]. Fully active multistatic SAR has
higher sensitivity and flexibility than the semi-active sys-
tem at the price of higher computational complexity. The
term ‘‘MIMO SAR’’ formally appeared in literatures for the
first time in 2007 [71]–[74], although the first suggestion of
using a MIMO SAR architecture emerged in May 2006 [75].
The MIMO SAR system employs multiple sensors that are
simultaneously transmitting and receiving. By exploiting the

orthogonality between transmit waveforms, each receiving
sensor is able to distinguish the echoes associated with differ-
ent transmit waveforms. The MIMO SAR could be classified
as the coherent MIMO SAR [74], [76] and the distributed
MIMO SAR [77], with the latter being our main focus.

F. CONTRIBUTIONS OF THIS WORK
In this work, we present various types of netted radar systems,
which include the DMR, the PRN, the APRN, and the MIMO
SAR. The advantages of these advanced radar networks over
the conventional monostatic radar are summarized, while the
key technologies and challenges for implementing them are
identified. Our major contributions regarding each type of
radar network are summarized as below.

• To illustrate the design principle of knowledge-aided
(KA) detectors for DMR, we introduce two detectors
for target detection in heterogeneous interference and
partially homogeneous interference, respectively, which
exhibit better performance than the existing detectors.

• High-speed highly-maneuvering target tracking with
DMR is considered, and the transmitted waveforms
are adaptively selected from a pre-designed waveform
library to minimize the mean squared error (MSE) of the
target state estimate.

• The problem of sensor geometry optimization for DMR
is considered, and the trajectories of the TXs/RXs
mounted on the unmanned aerial vehicles (UAV) are
optimized for target localization.

• The performance degradation of the existing detectors
designed for PRN in the presence of the direct-path
interference, the multipath clutter and the interfering
targets is evaluated for the first time.

• The problem of sensor geometry optimization in APRN
is discussed for the first time.

• The major advantages of MIMO SAR over monos-
tatic and multistatic SAR are highlighted, and the key
technical challenges for implementing MIMO SAR are
summarized.

The rest of this work is organized as following. Target
detection, measurements, and tracking with DMR are con-
sidered in Section II. Target detection and parameter estima-
tion with PRN are discussed in Section III, where various
types of interferences are taken into consideration. Sensor
geometry optimization in APRN is discussed in Section IV.
In Section V, the concepts of monostatic SAR, multistatic
SAR, and MIMO SAR are reviewed. Finally, some conclu-
sions are drawn in Section VI.

II. TARGET DETECTION, PARAMETER ESTIMATION, AND
TRACKING USING DMR
Target detection, parameter estimation, and tracking are the
three primary functions of a DMR system. The process of
deciding whether or not a target is present is a problem
involving statistical hypothesis testing. In a single-target sce-
nario, the target detection problem is usually formulated as a
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binary hypothesis testing problem where two hypotheses are
made: the null hypothesis (target is absent) and the alternative
hypothesis (target is present). The radar measurements have
to be examined to decide which hypothesis is more likely
to be true. In a multi-target scenario with M targets, the
target detection problem could be formulated as an M-ary
hypothesis testing problem [78]. General statistical signal
detection theory could be found in [79], where the commonly
used detectors such as the Neyman-Pearson (NP) detector
and the generalized likelihood ratio test (GLRT) detector are
introduced. Estimators for radar applications are classified as
range estimator, Doppler estimator and angle estimator. The
lower bound on the variance of any unbiased estimator is set
by the Cramer-Rao lower bound (CRLB). A general introduc-
tion to widely used estimators such as the maximum likeli-
hood estimator and the best linear unbiased estimator (BLUE)
is given in [80]. The estimation accuracy of the target position
could be improved by collecting a series of estimates over a
period of time and combining them with reasonable assump-
tions about the target’s trajectory, i.e. tracking. Basic tracking
theory such as sequential least-squares estimation (LSE) is
covered in [80].

Assuming that the readers possess the basic knowl-
edge about the detectors and estimators commonly used
by the conventional monostatic radar, in the following
we mainly focus on the key technologies and the major
challenges corresponding to target detection with DMR.
Specifically, the problem of interference suppression, adap-
tive waveform design for target tracking, and the various
approaches to sensor geometry optimization are discussed in
Sec. II-A, Sec. II-B, and Sec. II-C, respectively.

A. INTERFERENCE SUPPRESSION
DMRemploys large aperture arraysmade of widely separated
transmit and receive antennas. The transmit waveforms from
different antennas are designed to be orthogonal to each other,
so that they could be identified and separated at each receive
antenna. By exploiting the spatial diversity of the target’s
radar cross section (RCS), the problem of target fluctuation
could be solved. Since different transmit-receive antenna
pairs observe clutter scatterers from different transmitter-
clutter-receiver paths, the clutter power usually varies signif-
icantly from one resolution cell to another and is different for
each transmit-receive pair, i.e. nonhomogeneous clutter [19].
The most commonly used clutter models for DMR include
the Spherically Invariant Random Vector (SIRV) model [81],
the sparse representation model [19], the autoregressive (AR)
model [82], the random matrices model [83], and the general
model exploiting the persymmetric structure of the inter-
ference covariance [84]–[86]. For ground-based stationary
DMR, the clutter is near-stationary or slowly moving most
of the time. Hence the low-rank sparsity-based clutter model
with known clutter subspace [19] or the low-order AR model
with known model order [82] could be used to model the
clutter for ground-based stationary DMR. In contrast, for
airborne DMR, the clutter subspace and the AR model order

FIGURE 2. Signal models commonly used for the received signal of the
DMR. N and Y represent ‘‘no’’ and ‘‘yes’’, respectively.

have to be estimated from the measurement data adap-
tively [20]. The tree diagram for the commonly used signal
models for DMR is shown in FIGURE 2.

Depending on whether the clutter covariance for each
transmit-receive antenna pair shares the same covariance
structure, the clutter for DMR could be classified as par-
tially homogeneous clutter and heterogeneous clutter. The
partially homogeneous clutter may be represented by the
compound Gaussian model with distinct texture term, which
is a positive random variable accounting for the clutter power,
and common covariance structure, which is a random matrix
following the inverse complex Wishart distribution, for each
transmit-receive pair [87]. The heterogeneous clutter may be
modeled as i.i.d. complex zero-mean Gaussian vectors with
random covariance matrices, and the different clutter power
levels for each transmit-receive pair may be represented by
unknown deterministic scaling factors [83].

The most challenging issue in clutter suppression for DMR
is the lack of i.i.d. training data in nonhomogeneous clutter
environment. Specifically, for DMR consisting ofM transmit
antennas andN receive antennas, at least 2KMN i.i.d. training
data samples free of target signal components are required
to achieve a SINR loss of 3dB if the conventional sample
covariance matrix (SCM) based clutter suppression method is
to be used, where K is the number of pulses transmitted from
each antenna per CPI.Many researchers believe that so-called
knowledge-aided (KA) covariance estimation is a possible
solution to alleviating the requirement on training data, and a
series of training-free and low-sample-support KA detectors
have been designed by exploiting the prior knowledge of the
clutter that might be available [83], [88].

In the following, we introduce two detectors for target
detection in heterogeneous interference and partially homo-
geneous interference, respectively. To address heterogeneous
interference, the local interference power in the cell under
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test, um,n,0, is supposed to be an unknown deterministic
number, and the interference covariance is assumed to be a
random matrix. A detector termed as the general knowledge-
aided (GKA) detector is designed by incorporating the prior
knowledge about the interference into the geometric approach
proposed in [86]. For partially homogeneous interference,
um,n,0 is assumed to be a random variable following a specific
pdf, such as K-distribution, student-t distribution, or Weibull
distribution. The texture-specific clairvoyant (TCL) detectors
corresponding to various pdfs are first obtained assuming
known interference covariance. After that, the interference
covariance is estimated by jointly exploiting the sample
covariance matrix (SCM), the persymmetric structure of
6m,n, and the prior knowledge matrix. Since the weighting
factor is adaptively selected based on convex combination,
this detector is termed as the texture-specific persymmetric
convex combination (TPCC) detector. The design process of
the GKA detector and the TPCC detector are detailed below.

1) HETEROGENEOUS INTERFERENCE
The interference signal cm,n,l (m = 1, . . . ,M ; n = 1, . . . ,N ;
l = 0, 1, . . . ,L) is modeled as

cm,n,l =
√
um,n,lgm,n,l, (1)

where um,n,l is a positive unknown deterministic number
controlling the local scattering power [83] and gm,n,l is a
K -dimensional, independent, zero-mean complex Gaussian
vector. It is further assumed that

E{cm,n,0cHm,n,0|um,n,0,6m,n} = um,n,06m,n,

E{cm,n,lcHm,n,l |um,n,l,4m,n} = um,n,l4m,n, l = 1, . . . ,L,

6m,n|4m,n∼ CW−1((ζm,n−K )4m,n, ζm,n).

(2)

where 6m,n and 4m,n represent the covariance structure of
the primary and the secondary training data, respectively, and
CW−1 represents the inverse complex Wishart distribution
with ζm,n > K degrees of freedom. As ζm,n increases, the
variance of 6m,n decreases. Suppose that 4m,n is known and
4m,n = 6m,n, the clairvoyant GLRT (CL-GLRT) detector is
given by

3GLRT−CL

=

MT∏
m=1

N∏
n=1

[
1−

sHm,n6
−1
m,nym,n,0

(sHm,n6
−1
m,nsm,n)(y

H
m,n,06

−1
m,nym,n,0)

]−K
H1
≷
H0

ξ ′.

(3)

where ξ ′ is the threshold. By minimizing the Euclidean dis-
tance between the primary and the secondary covariance,
6m,n is estimated as [89]

S̆m,n,l = Um,n,l3m,n,lUH
m,n,l,

3m,n,l = diag([εm,nλm,n,l, λm,n,l, . . . , λm,n,l]),

λm,n,l = max

(
1,
||c̆m,n,l ||2εm,n
ε2m,n + K − 1

)
(4)

where c̆m,n,l = cm,n,l/σ̄ 2
m,n,I with σ̄ 2

m,n,I being the lower
bound to the white interference power, Um,n,l is a uni-
tary matrix of the eigenvectors of c̆m,n,l c̆Hm,n,l with the 1st

eigenvector corresponding to the eigenvalue
∥∥c̆m,n,l∥∥2, and

εm,n > 1 is the upper bound to the condition number of
the covariance [90], [91]. Based on the numerical simula-
tions, the covariance estimate in (4) is only accurate when
4m,n = 6m,n, i.e. the interference is partially homogeneous.
To improve the estimation accuracy in heterogeneous inter-
ference, we resort to the prior knowledge matrix 6̂m,n,P =

6m,n � (tm,ntHm,n), where � denotes the Hadamard product
and tm,n is a vector of i.i.d. Gaussian random variables with
mean of 1 and variance of σ 2

m,n,KA. The smaller σ 2
m,n,KA

is, the more precise the prior knowledge is. The general
linear combination (GLC) method is used to minimize the
mean-squared error (MSE), and the weighting factors $m,n
and ηm,n are selected adaptively by solving the optimization
problem [92]

min
$m,n,ηm,n

E{||
_

6m,n,G −6m,n||
2
},

s.t.
_

6m,n,G = $m,n
_

6m,n,P + ηm,n
_

4m,n,S . (5)

To illustrate the advantage of the GKA detector over the
existing detectors, a 2×2 DMR is considered in the following
for the numerical performance evaluations without losing
generality. A far-field point is assumed to be located at the
origin. The two transmitters are assumed to be located at
(6.0, −7.0) km and (−6.7, 2.8) km, respectively. The two
receivers are assumed to be located at (−9.0, −4.9) km and
(4.6, 5.8) km, respectively. The target is moving at 15 m/s,
the moving direction of the target is randomly selected from
[−180◦, 180◦] in each Monte Carlo (MC) trial, and the
bistatic Doppler of the target changes from run to run. It is
further assumed that K = 8 pulses are transmitted per CPI,
the PRF is 500 Hz, the carrier frequency is 1 GHz, and L =
10. A fluctuating target is considered. The complex target
amplitude αm,n changes from trial to trial and is assumed
to follow a complex Gaussian distribution with zero mean
and unit variance. It is further assumed that the interference
power is 20 dB, ζm,n = 30, and σ 2

m,n,KA = 0.1. The detection
probabilities of the GKA detector in heterogenous interfer-
ence with inverse Gamma distributed texture are plotted in
FIGURE 3 assuming SINR = 10 dB. The shape parameter
and the scale parameter are set as βm,n = ρm,n−1 = 4, so that
E{um,n,0} = 1. For SCM-GLRT, the interference covariance
is estimated from

6̂m,n,,S =
1
L

∑L

l=1
ym,n,lyHm,n,l (6)

It could be seen from FIGURE 3 that although the perfor-
mance of the GKA detector is slightly inferior to that of the
CL-GLRT detector, which is the clairvoyant detector serving
as the performance upper bound of all the detectors, the GKA
detector exhibits much better performance than the conven-
tional SCM-GLRT. Moreover, compared with the Euclidean
detector proposed in [89], which doesn’t utilize any prior
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FIGURE 3. Detection performances of the GKA detector in heterogeneous
interferences for various Pfa. Although the performance of the GKA
detector is slightly inferior to that of the CL-GLRT detector, which is the
clairvoyant detector serving as the performance upper bound of all the
detectors, the GKA detector exhibits better performance than non-KA
detectors such as the Euclidean detector proposed in [92] and the
conventional SCM-GLRT.

knowledge regarding the interference covariance structure,
the GKA detector provides higher detection probabilities
even in the case that the prior knowledge is not very accurate,
i.e. σ 2

m,n,KA = 0.1.

2) PARTIALLY HOMOGENEOUS INTERFERENCE
For partially homogeneous interference with um,n,0 follow-
ing a specific pdf, the optimum detector is no longer the
CL-GLRTdetector given in (3). Assume that the interferences
in the primary and the secondary data associated with the
same TX-RX pair share the same covariance matrix structure
but have different power levels. It follows that

E{cm,n,0cHm,n,0|um,n,0,6m,n} = E
{
um,n,0

}
6m,n, . (7)

Without loss of generality, we assume thatE{um,n,l} = 1 [87].
6m,n is modeled as inverse complex Wishart distributed ran-
dom matrices with degrees of freedom as µm,n, i.e.

6m,n ∼ CW−1((µm,n − K )6̂m,n, µm,n). (8)

where 6̂m,n is the mean of6m,n. In this case, the general form
of the GLRT detector using only the primary data is

max
α

∏
m,n

∫
+∞

0 u−Km,n,0 exp{−pm,n,0
/
um,n,0}f (um,n,0)dum,n,0∏

m,n
∫
+∞

0 u−Km,n,0 exp{−qm,n,0
/
um,n,0}f (um,n,0)dum,n,0

H1
≷
H0

ξ,

pm,n,0 = (ym,n,0 − αm,nsm,n)H6−1m,n(ym,n,0 − αm,nsm,n),

qm,n,0 = yHm,n,06
−1
m,nym,n,0. (9)

Suppose that um,n,0 follows the inverse Gamma distribution
with the shape parameter ρm,n > 2 and the scale parameter
βm,n > 0, the pdf of um,n,0 is

fIG(λm,n,0) =
β
ρm,n
m,n λ

−(ρm,n+1)
m,n,0

0(ρm,n)
exp

(
−βm,n

/
λm,n,0

)
(10)

and the amplitude pdf of the interference follows the student-
t distribution [93]. Plugging (10) into (9), the TCL detector

for compound Gaussian interference with inverse Gamma
distributed texture (TCL-IG) is obtained as

3TCL−IG1 =
∏
mn

qm,n,0 − pm,n,0
βm,n + qm,n,0

=

∏
mn

3m,n,0(ym,n,0)
yHm,n,06

−1
m,nym,n,0

βm,n + yHm,n,06
−1
m,nym,n,0

H1
≷
H0

ξTCL−IG1, (11)

where3m,n,0(ym,n,0) is the normalized matched filter (NMF)
given by

3m,n,0(ym,n,0) =
sHm,n6

−1
m,nym,n,0

(sHm,n6
−1
m,nsm,n)(y

H
m,n,06

−1
m,nym,n,0)

. (12)

Since the detection threshold associated with (11) is much
less than 1 for M > 1, N > 1, the TCL-IG detector is
implemented in numerical simulations as

3TCL−IG =
∏
mn

[1−3TLS−IG1]−K
H1
≷
H0

ξTLS−IG, (13)

where ξTLS−IG is the detection threshold. The final covariance
estimate 6̂m,n,T could be obtained by jointly exploiting the
sample covariance matrix (SCM), the persymmetric struc-
ture of 6m,n, and the prior knowledge matrix 6̂m,n,KA =

6̂m,n � (tm,ntHm,n) using the persymmetric convex combina-
tion (PCC) method proposed in [95]. Finally, the TPCC-IG
detector is obtained by plugging the covariance estimate
6̂m,n,T into (13).
The detection probabilities of the TCL-IG detector, the

TPCC-IG detector, the PCC-GLRT [95] (i.e. the detector
obtained by plugging 6̂m,n,T into (3)), the KA-P-GLRT [96],
the SCM-GLRT, and the CL-GLRT in partially homogeneous
interference with um,n,0 following the inverse Gamma dis-
tribution (βm,n = ρm,n − 1 = 9, µm,n = 30) are plotted
in FIGURE 4 assuming SINR = 10 dB. The parameters of
the DMR used to generate these figures are the same with the
ones used to generate FIGURE 3. Among these detectors, the
TCL-IG detector and the CL-GLRT are clairvoyant detectors
assuming known 6m,n, with the former exhibiting better
performance. The reason behind this is that the CL-GLRT
was derived assuming that um,n,0 is an unknown deterministic
number that could take on any value with equal probabil-
ity, which is equivalent to ignoring the a priori knowledge
regarding the pdf of um,n,0. Similarly, the TPCC-IG detec-
tor is shown to outperform the PCC-GLRT [95] and the
KA-P-GLRT [96], which also jointly exploit the SCM, the
persymmetric structure of 6m,n, and the prior knowledge
matrix.
It is worth pointing out that, despite of the promising pre-

liminary simulation results presented above, the full potential
of two KA detectors introduced in this section and their
limitations need to be validated with a more comprehensive
analysis, which is beyond the scope of this work. Moreover,
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FIGURE 4. Detection performances of the TPCC-IG detector in partially
homogeneous interferences for various Pfa. It could be seen that for
clairvoyant detectors, the TCL-IG have better performance than the
CL-GLRT, which was derived assuming that um,n,0 could take on any
value with equal probability. Moreover, the proposed TPCC-IG outperform
other KA detectors such as the PCC and the KAP.

although the prior knowledge regarding the clutter covari-
ance structure could be exploited to compensate for the lack
of i.i.d. training data in heterogenous clutter for ground-
based stationary DMR, it was pointed out in [97] that the
clutter covariance structure has to be estimated from the
measurement data adaptively when DMR carried by airborne
platforms is concerned. And it was also shown in the simu-
lation results of [97] that the low-rank sparsity-based clutter
suppression method proposed in [20] exhibits a performance
degradation when testing against more realistic, more com-
plicated clutter models. In a word, how to effectively sup-
press the nonhomogeneous clutter encountered by the DMR
remains a challenging technical problem that needs to be
solved to realize the full potential of the DMR.

B. WAVEFORM DESIGN
The performance of DMR, such as the range/Doppler res-
olution, the target parameter measurement accuracy, and
the capability to suppress interferences, depends highly on
the waveform properties of the signals transmitted by each
TX. For target tracking with DMR, the ability of each TX
to adjust its probing signals adaptively in real-time would
lead to higher target localization accuracy [98]–[100]. It is
worth pointing out that the optimum solution to the adap-
tive waveform design problem depends on many factors,
which includes the kinematic state of the target, the relative
position of the target and radar, the interference-to-noise
ratio of the echo signals received by each RX, and the data
fusion mechanism, i.e. centralized/decentralized processing.
In [101], target tracking using cognitive radar system com-
posed of multiple radars mounted on UAVs is considered,
and the expected cross-entropy is used as the objective func-
tion. Three key techniques are incorporated in the proposed
cognitive radar system: waveform design, path planning, and
sensor selection. It should be noted that the waveform library
in [101] is very limited, which only includes three different
modulated frequencies. In [102], joint transmitter waveform
and receiver path optimization is considered, where the wave-
form is adaptively selected from a waveform library consist-
ing of multiple Gaussian linear frequency modulated (LFM)

waveforms with various parameters. The waveform selection
method is later extended to the interacting multiple model
(IMM) in [103], which is briefly reviewed in the following.

It is assumed that the target motion is governed by the
kinematic model xk+1 = Fxk + wk , where xk is the target
kinematic state vector at discrete-time instant k , F is the
state transition matrix, and wk is the process noise modeled
as independent Gaussian-distributed variable with zero-mean
and covariance Q. Suppose that the target is moving with
near constant velocity and the state vector is given by xk =
[pTk , v

T
k ]
T , where pk and vk are the position and the velocity

of the target at time instant k ∈ {0, 1, 2, . . .}, respectively.
According to [103], the transition matrix and the covariance
matrix of the process noise are, respectively,

F =
[
I2×2 T I2×2
02×2 I2×2

]
, Q =

 T 3

3
Q0

T 2

2
Q0

T 2

2
Q0 TQ0

 , (14)

where I and 0 are the identity matrix and the zero matrix,
respectively, T is the sampling interval, Q0 = diag(qx , qy),
with qx and qy representing the power spectral densities of
the process noise in x-axis and y-axis, respectively. Note that
although the noise covariance matrix given in some recently
published paper doesn’t match (14), e.g. (12) in [101], we
believe that (14) is valid and will follow it in this work. The
IMM algorithm treats the motion of the maneuvering target as
multiple switchingmodels expressed as xk+1 = F(mk+1)xk+
wk (mk+1), where mk+1{1, . . . ,M} is a finite-state Markov
chain following the transition probabilities of switching from
model l to model m, and wk (mk+1) is the process noise,
whose covariance is E{wk (mk+1 = l)wT

k (mk+1 = l)} =
Q(mk+1 = l). The tracking performance is usually
evaluated by the state estimation error covariance matrix,
which is dependent on the parameters of the transmit-
ted waveform. Specifically, the measurement covariance
matrix Pm,k+1|k+1(ψk+1) is a function of the transmitted
waveform parameter vector ψk+1 at discrete-time instant
k + 1. Assume that the error covariance of the filtered
state estimate for the m-th extended Kalman filter (EKF)
component of the IMM-EKF algorithm at time instant
k + 1 is Pm,k+1|k+1(ψk+1), and the tracking performance
is characterized by P♦k+1|k+1(ψ), which is the combi-
nation of the state estimates’ error covariance matrices
P1,k+1|k+1,P2,k+1|k+1, . . . ,PM ,k+1|k+1. The waveform opti-
mization problem is formulated as [103]

ψ
opt
k+1 = argmin

ψ∈9

{trace(P♦k+1|k+1(ψ))}, (15)

where9 is the waveform library which may include multiple
types of radar waveforms or a single type of radar waveform
with various waveform parameters.
In the following we will present an example to illustrate

the process of adaptive waveform selection. Consider a DMR
composed of one TX and four RXs (see FIGURE 5 (a)).
The initial position and velocity of the high-speed highly-
maneuvering target are p0 = [25, 0] km and [300, 200]Tm/s,
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FIGURE 5. Adaptive waveform selection for high-speed
highly-maneuvering target tracking. (a) Deployment of the transmitter
and four receivers. (b) Waveform selection result. (c) Target trajectory
(zoomed-in) and the tracking result.

respectively. The power spectral density of the process noise
is q = qx = qy = 10m2. The target starts to change its
velocity at t = 4 s uniformly until reaches [−300, 200]Tm/s
at t = 5 s. Then it travels with a nearly constant model again
with q = 10m2. At t = 10 s, the target performs another turn
and changes its velocity to [−300, −100]Tm/s by t = 11 s.
Finally, at t = 16 s, the target maneuvers again and changes
its velocity to [150, 200]Tm/s by t = 17 s. Assume that the
complex envelope of the LFM waveform is given by [103]

s̃(t) =
(

1
πλ2

) 1
4

exp
(
−

(
1
2λ2
− j2πb

)
t2
)
, (16)

where λ is the Gaussian pulse length parameter and b =
1f /(2Ts) is the frequency modulation rate, with 1f and Ts
representing the frequency sweep and the effective pulse
duration, respectively. The transmitted waveform parameter
vector is defined as ψ = [λ,1f ]T , and the waveform selec-
tion criterion is to minimize the mean squared error (MSE) of
the target state estimate, which is equivalent to minimize the
trace of the state estimate’s error covariancematrix. To realize
the optimization goal, the waveform parameters λ and1f are
adaptively selected from λ ∈ [20, 30, 40, 50, 60] µs and1f ∈

[0.1, 0.325, 0.55, 0.775, 1] MHz, respectively. The waveform
selection result is shown in FIGURE 5 (b). The changes of
1f at t = [4, 10, 16] sec, i.e., the time instants when the
target changes its velocity, are clearly visible. The true target
trajectory (zoomed-in) are the estimated target positions are
shown in FIGURE 5 (c). It could be seen that even at the target
‘‘turning-points’’, the tracking errors are still small enough to
be tolerable.

C. SENSOR GEOMETRY OPTIMIZATION
Since DMR employs multiple widely separated transmitting
and receiving facilities, their relative positions to the targets
of interest and the observation angles have a huge influence
over the target detection, localization and velocity estimation
performance of the DMR.

1) TARGET DETECTION
In [105], [106], the positions of antennas are optimized
to increase the coverage ratio of the radar system. As an
extension of [105], [106], the monitoring requirements are
assumed to be changing in [107], and the antennas are dynam-
ically deployed to maximize the coverage ratio. In [108], the
positions of DMR sensors are optimized to maximize the
SNR. Meanwhile, the goals of antenna position optimization
in [109] and [110] are to get an even distribution of sig-
nal energy and to minimize the interference power density,
respectively.

2) TARGET LOCALIZATION AND TRACKING
In [21], the CRLB for target localization accuracy is devel-
oped for DMR employing coherent and noncoherent pro-
cessing. Symmetrically deploying radars around the target is
shown to be optimum in the sense of minimizing the CRLB,
and the CRLB on the variance of the estimate is reduced by
a factor of MN/2 by using DMR with optimum deployment
geometry compared to the case where a single antenna is
used. The geometric dilution of precision (GDOP) metric,
which is the square root of the ratio between the variance
of the target location estimate and the variance of the time
delay estimation error, is used to map the performance of
DMR with a specific deployment geometry over the surveil-
lance area. Later, it is reported in [111] that the mean square
error of the BLUE for both coherent and noncoherent target
localization techniques for DMR could be factored into two
terms dependent on the signal characteristics and the sen-
sor locations, respectively. In [112], the optimal geometry
of multistatic radar for 2D target localization is analyzed.
The area of error ellipse is minimized by maximizing the
determinant of the Fisher information matrix (FIM). It is
shown that for DMR consisting of single TX and multiple
RXs, the optimum angular separation between each RX and
the TX is±π /3. In simulations, target localization with DMR
consisting of single TX at fixed position and multiple RXs
carried by UAVs is considered, and the trajectories of the
UAVs are optimized by maximizing the determinant of FIM
using the gradient-descent algorithm. In [113], an approach to
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efficiently deploy the antennas for the ultrawideband (UWB)
MIMO noise radar was proposed to minimize the target local-
ization error.

In the following, we consider a scenario where multiple
independent bistatic radar pairs carried by the UAVs are
used for target localization. Although usually the time-of-
arrival (TOA) measurements from at least three TX-RX are
required to pin-point the target, two TX-RX pairs are enough
when the target location is known roughly a priori. Sup-
pose that N TX-RX pairs are employed, the Fisher informa-
tion matrix (FIM) for multistatic TOA localization problem
is [103]

8 =

N∑
i=1

1

σ 2
i

(ut,i + ur,i)(ut,i + ur,i)T ,

ut,i =
[
cos θt,i sin θt,i

]
,

ur,i =
[
cos θr,i sin θr,i

]
, (17)

where σ 2
i = c2E{e2i }, with c and ei representing the speed of

light and the TOAmeasurement noise of the i-th TX-RX pair,
respectively; ut,i and ur,i are the unit vectors pointing from
the i-th TX and the i-th RX to the target, respectively; and θt,i
(θr,i) (i = 1, . . . ,N ) are the angles between ut,i (ur,i) and the
positive x-axis. It has been proved in [103] that maximizing
the determinant of the FIM is equivalent to

max
β


(∑N

i=1

1

σ 2
i

)2

−

(∑N

i=1

sin(2βi)

σ 2
i

)2

−

(∑N

i=1

cos(2βi)

σ 2
i

)2
 (18)

where

βi =
θt,i + θr,i

2
. (19)

According to [103], the optimal solutions to the optimization
problem in (18) for N = 2 are∣∣β∗1 − β∗2 ∣∣ = π/2, (20)

and the optimal solutions for N = 3 are

β∗2 − β
∗

1 = ±
tan−1(

√
ζ , b2 − a2 − 1)

2
,

β∗3 − β
∗

1 = ∓
tan−1(

√
ζ , a2 − b2 − 1)

2
, (21)

where

a =
(
σ1

σ2

)2

, b =
(
σ1

σ3

)2

, (22)

ζ = −(a+ b+ 1)(a− b+ 1)(a+ b− 1)(a− b− 1). (23)

To illustrate the process of UAV trajectory optimization,
we consider some simple examples in the following. Assume
that the DMR is composed of two independent bistatic pairs
mounted on the UAVs, TX1-RX1 and TX2-RX2, and each
TX/RX is required to maintain a minimum distance from the
target (20 km for TXs and 10 km for RXs). The target is

FIGURE 6. Optimal trajectories of UAVs for target localization.
(a) 2× 2 Case I; (b) 2× 2 Case II; (c) 3× 3 Case I; (d) 3× 3 Case II.

supposed to be located at p = [0, 0]T km. Two different cases
are considered, where the initial positions of the TXs and
RXs are different. The initial and final positions of the UAVs
for Case 1 and Case 2 are shown in FIGURE 6 (a) and (b),
respectively. It could be seen that the final positions of
TX1- RX1 and TX2- RX2 form a separation angle of approx-
imately 90◦ in both cases, which match perfectly with the
derivation result in (20). Next, we consider the case where
the DMR consisting of three TX-RX pairs. Like the previous
example, two different configurations are considered, which
are illustrated in FIGURE 6 (c) and (d), respectively. It is
shown that the separation angles satisfy β∗3 − β

∗

2 ≈ 120◦,
β∗2 − β

∗

1 ≈ 120◦ in FIGURE 6 (c) and β∗3 − β
∗

2 ≈ 60◦,
β∗2 − β

∗

1 ≈ 60◦ in FIGURE 6 (d), which match the result
given in (21).
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It is worth mentioning that the results in (20) and (21)
are the same as the ones derived by the authors of [103]
in their earlier publication [104] (see (27) and (31a)-(31b)
in [104]), where the problem of emitter localization with
angle-of-arrival (AOA) sensors carried by the UAVs is con-
sidered (note: a factor of 2 is missing since βi , 2θi is
assumed in [104], where θi is the angle-of-arrival location
of the emitter). It is actually intriguing since locating an
emitter transmitting high-power signals actively should be
much easier than locating a target passively reflecting signals
transmitted by the radar TXs. Moreover, the mechanisms of
the two tasks are very different. For example, target localiza-
tion with bistatic radar involves the concept of the bistatic
radar cross section (RCS), which is dependent upon many
factors such as the size/shape/material of the target and the
bistatic geometry, while emitter localization has nothing to
do with the RCS. Also, the radar RXs would have known the
waveforms transmitted by the TXs a priori (the waveforms
transmitted from different TXs could either be same or dif-
ferent), while the AOA sensors wouldn’t have access to such
knowledge regarding the emitter to be located. Nevertheless,
we think both [103] and [104] are great works on UAV path
optimization.

3) TARGET VELOCITY ESTIMATION
In [114], the CRLB for target velocity estimation accuracy
is derived for DMR consisting of widely separated transmit
and receiver antennas, and the problem of antenna deploy-
ment optimization based on the CRLB is considered. It is
shown that when target is a point scatterer and all antennas
are located at similar distances from the target, symmetri-
cally placing the transmit and receive antennas leads to the
best velocity estimation performance. Simulation results also
show that wider sensor separations lead to better performance
in the sense of CRLB of the velocity estimation error.

III. INTERFERENCE SUPPRESSION AND RECEIVER
PLACEMENT FOR PRN
A. INTERFERENCE SUPPRESSION
The PRN could be implemented either with or without
RC. For PRN with RC, target detection is carried out
based on the cross-ambiguity function (CAF) between the
direct-path signal collected by the reference channel (RC)
and the echo signal collected by the surveillance channel
(SC) [36], [37], [43], [44]. For PRN without RC, the inter-
channel correlations between the signals collected by the
widely separated receivers are exploited for target detec-
tion [45]–[49]. It has been reported in [43] that PRN with
RC provides better target detection performance than its
RC-free counterpart as long as the direct-path reference
signal is of acceptable quality. The research works pub-
lished in the open literatures on PMR without RC could
be divided into three subgroups based on the IO waveform
model: unknown deterministic processes with i.i.d. temporal
samples [45], [46], stochastic processes with temporally-
correlated samples [47]–[49], and realistic signal model

FIGURE 7. Performance degradation of the existing detectors designed
for PRN in the presence of unaddressed multipath clutter: (a) Pfa = 0.01
(b) SNR = −5 dB. The solid lines and the dashed lines represent the
detection probability of the detectors in the noise-only case and the
noise-plus-clutter case, respectively.

depending on the type of IO under consideration [36], [37].
Although it is well-known that the performance of the PRN is
under the joint influence of the multi-path clutter, the direct-
path interference, the interfering targets, as well as the noise
in the received signal, most research works published in the
open literatures on the PRN failed to take all of them into
consideration.

As an illustrating example, the detection probabilities of
the ED detector proposed in [115], the GC detector proposed
in [116], the GCC detector proposed in [45], and the GLRT
detector proposed in [46] in the noise-only case are plotted in
FIGURE 7 (a) and (b) in solid lines assuming Pfa = 0.01 and
SNR = −5 dB, respectively. A PMR consists of eight RXs
(N = 8) and one IO (M = 1) is considered, and the signal
transmitted from the IO is sampled from CN(0, I), where CN
represents circularly symmetric, complex Gaussian distribu-
tion. The number of pulses is assumed to be 30 (Lp = 30).
The results in FIGURE 7 (a) match perfectly with Fig. 6 (b)
in [46]. To show the impact of multi-path clutter on the perfor-
mance of these detectors, the detection probabilities of these
detectors in the presence of light clutter with clutter-to-noise
ratio (CNR) of 15 dB are plotted in dashed lines in FIGURE 8
(a) and (b). By comparing the two sets of lines, it is easy to
observe that all the detectors suffer noticeable performance
degradation in the presence of clutter. Among these detectors,
the GC detector [116] and the GLRT detector [46], which
are derived assuming unknown noise power, exhibit worse
performance than the ED [115] and the GCC [45]. It is worth
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FIGURE 8. Performance degradation of the existing detectors designed
for PRN in the presence of unaddressed multipath clutter for different
(a) N and (b) Lp. The solid lines and the dashed lines represent the
detection probability of the detectors in the noise-only case and the
noise-plus-clutter case, respectively.

mentioning that although the performance degradation due to
the presence of light clutter could be partially compensated by
increasing N and Lp, the cost is high. To illustrate the point,
the detection probabilities of these detectors for different N
given Lp = 30 in the noise-only scenario and the noise-plus-
clutter (CNR = 15 dB) scenario are plotted in FIGURE 8 (a)
in solid and dashed lines, respectively (Pfa = 0.01, SNR =
−5 dB). The solid lines match perfectly with Fig. 5 in [46].
It could be seen that although the clutter is light, at least 9
RXs are needed to compensate for the performance loss due
to the presence of clutter. And it is reasonable to expect that
more RXs are needed if the clutter is heavy. The detection
probabilities of these detectors for different Lp given N = 2
are plotted in FIGURE 8 (b). It is obvious that increasing
Lp doesn’t help much in improving the performance of these
detectors in the noise-plus-clutter scenario.

B. RECEIVER PLACEMENT
There are two major differences between the antenna place-
ment problems in DMR and PRN. First, since the PRN
exploits the illumination from the IOs that already exist, only
the positions of the RXs could be optimized by the radar
engineers. Second, the positions of the IOs are usually not
regularly distributed, hence the symmetric TX-RX geome-
tries that are widely studied for DMR (see Sec. II-B for
details) can’t be used for PRN.Metrics selected in open litera-
tures as the criterion for optimum receiver placement include
the detection probability [106], [117], the SNR [118], [119],
the false alarm rate [120], and the transmit power [108],

FIGURE 9. Interferences affecting the detection performance of a simple
APRN consisting of a co-located MIMO radar and three IOs. The blue dots
are randomly generated interferers. The detection performances of the
APRN are only affected by the interferers that fell on the same iso-range
ellipses (i.e. Interf1-Interf4) and the iso-range circle (i.e. interf5) with the
target.

which reflect radar’s detection performance. To the authors’
best knowledge, the research regarding receiver placement in
PRN for improved target measurements is very limited since
the accuracy of target localization and velocity estimation
is mainly limited by the waveform properties of the signals
transmitted from the IOs.

IV. INTERFERENCE SUPPRESSION AND SENSOR
GEOMETRY OPTIMIZATION FOR APRN
A. INTERFERENCE SUPPRESSION
The APRN is defined here as a radar system that exploits
both the dedicated radar transmit waveforms and signals from
other radio-radiation sources. In [53], an APRN network
consisting of a monostatic coherent MIMO radar and several
IOs was proposed, where the active TX, the active receive
array (ARA) and the passive receive array (PRA) are assumed
to be co-located. The detection scene considered in [53] is
regenerated in FIGURE 9. The interference signals are rep-
resented by the blue dots, which are randomly distributed in
the area. To determine whether the interference is on the j-th
isorange, the bistatic range of the interference is compared
with that of the target [20], [53]. The four interference signals
on the passive ellipses are marked as Interf1, Interf2, Interf3,
and Interf4, respectively, and the interference signal on the
active circle is marked as Interf5. To give more flexibility
to the sensor geometry, we consider the scenario that mul-
tiple active TXs, multiple RXs and multiple IOs are widely
separated, and each RX of the APRN consists of two parts:
ARA to collect echoes due to the probing signals from the
active radar transmitter, and PRA to collect echoes due to
the illumination of the IO signals. Each active TX and each
IO are assumed to operate at different frequencies, so that
the echoes corresponding to different transmit facilities could
be separated at the receiving end. Assume that N RXs are
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available, the signals received by the ARAs of all the N
RXs are combined together before decision making. To sup-
press the interference in the signals received by the ARAs,
the TPCC detector introduced in Section II-A is used if the
interference power follows a specific pdf that is known a
priori, while the GKA detector is used if such information is
not available. Similarly, centralized data fusion is performed
for the signals received by the PRAs of all the N RXs.
And detector could be developed within the GLRT frame to
suppress the interference in the signals received by the PRA.
The final decision regarding the presence of the target is made
by jointly considering the decisions made according to the
signals received by the ARAs and the PRAs.

B. SENSOR GEOMETRY OPTIMIZATION
Assume that the positions of the IOs are known a priori and
fixed, we consider two scenarios in the following: 1) the posi-
tions of the ground-based radar TXs/RXs are to be optimized
for target detection and localization; and 2) the trajectories
of the TXs/RXs mounted on the UAVs are to be planned for
target tracking.

1) GEOMETRY OPTIMIZATION FOR GROUND-BASED
STATIONARY SENSORS
Although sensor geometry optimization has been intensively
studied for DMR [105]–[113] and PRN [117]–[120], similar
research is yet to be conducted for APRN, which may be
considered as the combination of DMR and PRN. Like PRN,
the positions of the IOs in APRN are usually fixed. At the
same time, both the positions of the TXs and the RXs could
be optimized for improved target detection and localization
performance, which is similar to DMR. Considering that the
transmit power and the waveforms from the IOs and the TXs
are completely different, the problem of sensor optimization
of APRN is expected to be much more difficult to solve. Nev-
ertheless, since the APRN provides better performance than
the PRN thanks to the additional dedicated radar TXs while
costs less than the DMR by using the pre-existing transmitter
infrastructure (not to mention it also allows the radar to use
the vast low-frequency bands designated for communications
systems tomonitor the surveillance area continuouslywithout
extra power consumption), it has the potential to become a
widely-recognized radar network configuration in the near
future, hence the reward for addressing this challenging
problem is high.

2) PATH PLANNING FOR UAVS EQUIPPED WITH SENSORS
Considering that relative sensor-target geometry significantly
affects the performance of target localization performance,
using multiple moving sensors with optimized trajecto-
ries for target tracking has attracted the attention of many
researchers [101], [112], [121], [122]. DMR consisting of sin-
gle TX at fixed position and multiple RXs carried by UAVs is
considered in [112], and the trajectories of the UAVs are opti-
mized bymaximizing the determinant of FIM. In [101], target
tracking using cognitive radar system composed of multiple

FIGURE 10. Proposed research start-point regarding sensor geometry
optimization for APRN: optimize the positions of the TXs given the
positions of the IOs in APRN to 1) maximize the surveillance area and 2)
improve target location/velocity estimation accuracy.

radars mounted on UAVs is considered, and the expected
cross-entropy is used as the objective function. Three key
techniques are incorporated in the proposed cognitive radar
system: waveform design, path planning, and sensor selec-
tion. However, to the authors’ best knowledge, the problem of
path planning for UAVs equipped with TXs/RXs given fixed
IO positions has not been addressed in the open literature yet.

3) PROPOSED RESEARCH START-POINT REGARDING
SENSOR GEOMETRY OPTIMIZATION
Since the problem of sensor geometry optimization for APRN
has not been intensively studied yet, we propose a research
start-point regarding this problem, which is illustrated in the
flowchart in FIGURE 10. We first select some base stations
of communications systems around a specific city as the IOs
for the APRN, and then we optimize the positions of the
active TXs for two typical scenarios. Scenario I : assuming
that there is only one RX located at the city airport, optimize
the positions of a couple of TXs to maximize the surveillance
area. Scenario II: assuming that several RXs mounted on
UAVs and the IOs are symmetrically placed around the area
being monitored, optimize the positions of a few TXs based
on the CRLB for target location and velocity estimation.

V. MULTISTATIC SAR AND MIMO SAR
A. MULTISTATIC SAR
Monostatic high-resolution SAR system has limited acqui-
sition capability. For example, the TerraSAR-X could map
only 2% of the earth’s landmass during its 11 days repeat
cycle [67]. One possible approach to increasing the mapping
rate is to use multiple transmitters/receivers. W. Keydel from
the German Aerospace Center predicted the emergence of
a software-based multistatic SAR system characterized by
multipolarization/multifrequency and a ‘‘sensor web’’ com-
posed of both orbital and terrestrial, fixed and mobile sensing
platforms in his famous work—‘‘perspectives and visions
for future SAR systems’’ in 2003. Multistatic SAR could be
classified as fully active and semi-active system [68].
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In fully active system, multiple sensors are employed and
each sensor has both transmit and receive capabilities, for
example, the multistatic TechSat 21 flight experiment intro-
duced in [69]. The TechSat 21 flight experiment consisting
of three microsatellites, which fly in formation to operate
as a virtual large satellite. Each microsatellite RF payload
transmits distinguishable signals receives both its own echo
and the echoes from the other two satellite RF payloads. The
TechSat 21 could be regarded as the earliest ‘‘MIMO SAR’’
although the authors didn’t use this term. More information
about MIMO SAR is to be provided in Sec. V-B.

In semi-active system, only one sensor is transmitting,
and multiple widely distributed sensors are employed to
receive the echoes from different angles. A good example
of semi-active system is the interferometric cartwheel [70],
which features three small receiver satellites rotating around
each other accompanying the large transmitting master
satellite (illuminator). In [123], the performance of three
semi-active parasitic InSAR configurations, interferometric
cartwheel, cross-track pendulum, and CarPre (a combination
of the cartwheel & the pendulum), are evaluated and com-
pared.

Fully active multistatic SAR has higher sensitivity and
flexibility at the price of higher cost and computational com-
plexity. Compared with fully active system, the semi-active
system is more cost-effective but is more prone to ambigui-
ties. In [68], various spaceborne multistatic SAR configura-
tions are introduced and their strengths and drawbacks for
different applications, such as frequent monitoring, cross-
track interferometry, and wide-swath imaging, are compared.
Specifically, for frequent monitoring problems such as sea ice
monitoring, multistatic SAR with a geostationary illuminator
and multistatic passive receivers could be used to shorten the
revisit time dramatically and provide up-to-data SAR data
at a relatively low cost. For example, the revisit time for
the European continent could be reduced from serval days
to below 1 hour by using 30 small receiver satellites [68].
Somemajor challenges in implementingmultistatic SAR, e.g.
phase/time synchronization, are also addressed in [68].

B. MIMO SAR
MIMO SAR system employs multiple sensors that are
simultaneously transmitting and receiving. By exploiting the
orthogonality between transmit waveforms, each receiving
sensor is able to distinguish the echoes associated with
different transmit waveforms. According to [127], the first
suggestion of using a MIMO SAR architecture emerged
in May 2006 in [75], where the concept of multidimen-
sional waveform encoding for spaceborne SAR is introduced.
Although the SAR architecture presented in [75], [124], [125]
is a typical example of ‘‘MIMO SAR’’, Krieger et al. only
started using this term later in 2008 in their most famous work
— [126]. And the term ‘‘MIMOSAR’’ actually first appeared
in 2007 in [71]–[74].

In [71], the performance of single-input single-output
(SISO) SAR, multiple-input single-output (MISO) SAR,

phased-array SAR and MIMO SAR ae compared. It is shown
that 1) MIMO SAR has the lowest probability of mis-
detection and highest information gain; 2) MIMO SAR offers
higher detector SNR gain when the SNR of the input signal is
greater than 0 dB. In [73], the space-time block code (STBC)
technique is used for MIMO InSAR. Specifically, the up-
chirp and down-chirp LFM signals are used as orthogonal
transmit signals and the Alamouti decoder is employed to
estimate the geometric information the target. There are sev-
eral problems regarding the LFM chirp signals used in [73].
First, the simple up-chirp/down-chirp waveform only allows
two simultaneous transmissions in the MIMO SAR system.
Moreover, according to [127], although the LFM up-chirp
and down-chirp are frequently used as transmit waveforms
for MIMO radar, they don’t actually satisfy the orthogonality
condition in a strict sense. In addition, if thewidth of the scene
exceeds the length of the chirps, a significant image quality
degradation is expected [127].

Considering that the orthogonality between transmit wave-
forms plays a significant role in the performance of
MIMO SAR, transmit waveform design for MIMO SAR
has attracted the attention of many researchers. In [72],
a cyclic optimization algorithm is proposed to synthesize
constant-modulus transmit signals with good autocorrelation
and cross-correlation properties. In [128], [129], the OFDM
chirp diverse waveform is designed, which consists of multi-
ple subcarriers and temporal chips (i.e. subpulses). To min-
imize the interferences between subcarriers, the frequency
separation between adjacent subcarriers is carefully designed.
Although the OFDM chirp diverse waveform allows for
the simultaneous transmission of multiple orthogonal wave-
forms, it is shown in [127] that when a narrow scene is
to be imaged, a periodic pattern (i.e. interference) appears
outside the scene since the subpulses of the OFDM chirp
diverse waveform are with partially overlapping spectra.
To encounter this problem, the short-term shift-orthogonal
waveforms are introduced in [67], [126], [127], which are
designed to be mutually orthogonal within the time interval
that couldn’t be resolved by spatial beamforming on receive
in elevation.

MIMO SAR could be classified as coherent MIMO SAR
and distributed MIMO SAR.

1) COHERENT MIMO SAR
The ARTINO (Airborne Radar for Three-dimensional Imag-
ing and Nadir Observation) system proposed in [74], [76],
[130]–[132] is a typical example of coherent MIMO SAR.
ARINO is integrated in a small, dismountable UAV and
is capable of imaging the direct overflown scene in 3D.
It employs a sparse antenna array with M receive antennas
widely distributed along the wings and N /2 transmit antennas
closely located at the tip of each wing. When the trans-
mit antenna spacing is d , which is usually equal to half of
the wavelength, the receive antenna spacing is set as Nd/2.
As a result, a virtual antenna array is formed with each
virtual element located at the mean position of each physical
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transmit-receive antenna pair. Two methods to separating
echo signals associated with different transmit antennas are
introduced in [76]: 1) switching, i.e. the transmit antennas
are switched from pulse to pulse and only transmit antenna
is active at a specific time; 2) frequency diversity, i.e. employ
orthogonal transmit waveforms so that all the transmit anten-
nas could transmit simultaneously.

2) DISTRIBUTED MIMO SAR
Compared with coherent MIMO SAR, the major advantages
of distributed MIMO SAR include increased spatial cover-
age, finer geometric resolution, improved ambiguity suppres-
sion capabilities, and additional baseline diversity. However,
the successful implementation of distributed MIMO SAR
demands accurate phase synchronization, which is difficult to
maintain in practice for multiple airborne platforms. A typical
example of distributed MIMO SAR system is introduced
in [77], where multiple widely separated transmit/receive
platforms are employed. By exploiting both the monostatic
and the bistatic acquisitions, the range resolution improve-
ment factor provided by the proposed MIMO SAR configu-
ration is shown to be much greater than the number of active
SAR sensors.

VI. CONCLUSION
With the recent development in high-speed digital process-
ing and time/phase synchronization techniques, sophisticated
netted radar systems with high level of integration and
centralized data fusion become technically feasible, which
include the DMR, the PRN, the APRN, and the MIMO
SAR. To fully realize the potentials of these advanced radar
networks, three major challenges are identified in this work:
interference suppression, adaptive waveform design, and sen-
sor geometry optimization. For DMR, a brief literature review
regarding the effective interference suppression approaches
presented in the open literature is provided, with the advan-
tages and drawbacks of each method highlighted. Two KA
detectors are introduced for target detection in heteroge-
neous interference and partially homogeneous interference,
respectively, which exhibit better performance than the exist-
ing detectors. Moreover, adaptive transmit waveform selec-
tion for high-speed highly-maneuvering target tracking with
DMR is considered. The antenna placement strategies along
with the UVA path planning methods for DMR used in the
existing research works to realize different optimization goals
are also summarized and compared. For PRN, the perfor-
mance degradation of the existing detectors due to the unad-
dressed multipath clutter is analyzed. Moreover, the problem
of receiver placement in PRN given fixed positions of IOs
is investigated. For APRN, the sensor geometry optimization
approaches and the path planning strategies with stationary
and moving platforms are discussed for the first-time. Con-
sidering that imaging is a distinctive function of radar, the
key technologies and challenges for implementing multistatic
SAR and MIMO SAR are summarized. We believe that this
work could serve as a good reference for future researchers

interested in developing netted radar systems with widely
separated sensors.
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