IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 31, 2020, accepted June 30, 2020, date of publication July 6, 2020, date of current version July 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007499

Parallel Machine Learning Algorithm Using
Fine-Grained-Mode Spark on a Mesos Big Data
Cloud Computing Software Framework for
Mobile Robotic Intelligent Fault Recognition

GUANGMING XIAN ", (Member, IEEE)

School of Software, South China Normal University, Foshan 528225, China
e-mail: xgm20011 @sina.com

This work was supported in part by the National Natural Science Foundation of China, a Computing Model Based on Formal Domain
Fusion, under Grant 61070015, in part by the South China Normal University, and in part by the South China University of Technology.

ABSTRACT An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can signif-
icantly enhance the reliability and safety of mechanical systems. To improve the efficiency of intelligent fault
classification of mobile robotic roller bearings, this paper proposes a parallel machine learning algorithm
using fine-grained-mode Spark on a Mesos big data cloud computing software framework. Through the
segmentation of datasets and the support of a parallel framework, the parallel processing technology Spark
is combined with a support vector machine (SVM), and a parallel single-SVM algorithm is realized using
Scala language. In this approach, empirical mode decomposition (EMD) is applied to extract the energy of
the acceleration vibration signal in different frequency bands as features. The parallel EMD-SVM approach
is applied to detect faults in mobile robotic roller bearings from fault vibration signals. The experimental
results show that it can accurately and effectively identify the faults, and it outperforms existing methods
based on parallel deep belief network (DBN) and parallel radial basis function neural network under different
training set sizes. Fault classification tests are conducted on outer-race and inner-race faults: in both cases,
the proposed parallel EMD-SVM outperforms the serial EMD-SVM in terms of the classification accuracy
and classification time under different test sizes. For a small number of nodes, the processing time of the
proposed Spark model is less than that of Hadoop but close to that of Storm. For 17 slave nodes, the average
precision, average recall, and average FI score of Spark on Mesos in the fine-grained mode reach 97.3,
97.8, and 97.9%, respectively. The parallel EMD-SVM algorithm in the big data Spark cloud computing
framework can improve the accuracy of intelligent fault classification, albeit by a small margin, with higher
processing speed and learning convergence rate.

INDEX TERMS Parallel machine learning algorithm, parallel support vector machine, mesos cluster
manager, big data Spark, cloud computing software framework, empirical mode decomposition, intelligent
fault recognition, mobile robotic roller bearing, parallel deep belief network.

I. INTRODUCTION

Big data processing technologies are being rapidly developed
given the increase in the amount of information being stored
in recent years. Apache Spark, a parallel computing software
framework developed on the basis of Hadoop, is ideal for
large-scale iterative computing in a cloud computing software
framework [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao Liu

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

The intelligent fault diagnosis of mobile robotic roller
bearings involves obtaining information, extracting features,
and identifying conditions. More specifically, the features
of fault vibration signals collected from a mobile robotic
roller bearing are extracted by empirical mode decomposition
(EMD) [3], [4] and then inputted to a parallel support vector
machine (SVM) [5], [6] based on a big data cloud comput-
ing software framework for classification. Considering the
non-stationary characteristics of mobile robotic roller bearing
fault vibration signals, this paper proposes a mobile robotic

131885

https://orcid.org/0000-0001-6476-5967
https://orcid.org/0000-0001-8400-5754

IEEE Access

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

roller bearing fault diagnosis approach based on EMD and
parallel SVM.

Huang er al. recently proposed an improved EMD
time-frequency analysis method. Because feature extraction
through EMD is purely based on the properties extracted
from the data without considering the concept of stationarity,
it was proposed for analyzing nonlinear and nonstationary
signals, unlike other analysis techniques such as Fourier
transforms and wavelet decomposition. The EMD technique
can decompose any complicated dataset into a finite and often
small number of intrinsic mode functions (IMFs). The IMF
is complete, adaptive, and largely orthogonal. As IMFs can
be treated as mono-components, the instantaneous frequency
of a nonlinear and nonstationary signal can be determined
through the Hilbert transformation [7]-[9]. The EMD method
has been employed in applications ranging from rainfall anal-
ysis [9] to fault diagnosis of robotic roller bearings [10]-[12].

The SVM has been receiving increasing attention in areas
ranging from its original application in pattern recogni-
tion [13]-[15] to fields such as fault detection of mechanical
components. Corinna and Vapnik [16] proposed the current
version of the SVM in 1995. The SVM [17] is based on struc-
tural risk minimization (SRM), which is different from the
commonly used empirical risk minimization (ERM) princi-
ple. Owing to the SRM principle, the SVM typically exhibits
a higher generalization performance than traditional neural
network methods. Training the SVM is equivalent to solv-
ing a linearly constrained quadratic programming problem.
A disadvantage, however, is the training time scale, which lies
somewhere between quadratic and cubic scales with respect
to the number of training samples [18].

In view of the problems of slow optimization and high
memory consumption in training the SVM algorithm with
large-scale data, a parallel SVM algorithm based on the
Spark platform is proposed. The MapReduce computing
model needs to access the disk many times during iterative
processing, which affects the training speed. Spark, which
is a distributed cluster framework based on memory, has
advantages such as scalability, reliability, and load balancing.
It is a parallel computing model that can efficiently process
big data. In this study, parallel SVM and Spark computing
platform are thoroughly analyzed. Based on data partition,
an efficient parallel SVM algorithm is implemented. The
experimental results show that the algorithm can accelerate
the convergence of the model, improve the classification
efficiency, and is suitable for large-scale data processing.

The proposed parallel EMD-SVM [19]-[23] machine
learning method based on Spark is utilized for the fault diag-
nosis of robotic roller bearings. First, the original acceleration
vibration signal is decomposed by EMD, and eight IMF
components are obtained. The theory of EMD energy entropy
is introduced, which can reflect the real working condition
and the fault type of robotic roller bearing. The kurtosis value
of each IMF component of a robotic roller bearing signal
describes the vibration distribution features of the component
signal and the strength of the fault impact signal in each order

131886

component. For a better fault diagnosis of mobile robotic
roller bearings in their working condition, a parallel SVM
using fine-grained-mode Spark on Mesos is developed as an
identifier, and the extracted energy features of the stationary
IMFs are taken as network input vectors. Thus, we could
classify faulty and non-faulty bearings [10].

The parallel SVM based on Spark has thus far not been
applied to large-scale fault classification and recognition.
This study combines Spark with an SVM to realize a parallel
SVM approach that can improve the recognition efficiency
of fault patterns and thereby the classification accuracy. This
study can serve as a theoretical basis for the automatic and
rapid diagnosis of fault patterns, and has practical signif-
icance for promoting the combined application of parallel
machine learning, signal processing, and big data and cloud
computing technologies to mobile robotic intelligent fault
diagnosis.

The following are the main contributions of this paper:

(1) A new approach using the EMD is proposed for extract-
ing the features from the vibration signals of mobile robotic
roller bearings and a parallel SVM based on Spark to clas-
sify the different types of faults from the features extracted
through the EMD of different fault patterns.

(2) The average recognition times of different computing
platforms under different cluster and input data sizes are
evaluated. The experimental results show that the proposed
parallel machine learning based on the Spark model exhibits
a lower average recognition time than Storm and Hadoop.

(3) The average recognition performance is evaluated in
different distributed deployment modes of Spark under dif-
ferent cluster and input data sizes. In terms of the recogni-
tion time and accuracy, Spark on Mesos in the fine-grained
mode requires a slightly longer recognition time than Spark
on Mesos in the coarse-grained mode, Spark on YARN,
and stand-alone method. Therefore, Spark on Mesos in the
fine-grained mode is chosen as the distributed deployment
mode.

The rest of this paper is organized as follows. Section II
presents the EMD feature extraction basic theory, where
the energy features extracted from eight IMFs are used
as input vectors to the parallel SVM. Section III outlines
the SVM machine learning method fault diagnosis process.
Section IV introduces the parallel EMD-SVM based on
Spark on Mesos in a cloud computing network. Section V
presents the experimental results and discussion. To evaluate
the average recognition accuracy of the proposed parallel
EMD-SVM algorithm, experiments are performed, and the
results are compared with those of state-of-art algorithms.
The classification results of parallel EMD-SVM, parallel
EMD-DBN, and parallel EMD-RBENN in the cloud com-
puting framework are compared under different training set
sizes. To test the performance of the proposed machine
learning technique in noisy environments, test sets of noises
with signal-to-noise ratio (SNR) values ranging from 15 to
60 dB are considered. The average recognition accuracy for
fault identification with Spark on Mesos in the fine-grained

VOLUME 8, 2020

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

IEEE Access

mode under different cluster and input data sizes is found to
be better than those of Spark on Mesos in the coarse-grained
mode, Spark on YARN, and stand-alone method. Finally,
the conclusions of this study are given in Section V1.

Il. BASIC THEORY OF THE EMPIRICAL MODE
DECOMPOSITION FEATURE EXTRACTION METHOD

A. INTRINSIC MODE FUNCTION

Huang et al. proposed the IMF. The IMF is a function that
meets the following two conditions [24], [25]:

(1) In the entire signal interval, the number of extreme
points and zero points are equal or differ by 1.

(2) At any point in the signal interval, the mean value of
the upper and lower envelopes formed by the local maximum
and minimum is zero.

The first condition, which is similar to the requirement
of narrowband signals, is of global significance. The second
condition is the local condition of the signal, giving it a local
significance.

The IMF essentially reflects the inherent volatility of the
signals. Under the above two conditions, in each period of
the signal, there is a unique wave shape, and there is no multi-
modal superposition, so the signal has a single frequency at
a certain time. Therefore, we can use the IMF to solve its
instantaneous frequency. Huang et al. proved that the instan-
taneous frequency obtained by Hilbert transformation of the
IMF is consistent with previous research and the physical
mechanism of the system.

B. EMPIRICAL MODE DECOMPOSITION

In practice, most of the signals are multi-modal mixed signals,
including more than one vibration mode. Not all of them meet
the IMF conditions. Based on the above theory, Huang et al.
proposed the EMD method. The basic principle of the EMD
is as follows: For a real signal, the Hilbert transform cannot
be used to describe the frequency component directly, so it is
necessary to first apply the EMD to divide the original signal
into several IMF components, and then carry out the Hilbert
transform on each component to obtain their instantaneous
frequencies [24], [25].

The EMD method can be applied to any type of signal
decomposition in theory, making it more advantageous than
the previous method in dealing with non-stationary and non-
linear data. Therefore, the EMD method has been widely
and effectively applied in various engineering fields since its
proposal. In the EMD feature extraction technique, a signal is
assumed to contain multiple simple intrinsic modes of oscilla-
tions. The key feature of this method is that it can decompose
complex signals into IMF components. Each decomposed
IMF component contains the local characteristic signals of
different time scales of the original signal.

The specific process of the EMD is as follows.

Step 1: For a signal X(¢), cubic spline interpolation is
applied to connect all the maximum and minimum points of
the signal to form upper and lower envelope lines. The mean

VOLUME 8, 2020

value m of the upper and lower envelope lines is obtained.
Finally, the following operation is performed:

hy =X (1) —my ey

Step 2: hy is taken as a new signal X (¢), and the processing
in Step 1 is carried out. This is repeated until /; meets the con-
ditions (1) and (2) in the definition of the IMF. At this time,
h; can be considered the first-stage IMF, typically recorded
as ci.

Step 3: c; is separated from the original signal X(z) to
obtain the following equation:

ri=X(1) —ci @

Using r1 as a new signal, we repeat Steps 1 and 2 until the
obtained r,, can no longer generate a new IMF.

After the above decomposition process, the final decom-
position mathematical expression of the signal X (7) is

n
X(6) =Y c(t)—ralt) 3)
i=1
In the above formula, ¢; is the ith IMEF, and r,, is the residual
term. Fig. 1 shows the flowchart of the EMD process.

Notably, to apply the EMD to a signal, the signal must
satisfy the following conditions: it should have at least one
high and one low extreme point; the characteristic time scale
should be equal to the interval between adjacent pole value
points; if the signal has no pole and only an inflection point,
itis necessary to differentiate the signal before decomposition
to obtain its extreme point, and then integrate to obtain the
component.

In the EMD process, the first decomposed IMF is the
highest frequency component, and the frequencies of the
IMF,, IMF3, - - -, and IMF,, components decrease in turn.

The EMD process is essentially a layer-by-layer decompo-
sition process. Huang et al. found that if there are too many
decomposition levels, the IMF component will become a pure
frequency modulation signal without restrictions, making it
no longer have any practical physical significance. Therefore,
Huang et al. put forward a stopping rule for the decomposi-
tion process.

S ZT: |h1ge—1)(@) — hlk(l)|2

= o

In the above formula, i1 —1) and hy; are two consecutive
time series in the decomposition process. Huang et al. pointed
out that when the S value is set between 0.2 and 0.3, the result
of the EMD decomposition is the best [24], [25].

In this paper, the EMD method is used to analyze the
sample signals of each group of mobile robotic roller bear-
ings during the experiment. The sample vibration signals are
decomposed into multi-order IMF components.

The vibration information of the mobile robotic roller
bearing is mainly decomposed into IMF—IMF, compo-
nents. Because of the limited information contained in the
higher-order components, the IMF—IMFg components are

“

131887

IEEE Access

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

4

Input signal X(t)

v
=X(t), n=1

le . .
v A
Determining the local maximum
and minimum of X(t)
A/
Determine the local maximum and minimum of X{(t)
to fit the upper and lower envelope E1, E2, and obtain
m=(E1+E2)/2

Y
h=X(t)-m

Y

h meet IMF
conditions?

-@ -
X(t)=h

n=n+1; c(n)=h; r=r-c(n)

Isra
monotonic
function?

°< °<

FIGURE 1. Flowchart of the EMD decomposition.

used as the features of the mobile robotic roller bearing signal
in this study.

Fig. 2 shows the EMD composition of the vibration signal
of a mobile robotic roller bearing with an inner-race fault. The
decomposition performed by EMD is represented in the eight
IMFs plotted in Fig. 2, where the last row corresponds to the
final residue. The signal X(¢) is decomposed into eight IMFs
with different time scales, whereby the characteristics of the
signal X () can be represented in different resolution ratios.

However, the signal sequence of each order is still long; this
is difficult to be classified as the feature values. Therefore, the
kurtosis values of each IMF component are used to represent
the information contained in the components.

Kurtosis [26] is a dimensionless parameter used in statis-
tics. It reflects the distribution characteristics of the vibration
signal and describes the peak degree of vibration waveform.
Its calculation formula is

N
> (i —wy?

o*N ©)

131888

imf8 imf7 imf6 imf5 imf4 imf3 imf2 imfl signal

Tes.

FIGURE 2. EMD of a vibration signal of a mobile robotic roller bearing
with inner-race fault.

where N is the length of the vibration sequence, x; is the
amplitude of the ith point, u is the average value of each x,
and o is its standard deviation.

In the fault diagnosis of mobile robotic roller bearings, any
change in the bearing speed or load has no effect on the kur-
tosis value of the signal; however, when the bearing surface
is damaged, the kurtosis value will change significantly.

In other words, the kurtosis value of each IMF component
of a mobile robotic roller bearing signal describes the vibra-
tion distribution features of the component signal and the
strength of the fault impact signal in each order component.

Therefore, the kurtosis value vectors [Ki, K>, K3, K4, K5,
K¢, K7, Kg] of the IMF1—IMFg components are used as the
feature values of the sample vibration signal.

Ill. SUPPORT VECTOR MACHINE LEARNING FOR ROLLER
BEARING FAULT DIAGNOSIS PROCESS

A. SUPPORT VECTOR MACHIME

Corinna Cortes and Vapnik developed the currently used
SVM technique to minimize the VC dimension [27]-[31].
The hyperplane, which separates data (x € R") of two classes,
can be expressed as follows.

x-w—b=0 (6)

where w is the weight vector w € R", and b is the offset
beR".

The soft margin SVM algorithm was developed for cases
wherein data cannot be linearly separated. The optimal prob-
lem solved by the soft margin SVM is given as follows.

n 1 n
0@) =) jai— 5) ciyyiyji -))
i=1

ij=1

If al* is the optimal value, we have:
n
o* =)oy ®)
i=1

VOLUME 8, 2020

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

IEEE Access

In this optimal problem, D = {(x;,y)li = 1,2,...,n,
X € R"} is the training dataset, and y € [—1, 41] is the target
value of the training dataset.

For linear unclassified conditions, the hyper-plane can be
transferred to solve the problem, as follows.

1 n
P, €)= S(@- 0)+C (Z &) ©)

i=1
where the parameter &; is the slack variable, and parameter C
is called the punitive parameter.

Selecting an optimum value for C is important to improve
the performance of the SVM identifier. The SVM identifier is
overfitted when C is set too high, whereas it will have a large
training error if C is set too small. The parameter C is typi-
cally estimated from the training data using a cross-validation
procedure or other methods [32]-[34]. After pre-processing,
C is estimated from the training data [35]-[38].

B. ROLLER BEARING INTELLIGENT FAULT DIAGNOSIS
PROCESS

Fig. 3 shows the schematic of the experimental equipment
used for the intelligent fault diagnosis of mobile robotic roller
bearings. The shaft speed is approximately 600 r/min. The
sample frequency is 10 Hz, and the data length is set to
1024 points.

Shaft Mobile robptlc
roller bearing

o

FIGURE 3. Schematic of experimental mobile robotic equipment.

Motor Sensor

Based on the frequency of the mobile robotic roller bearing
signal, we can determine whether the bearing will fail.
The frequencies corresponding to the inner race, outer race,
and roller signals can be expressed as follows, respectively:
The passing frequency of inner raceway is
sino

fip=Z—"——"—lfo— /il (10)

sino + sin 8
The passing frequency of outer raceway is

sin 8

fup:Z lfO_fi| (11)

sina + sin 8
The rotation frequency of the rolling element is

2 cosa sina sin B
foe=——5——5~

sin

—sp o (12)
where fj is the inner circle frequency, f; is the outer circle
frequency, Z is the number of gears, « and 8 are the contact
angles.

Fig. 4 shows the parallel EMD-SVM model for the intel-
ligent fault diagnosis of mobile robotic roller bearings.
As mentioned above, the vibration data of the roller bear-
ing for training can be decomposed into eight IMFs using

VOLUME 8, 2020

Mobile robotic roller
bearing vibration signal

v
EMD
- Vs LV -
IMF1 IMF2 e IMF7 IMFS
y y y y
Ki K2 | e K7 K8

Parallel SVM

Y

Fault type

FIGURE 4. Parallel EMD-SVM intelligent fault recognition model.

the EMD method. The kurtosis vectors of the IMF|—-IMFg
components [K1, K>, K3, K4, K5, K¢, K7, Kg] are then used as
the feature values of the sample signal, and the features are
classified using the parallel SVM model.

The vibration signals of the mobile robotic roller bearings
are mapped into eight IMFs, reduced to 8-dimentional kurto-
sis feature vectors, and finally classified by parallel SVM to
achieve the so-called parallelism.

The parallel SVM is utilized to identify the various types
of faults. The parallel SVM is trained using the radial basis
function (RBF) kernel. The following are the three types of
mobile robotic roller bearing faults: normal fault (Type 1),
outer-race fault (Type 2), and inner-race fault (Type 3).

IV. PARALLEL EMD-SVM BASED ON BIG DATA SPARK
ON A MESOS IN A CLOUD COMPUTING FRAMEWORK
The parallel processing technology Spark [39]-[42] and
EMD-SVM are combined to realize a parallel operation of
the serial algorithm. Without compromising the classification
accuracy, the classification efficiency of the algorithm can be
significantly improved in a cloud computing framework.

A. BRIEF INTRODUCTION OF THE COMBINED APPROACH
The algorithm process is divided into three stages: Map,
combine, and reduce. The idea of divide and conquer is
adopted: the algorithm uses the Spark framework to divide
the dataset into several data sub-blocks and assign them to
each thread executor. The local SVM is then trained in paral-
lel, and the sub-classifiers are integrated. The sub-classifier
trained by a data sub-block is local, making it necessary to
retrain the integrated global classifier. Because the parallel
training of the executor speeds up the convergence of the
classifier, the global classifier only needs to be fine-tuned in
the reduce stage, thus saving operation time. This algorithm
not only improves the operation speed, but also improves the

131889

IEEE Access

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

classification accuracy. This can be attributed to the adop-
tion of a multi-channel design, where each thread optimally
utilizes the segmented dataset sub-block to train the local
part of the class sub-model, overcoming the drawback of
the traditional serial SVM where the local information of the
sample is not fully utilized, and improving the performance
of the classifier to a certain extent.

B. ALGORITHM DESIGN AND IMPLEMENTATION IN A
CLOUD COMPUTING NETWORK
The first process is dataset segmentation. The data samples
are uploaded to the Hadoop distributed file system (HDFS).
Based on the characteristic dimension and the specified num-
ber of blocks, the dataset is converted to a resilient distributed
dataset (RDD) through the segmentation rules in the partition
class provided by Spark, and then distributed to the executors.
The number of partition blocks can be determined by the
number of cluster nodes and machine learning performance.
In this study, two executors are set for each worker, and there
are 17 machines in the cluster, so the number of partition
blocks is 36. Thereafter, each sub-block calls randomsplit()
to randomly divide the dataset into training and test samples
in the proportion of 7:3.

1) MAP STAGE

Each executor establishes a classifier based on the objec-
tive function, calls the train() method, and trains the clas-
sifier iteratively through the data sub-block. To adapt to
large-scale training samples, this study uses the stochastic
gradient descent (SGD) algorithm to optimize the parameters.
Only some parts of the samples are involved in the calculation
in each iteration. This reduces the memory cost and time
required.

A setter object is created to rewrite train(): the number of
iterations (numlterations) is set to 1200 with a step size of 2,
and the sample participation ratio in each iteration (mini-
FatchFraction) is set to 2. To prevent overfitting, the ridge
regression L2 regulation is introduced as the correction func-
tion, and the regulation factor is 0.2.

2) COMBINE STAGE

The combine stage is a transition stage between the map
and reduce stages. Through the combine object, all the data
sub-blocks and local classifiers trained in the map stage are
combined and sent to the reduce stage.

The combine stage is not a simple linear splicing stage.
It calls repartition() by instantiating the object of ShuffledRdd
class to realize the splicing after shuffling the original data
and sub-classifier.

3) REDUCE STAGE

The results returned in the combine phase are received, and
predictpoint() is called to test the combined classifier. The
predicted value of each record in the test sample is calcu-
lated to compare with the original data and obtain the error

131890

score rate. The error score rate is obtain from the receiver
operating characteristic (ROC) curve. If the score is less than
the threshold value, the classifier is unqualified, and the opti-
mization is continued. If the score is greater than the threshold
value, the classifier reaches the standard, and the test stage is
completed. The prediction value, membership degree, classi-
fication accuracy, classification time, and ROC coefficient of
each record in the test set of the global optimal classifier are
printed. Fig. 5 shows the data flow of the parallel SVM based
on Spark. Before training the model, we need to upload the
dataset to the HDFS file storage system. The task scheduling
system of the Spark cluster will create new tasks in the execu-
tor for each data subset after segmentation, and use the
resource scheduler to allocate the computing resources to the
corresponding task allocator. The algorithm performs layered
parallel SVM training on the Spark cluster, cooperates with
the local SVM until the best training is completed, and out-
puts the global optimal model to the HDFS file system.

C. MESOS CLUSTER RESOURCE MANAGEMENT SYSTEM
1) MESOS ARCHITECTURE

Considering the operation and maintenance costs, data
sharing, resource utilization, and other factors, companies
generally want to deploy different distributed computing
frameworks (Hadoop and Spark) on the same cluster to real-
ize resource sharing of the cluster.

However, they will interfere with each other because of
their joint operation. Therefore, an effective resource isola-
tion mechanism and a unified scheduling mechanism should
be provided to avoid the inefficiency due to resource con-
tention between tasks.

Mesos [43], [44] is an open-source distributed resource
management system under Apache. It is called the kernel of
the distributed system.

Mesos allows multiple frameworks to share resources in
a fine-grained manner. The multiple frameworks can access
the stored data on the same machine to achieve efficient data
local utilization.

Fig. 6 shows the main components of the Mesos with a
centralized architecture. A master node process can manage
several slave node processes running on each machine node.

The calculation tasks of the calculation framework are run
on each slave node. As shown in Fig. 6, Hadoop and MPI
share the resources of the entire cluster.

Hadoop’s compute task executor can not only monopo-
lize a machine node to run one or more MapReduce tasks,
but can also share a machine with the message passing
interface (MPI) compute task executor, a parallel comput-
ing framework based on exchanging messages. However,
under the resource control strategy of Mesos, the executors
of Hadoop and MPI achieve fine-grained resource isola-
tion without interference. ZooKeeper can be used to solve
the single-point-of-failure problem of the primary node of
Mesos.

VOLUME 8, 2020

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

IEEE Access

Parallel training

Master

Slave 1

Original
big data

o Slave 2
pht Shuffle

Integrated
training

Is the
classifier
optimal?

> >

Combined data
after
shuffling/Global

Slave 18

Split

Shuffle

Combination

classifier with

. Save
traming

FIGURE 5. Parallel EMD-SVM dataflow based on Spark big data cloud computing software framework.

ZooKeeper
quorum

Hadoop
scheduler

MPI
scheduler

Mesos
master

‘ S ‘
Standby i Standby i
master | master |

FIGURE 6. Software architecture of Mesos.

2) TASK RUNNING
The Spark big data processing framework is chosen as the
test program. This section introduces the overall architecture
of Spark running on Mesos as a big data cloud computing
framework.

Fig. 7 shows the overall structure of Spark running on
Mesos. Mesos (Cluster Manager in Fig. 7) replaces Spark’s

VOLUME 8, 2020

master process, i.e., Mesos is responsible for providing
resources to Spark’s calculation frame.

After receiving the resources pushed by Mesos, the
Sparkcontext in the Spark big data cloud computing frame-
work starts its own scheduling using the Round-Robin
scheduling algorithm. Based on the resource requirements
of each task (i.e., the resource requirements specified when

131891

IEEE Access

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

Worker Node

| '»| Executor Cladie
Task
k.

<

Driver program

- Cluster "
Manager

Sparkcontext

4 Worker Node

Executor Chs

Task

FIGURE 7. Overall architecture of Spark running on Mesos as a big data
cloud computing software framework.

the user submits Spark), the resources provided by Mesos
are allocated to the tasks, and the results of source and task
matching are sent to Mesos (Cluster Manager).

Mesos further sends Spark’s task information to the dae-
mons on the corresponding nodes (Slave). After receiving the
task information from the slave on the node, the executor of
Spark is started with the specified resource constraint. The
actuator of Spark starts one or more Spark tasks. At the same
time, Spark’s executor can communicate with Sparkcontext
through the TCP protocol to report the status repair informa-
tion of the task calculation process. From the perspective of
Spark users, when users need to submit Spark program infor-
mation, on the one hand, they need to specify the network
address of the Mesos node daemons (Master), so that the
Spark computing framework can be deployed to the Mesos
cluster. On the other hand, they need to specify the memory
capacity of each executor in the Spark configuration file.

A set of new resource measurement methods consider-
ing the fine-grained heterogeneity of hardware resources is
defined in this paper. On the one hand, it is necessary to accu-
rately measure the heterogeneous resources in the big data
cloud computing platform. On the other hand, it is important
to realize an optimal resource allocation on the big data cloud
computing platform.

3) FUNCTION OF MESOS

Mesos brings benefits to both developers and operation and
maintenance (O&M) personnel. It can not only save infras-
tructure cost, but also bring convenience to the operation and
maintenance team. It can help developers simplify the inter-
face of the infrastructure, ultimately bringing huge benefits
to the enterprise. Mesos can support multiple workloads and
frameworks, improve resource utilization by flexibly sharing
resources among frameworks, and help developers build effi-
cient modern applications.

V. EXPERIMENTAL RESULT AND DISCUSSION

A. EXPERIMENTAL ENVIRONMENT

The experiment involved building 18 virtual machines on six
physical machines as nodes of the cluster environment in

131892

a cloud computing framework, totaling 18 nodes including
1 master node and 17 slave nodes. The processors of the six
physical machines have eight cores with a running frequency
of 3.6 GHz, a DDR3L memory of 128 GB, and a hard disk
size of 1500 GB. The 18 virtual machines have 4 GB of
memory and 450 GB of hard disk space. VirtualBox software
is used for installation in the virtual machine. Table 1 lists
the details of the software environment of the 18 virtual
machines.

TABLE 1. Spark cluster machine software environment information.

Computer Oé)ye:etimng Hadoop Spark jdk scala Anaconda Python
Datal L{%‘?gf‘“ 321 300 1002 206 3-520 3.6.8
Data2 I{%‘f(')‘;“ 321 300 1002 206 3520 3.68
Data3 U&'ﬁgf‘“ 32.1 300 1002 206 3520 368
Datal8 Ul';‘fgf‘“ 32.1 300 1002 206 3520 368

B. COMPARATIVE ANALYSIS WITH PREVIOUS WORK
Although the SVM is suitable for solving small samples, its
performance in solving massive datasets is poor. To improve
the processing performance for intelligent fault recognition,
we applied a Spark programming mode to the nonlinear SVM
algorithm, implemented a parallel SVM algorithm based
on Spark, and compared it with two previous algorithms:
MapReduce SVM [45]-[47] and SVM [48], [49].

The SVM model has two important parameters: C and y.
Here, C is the punitive parameter, and y is a parameter that
comes with the RBF function when it is selected as the kernel.
The dataset used in the experiment contains 568264 samples,
including 287636 training samples and 280628 testing sam-
ples. Based on the data size of the dataset, the best y value
obtained is 0.03 through parameter optimization.

Table 2 lists the average classification accuracies of fault
recognition for mobile robotic roller bearings correspond-
ing to different values of the parameter C. The number of
iterations is 6840. Fig. 8 shows the curves of the average
classification accuracy.

The following conclusions can be drawn from the exper-
imental results. As shown in Table 2 and Fig. 8, when C
is 4000, the average classification accuracies of the SVM,
MapReduce SVM, and Spark SVM are 91.63, 93.82, and
94.96%, respectively. Compared with the SVM and MapRe-
duce SVM, the Spark SVM has a higher average classifica-
tion accuracy, thus demonstrating that the current Spark SVM
outperforms the previous algorithms.

C. PERFORMANCE OF PARALLEL EMD-SVM IN A BIG
DATA CLOUD COMPUTING NETWORK

To compare the intelligent fault diagnosis results of dif-
ferent techniques, two other classifiers, namely DBN and
RBFNN, were used in addition to the multi-class SVM

VOLUME 8, 2020

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

IEEE Access

TABLE 2. Average classification accuracies of fault recognition
corresponding to different values of the parameter C.

C SVM MapReduce SVM Spark SVM
4 88.56 89.31 89.79
40 89.74 90.63 91.76
400 90.25 92.73 93.84
2000 90.78 92.86 93.24
4000 91.63 93.82 94.96
6000 90.38 92.51 93.89
Spark SVM
MapReduce SVM
95+ SVM
94
93 1
>
8
£ o2
Q
[$]
©
o 911
>
<<
90 -
89 -
88

r—+ 1 T 1 1 T 1 T T _* T
0 1000 2000 3000 4000 5000 6000
cC

FIGURE 8. Average classification accuracy curve.

TABLE 3. Number of samples in each parallel machine learning sample
set.

Training Test set Test set Test set Test set
set No. 1 No.2 No. 3 No. 4
200000 300000 500000 800000 1000000

approach. Table 3 lists the details of the parallel machine
learning sample set.

We selected ten training sets having 25000, 50000, 75000,
100000, 125000, 150000, 175000, 200000, 225000, and
250000 samples, respectively. Another 500000 samples were
selected as the testing set. The sensitivity of the parallel
EMD-SVM fault diagnosis to the nature of the sample is
evident in Fig. 9, where the parallel EMD-SVM fault diag-
nosis results based on different training sets are varied in

VOLUME 8, 2020

terms of the accuracy. The fault diagnosis results show that
the average accuracy is related to the size of the training set
(Fig. 9). For the fault diagnosis made by the parallel EMD-
SVM, the average accuracy is highest when the training set
size is 200000 and lowest when the training set size is 25000;
the difference in the average accuracies is 8.4%. Under each
training set size, the parallel EMD-SVM is overall the most
accurate classifier, with the average accuracy being statis-
tically different from those of the parallel EMD-DBN and
parallel EMD-RBENN classifiers. The parallel EMD-DBN
gives better identification results than the parallel RBFNN.
The classification made by the parallel EMD-RBFNN algo-
rithm appears to be least sensitive to the training set size, with
an average accuracy increasing from 82.4 to 87.3%.

Parallel EMD-RBFNN
1 Parallel EMD-DBN
%7 v Parallel EMD-SVM

94 -

92 4
90

88 4

86

Avg. accuracy (%)

84 -

82

T T T T T T T T T T 1
0 50000 100000 150000 200000 250000
Number of training datasets

FIGURE 9. Average accuracy (%) of parallel machine learning
classification method under different training set sizes.

Fig. 10 shows the average recognition times of the parallel
machine learning classification methods under each train-
ing set size. The average recognition time of the parallel

360
340 1 | —=— Parallel EMD-SVM
] Parallel EMD-RBFNN
- Parallel EMD-DBN
— 320 4
[d]
£ 1
= 3004
i=]]
S 280 -
(=)
[&]
o
o 260
=
<
240 A
220 T T T T T T T T T T 1
0 50000 100000 150000 200000 250000

Number of training datasets

FIGURE 10. Average recognition time (s) of the parallel machine learning
classification methods under different training set sizes.

131893

IEEE Access

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

EMD-SVM is lower than those of the parallel EMD-RBFNN
and parallel EMD-DBN. As the dataset number increases
from 25000 to 250000, the average recognition time of
the parallel EMD-SVM increases from 235.6 to 326.7 s.
The parallel EMD-RBFNN slightly outperforms the parallel
EMD-DBN in terms of the time required.

To evaluate the influence of different test set sizes on the
accuracy of SVM, we fixed the size of the training set to
200000. This value was chosen because the training set size
of 200000 gives a good fault diagnosis accuracy (approxi-
mately 95.6%), as shown in Fig. 9.

We obtained five sample sets, one for training and the rest
for testing, as listed in Table 3.

In the training stage, the parameters of the identifier are
appropriately selected by trial and error. The Gaussian RBF
kernel was used for training and testing the SVM, and the
values of the variance of the Gaussian (0%) and punitive
parameter (C) were set to 0.04 and 2.54 x 104, respectively.
The final key incluencing factors are the variance of the
Gaussian o> and punitive parameter C. The training time
required for 200000 patterns is 426.58 s. Table 4 lists the
identification results under the test sets. Clearly, the intelli-
gent fault diagnosis results are accurate.

TABLE 4. Parallel machine learning test results for four test sets in a
cloud computing network.

Test set Test set Test set Test set
No. 1 No. 2 No. 3 No. 4
Accuracy
(correct x100%) 94.33 94.80 95.75 95.23
total
Time (s) 453.46 527.62 692.86 741.53

D. ANTI-NOISE PERFORMANCE OF PARALLEL EMD-SVM
IN A NOISY CONDITION

To further evaluate the validity of the identifier when the
input is corrupted by noise, we added a 15-60 dB normally
distributed noise to the test data and performed the test again.
The results are good, as listed in Table 5.

TABLE 5. Parallel machine learning test results for four test sets in a
noisy condition in a big data cloud computing framework (%).

dB Test set Test set Test set Test set
No.1 No.2 No.3 No.4
15 94.23 94.60 95.38 94.80
Accuracy
correct 30 93.33 93.40 95.13 94.30
(x100%) 45 92.67 93.40 94.63 93.90
total

60 92.33 92.60 93.88 93.20

To test the performance of the proposed technique in
different noisy conditions, test sets containing noise with
SNR values ranging from 15 to 60 dB were considered.

131894

The equation used to calculate the SNR is as follows [50]:

SNR = 101log (i) dB (13)
Py,
where P; is the power (variance) of the signal, and P, is that
of the noise.

Table 5 lists the overall fault diagnosis performance under
different test sets in a noisy environment. As listed in Table 5,
the proposed parallel EMD-SVM [51], [52] machine learn-
ing [53]-[56] method has a robust anti-noise performance,
with high fault diagnosis accuracy in noisy conditions.

E. CLASSIFICATION PERFORMANCE COMPARISON OF
PARALLEL EMD-SVM AND SERIAL EMD-SVM

A total of 68942 fault patterns were used in the experi-
ment. Based on the number of randomly selected samples,
they were divided into four groups: sample_1, sample_2,
sample_3, and sample_4. Seventy percent of each group of
samples is used as the training set and the rest as the test set.
Table 6 lists the details of the samples.

TABLE 6. Sample groups.

Sample Number of data Number of Number of
name samples training samples testing samples
Sample 1 6854 4798 2056
Sample 2 9572 6700 2872
Sample 3 25894 18126 7768
Sample 4 46486 32540 13946
Sample_5 68942 48259 20683

The improved parallel EMD-SVM and serial EMD-SVM
were tested under the same conditions. Through processing
four groups of fault pattern datasets with increasing sample
number, the classification accuracy and classification time of
the two are obtained, and the influence of sample size on the
two algorithms is analyzed.

As listed in Table 7, for processing the four groups of data
samples of different sizes, the classification accuracy of the
parallel EMD-SVM based on Spark is higher than that of the
serial EMD-SVM. Because the parallel EMD-SVM adopts a
multi-channel design and dataset segmentation, each thread
can use a part of the segmented dataset carefully, overcoming
the drawback observed in the traditional serial EMD-SVM.

TABLE 7. Experimental classification accuracy of two algorithms In a big
data cloud computing framework (%).

Parallel EMD-SVM Serial EMD-SVM

Outer-race Inner-race Outer-race Inner-race
fault fault fault fault
Sample

Sample 1 94.6 92.7 92.6 90.4
Sample_2 85.9 81.5 83.2 80.2
Sample_3 82.8 78.3 80.4 73.9
Sample_4 81.7 79.4 82.5 713
Sample_5 82.4 79.6 81.3 75.7

VOLUME 8, 2020

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

IEEE Access

Compared with the serial EMD-SVM, which can train the
classifier directly from all the samples, the learning effect is
better.

As listed in Table 8, when the size of the test dataset is
small, the processing speed of the parallel EMD-SVM is
largely the same, and the efficiency of the serial EMD-SVM
is slightly higher than that of the parallel EMD-SVM. This is
because there are too few samples, and Spark clusters spend
too much time on dataset segmentation and task scheduling,
so the effect of parallel EMD-SVM is not significantly higher
than that of serial EMD-SVM. When the number of test
samples increases to a certain extent, the classification time
of the serial EMD-SVM increases significantly, while that of
the parallel EMD-SVM increases steadily. When the scale of
the test samples is large, the parallel processing effect of the
Spark clusters is significant, saving the running time of the
algorithm overall.

TABLE 8. Test classification time of two algorithms In a big data cloud
computing framework (s).

Sample Parallel EMD-SVM Serial EMD-SVM
Sample 1 84.9 83.4
Sample 2 95.1 94.7
Sample 3 149.3 158.7
Sample 4 186.2 226.8
Sample 5 258.7 336.2

F. AVERAGE RECOGNITION TIME PERFORMANCE
EVALUATION OF DIFFERENT BIG DATA CLOUD
COMPUTING FRAMEWORKS

Hadoop, Spark, and Storm are the three most important
distributed computing systems. Hadoop adopts a MapReduce
distributed computing framework and is equipped with an
HDFS distributed file system based on the Google File Sys-
tem (GFS) and a Hadoop Database (HBase) data storage sys-
tem based on BigTable. Spark is another important distributed
computing system, with some architectural improvements on
the basis of Hadoop. Spark’s distributed computing based on
the MapReduce algorithm has the advantages of Hadoop’s
MapReduce. Spark is an open-source cluster computing
system based on memory computing, intended for analyzing
data more quickly. Spark can be better applied to MapReduce
algorithms that require iteration, such as in the case of data
mining and machine learning. The main difference between
Spark and Hadoop is that Hadoop uses a hard disk to store
data, whereas Spark uses memory to store data; therefore,
Spark can provide faster computation. However, Spark cannot
be used to process data that need to be saved for a long time
because data will be lost when the memory is powered off.
The storm distributed computing system provides real-time
computing features based on Hadoop; it can process large
data streams in real time. Unlike Hadoop and Spark, Storm
does not collect and store data—it receives and processes data

VOLUME 8, 2020

in real time through the network directly, and then sends back
the results in real time directly through the network.

The performance of the proposed algorithms is evalu-
ated in a Spark cluster comprising one master and 17 slave
nodes. The simulation results are compared with those of the
existing methods. In experimental observation, the average
recognition time is an important parameter for evaluating
the efficiency of algorithms, as shown in Fig. 11. In this
model, the average recognition time is defined as the sum
of the scheduling, execution, and transfer times required for
recognition on different nodes. The results show that when
the number of nodes is high, the average recognition time of
the proposed Spark model is lower than those of Storm and
Hadoop. For a small number of nodes, the processing time
of the proposed Spark model is less than that of Hadoop, but
close to that of Storm. However, the increase in the number
of slave nodes does not increase the recognition time due to
data sparsity. The saturation point of the average recognition
time is detected after 13 slave nodes. Therefore, the aver-
age recognition time for mobile robotic intelligent faults is
directly proportional to the scheduling, execution, and data
transmission times.

5000

2000 4 —=— Proposed Spark
. Storm
L . Hadoop
2 3000
=
]
T 2000
D
o
[&]
e
g’ 1000
<

0 4
T T T T T T T T T T T T T T T T 1

0 2 4 6 8 10 12 14 16 18
Number of slave nodes

FIGURE 11. Average recognition time for different cluster sizes in
different big data cloud computing frameworks.

Fig. 12 shows the average recognition time for robotic
faults in different computing frameworks under differ-
ent input data sizes. For small data sizes, i.e., less than
0.30 GB (= 300 MB), the average recognition time of the
proposed Spark framework is close to that of Storm. However,
anoticeable average recognition time gap is observed for data
sizes > 0.30 GB, and this trend continues until it reaches up
to 1.2 GB. Hence, the proposed Spark framework has a lower
average recognition time than Storm and Hadoop.

G. EVALUATION OF AVERAGE RECOGNITION TIME AND
AVERAGE ACCURACY IN DIFFERENT DISTRIBUTED
DEPLOYMENT MODES OF SPARK

Currently, Apache Spark supports three distributed deploy-
ment modes: standalone, Spark on Mesos [44], [57], and

131895

IEEE Access

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

1600 -
1400 ~
] —s=— Proposed Spark
1200 Storm
)] Hadoop
£ 1000 -
“E i
S 800
2]
(@]
3 600
g]
2 400
< 4
200 4 7_/_-"_._’._/.’_4/-./.—.’/./.
T T T T T T T T T T T T !
0.0 0.2 0.4 0.6 0.8 1.0 12

Input data size (GB)

FIGURE 12. Average recognition time (s) of different big data cloud
computing frameworks under different input data sizes.

Spark on YARN [58]. The first one is similar to the one
adopted by MapReduce 1.0. It internally implements fault
tolerance and resource management. The latter two are
future development trends. Some parts of fault tolerance and
resource management are completed by a unified resource
management system. Spark runs on a common resource
management system, so it can share a cluster resource with

other computing frameworks such as MapReduce. The main
advantages of using Spark are the reduced operation and
maintenance costs and improved resource utilization.

It would be more flexible and natural to run Spark on
Mesos than on YARN. In the Spark on Mesos environ-
ment, users can choose one of the following two scheduling
modes to run their own applications: coarse-grained mode or
fine-grained mode. In the coarse-grained mode, the running
environment of each application consists of a driver and
several executors. Each executor takes up several resources
and can run multiple tasks internally (corresponding to sev-
eral “slots). Before each task of the application is formally
run, all the resources in the running environment need to be
applied for, and these resources should always be occupied
during the running process. Even if these resources are not
used, they will be recycled after the final program run. For the
fine-grained mode, when the application starts, the executor
will be started first, but each executor occupies only the
resources needed for its own operation and does not need to
consider the tasks to be run in the future. Thereafter, Mesos
will dynamically allocate resources for each executor. Each
time some resources are allocated, a new task can be run.
After a single task runs, the corresponding resources can
be released immediately. Each task will report its status to
the Mesos slave and Mesos master for better fine-grained
management and fault tolerance.

Table 9 lists the average recognition accuracy in the differ-
ent distributed deployment modes of Spark under different

TABLE 9. Average recognition accuracy (%) in different distributed deployment modes of Spark under different cluster sizes.

Number (Fisfe:a-g;:)iﬁx mode) (Coif:;fgf;lfgg ode) Spark on YARN Stand-alone method

of
nodes e P AveR AveFI AveP AvgR AveFl AvgP AveR AveFl AveP AveR AvgFl

1 886 935 916 874 926 905 864 913 903 863 9L1 898
2 8.1 927 918 883 923 908 874 903 906 869 909 902
3 87 915 921 886 915 916 879 908 915 875 898 90.
4 89.6 938 924 893 904 923 887 913 918 883 874 892
5 903 916 917 901 914 929 888 921 919 881 887 904
6 915 923 921 907 917 931 899 915 904 887 893 9l4
7 91.8 927 928 908 921 917 903 923 918 884 902 919
8 919 938 922 916 936 926 913 925 924 893 914 912
9 924 939 928 927 924 925 923 917 922 902 915 9l4
10 932 937 926 931 929 923 924 921 922 903 917 921
11 948 938 931 939 931 926 918 926 915 908 921 924
12 947 941 951 925 937 927 931 926 923 905 915 926
13 952 951 958 948 943 954 933 928 924 917 926 927
14 957 958 963 953 956 964 936 925 921 921 932 927
15 954 952 968 957 952 961 941 944 923 918 927 918
16 9.5 962 971 963 958 967 943 942 947 916 931 921
17 973 978 979 971 964 965 954 947 952 926 937 928

131896

VOLUME 8, 2020

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

IEEE Access

TABLE 10. Average recognition accuracy (%) in the different distributed deployment modes of Spark under different input data sizes.

Spark on Mesos Spark on Mesos
(Fine-grained mode) (Corse-grained mode) Spark on YARN Stand-alone method
Input data
Size (GB)
AvgP Avg.R AvgFl AvgP AvgR AvgFl AvgP AvgR AvgFl AvgP AvgR AvgFI
0.1 84.6 84.1 83.9 82.1 83.6 82.3 80.2 83.1 81.3 78.4 79.3 78.1
0.2 85.6 84.3 84.9 83.2 85.1 84.1 81.8 84.6 84.6 80.2 81.4 82.1
0.3 87.5 86.8 87.3 84.8 87.1 87.2 82.5 86.3 85.6 82.8 83.4 83.2
0.4 88.4 89.3 88.6 85.8 89.3 87.6 84.7 87.3 86.3 82.1 85.3 84.3
0.5 90.3 90.1 91.3 87.6 90.2 88.9 86.3 86.8 86.1 84.5 86.2 87.3
0.6 91.2 92.1 92.3 89.3 91.2 91.2 88.3 87.3 88.1 86.3 85.9 86.3
0.7 92.1 94.8 94.9 91.4 93.4 93.1 89.4 88.2 89.6 87.3 88.4 88.9
0.8 93.9 95.1 94.7 92.1 94.7 94.2 89.3 90.6 90.8 89.4 90.2 90.4
0.9 94.7 96.8 95.2 93.6 96.1 95.1 90.3 92.1 91.8 90.4 91.4 91.2
1.0 95.6 95.1 95.6 94.1 95.8 94.7 92.4 93.1 93.2 91.4 92.4 923
1.1 96.3 95.2 95.6 95.1 96.3 95.3 93.4 93.2 93.7 92.1 93.6 93.7
1.2 97.1 95.4 96.2 96.2 95.2 95.4 94.7 93.6 94.8 923 93.6 94.1
cluster SI.ZF‘,S. As listed, when using 17 slave nodes, the aver- _ Spark on Mesos
age precision, average recall, and average F'/ score of Spark 3000 - (Fine-grained mode)
on Mesos in the fine-grained mode reach 97.3, 97.8, and 1 Spark on Mesos
97.9%, respectively. The average recognition accuracy of - 25001 (Coarse-grained mode)
intelligent fault identification with Spark on Mesos in the 2 000 l —— Spark on YARN
fine-grained mode under different cluster sizes is better than = | —v Stand-alone method
that of Spark on Mesos in the coarse-grained mode, Spark on 2 15004
YARN, and stand-alone method. S]
Fig. 13 shows the average recognition times in the differ- 3 1000
ent distributed deployment modes of Spark under different o 1
cluster sizes. As shown in Fig. 13, when using 17 slave < 500+
nodes, the average recognition times of Spark on Mesos in 1
the fine-grained mode, Spark on Mesos in the coarse-grained 01
mode, Spark on YARN, and stand-alone method are 183.6, 0 2 4 6 8 10 12 14 16 18

149.5, 171.9, and 153.8 s, respectively. Clearly, the average
recognition time for Spark on Mesos in the fine-grained mode
under different cluster sizes is more than those for Spark
on Mesos in the coarse-grained mode, Spark on YARN, and
stand-alone method.

Table 10 lists the average recognition accuracy in the dif-
ferent distributed deployment modes of Spark under different
input data sizes. As listed in Table 10, when the input data size
is 1.2 GB, the average precision, average recall, and average
F1 score of Spark on Mesos in the fine-grained mode reach
97.1, 95.4, and 96.2%, respectively. The average recognition
accuracy of fault identification with Spark on Mesos in the

VOLUME 8, 2020

Number of slave nodes

FIGURE 13. Average recognition time (s) in the different distributed
deployment modes of Spark under different cluster sizes.

fine-grained mode under different input data sizes is better
than those of Spark on Mesos in the coarse-grained mode,
Spark on YARN, and stand-alone method.

Mesos in the fine-grained mode can be chosen as the
distributed deployment mode of Spark.

Fig. 14 shows the average recognition time in the different
distributed deployment modes of Spark under different input

131897

IEEE Access

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

—a— Spark on Mesos

280 - (Fine-grained mode)
] Spark on Mesos
260 - (Coarse-grained mode)
—w— Spark on YARN
0 240 | —+— Stand-alone method
o]
E 2204
=]
2 2004
.g]
2 180+
g 4
o 160
>
z |
140 -
120
T T T 1

T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Input data size (GB)

FIGURE 14. Average recognition time (s) in the different distributed
deployment modes of Spark under different input data sizes.

data sizes. As shown in Fig. 14, when the input data size is
1.2 GB, the average recognition times of Spark on Mesos
in the fine-grained mode, Spark on Mesos in the coarse-
grained mode, Spark on YARN, and stand-alone method
are 278.7, 264.8, 265.9, and 258.4 s, respectively. Clearly,
the average recognition time of intelligent fault identification
with Spark on Mesos in the fine-grained mode under different
input data sizes is more than those of Spark on Mesos in
the coarse-grained mode, Spark on YARN, and stand-alone
method.

In summary, in terms of the time required and accuracy,
Spark on Mesos in the fine-grained mode requires a slightly
longer recognition time than Spark on Mesos in the coarse-
grained mode, Spark on YARN, and stand-alone method to
obtain a better recognition accuracy. Therefore, Spark on
Mesos in the fine-grained mode can be chosen as the dis-
tributed deployment mode of Spark.

VI. CONCLUSIONS

This paper proposes a fault diagnosis technique for mobile
robotic roller bearing faults using a parallel EMD-SVM
machine learning method considering the non-stationary
characteristics of the fault vibration signals. The original
acceleration vibration signal was decomposed by EMD, and
some IMF components were obtained. A parallel SVM served
as the identifier, and the extracted energy features of the
stationary IMFs were taken as input vectors to this network.
Thus, faulty and non-faulty bearings could be distinguished.
Under different training set sizes, the parallel EMD-SVM
outperformed the parallel EMD-DBN and parallel EMD-
RBFNN classifiers in terms of the classification accuracy,
with the accuracy being statistically different from those of
the other classifiers. To further evaluate the validity of the
classifiers when the input is corrupted by noise, we added
a 15-60 dB normally distributed noise to the test data and

131898

performed the test. The proposed parallel EMD-SVM
machine learning technique exhibited a high fault diagnosis
accuracy in this noisy condition as well. The method is
expected to be useful for the fault diagnosis of mobile robotic
roller bearings.

The SVM is a classification algorithm based on a large
number of iterations, suitable for small sample environ-
ments. It exhibits a high complexity in processing large-
scale datasets. This paper reports the design of a parallel
EMD-SVM based on Spark in a cloud computing network.
The algorithm is implemented on the Spark platform, which
can segment large-scale datasets that can be used for the
parallel training of classifiers. Mechanical fault classification
tests were conducted on mobile robotic spherical bearings.
The results showed that the parallel EMD-SVM based on
Spark exhibits a higher classification accuracy than the tra-
ditional serial EMD-SVM, with a significantly lower aver-
age classification time, thus demonstrating the advantages
of parallel processing of the big data Spark technology in
cloud computing software frameworks for intelligent robots.
The experimental results showed that the average accuracy of
fault identification with Spark on Mesos in the fine-grained
mode under different cluster and input data sizes is better than
those of Spark on Mesos in the coarse-grained mode, Spark
on YARN, and stand-alone method.

However, the proposed approach has certain limitations
that should be addressed. For example, when there are too
many support vectors in the dataset, the training efficiency of
the algorithm is not high, and when there are too many data
blocks, the accuracy decreases. There is no rigorous math-
ematical proof or theoretical derivation for the rationality of
parallel design. In a subsequent study, we will perform a more
in-depth research on a theoretical basis for the algorithm and
the optimization of the training structure. Moreover, we will
focus on the parameter optimization of the Spark platform,
in order to obtain a better training effect and meet the require-
ments of scholars in training large-scale modular datasets
with the parallel SVM.

REFERENCES

[1] P. K. Sahoo, S. K. Mohapatra, and S.-L. Wu, “SLA based healthcare
big data analysis and computing in cloud network,” J. Parallel Distrib.
Comput., vol. 119, pp. 121-135, Sep. 2018.

[2] M. Wang, P. P. Jayaraman, E. Solaiman, L. Y. Chen, Z. Li, S. Jun,
D. Georgakopoulos, and R. Ranjan, “‘A multi-layered performance analysis
for cloud-based topic detection and tracking in big data applications,”
Future Gener. Comput. Syst., vol. 87, pp. 580-590, Oct. 2018.

[3] D. Carnelossi Furlaneto, L. S. Oliveira, D. Menotti, and
G. D. C. Cavalcanti, “Bias effect on predicting market trends with
EMD,” Expert Syst. Appl., vol. 82, pp. 19-26, Oct. 2017.

[4] A. B. Das and M. I. H. Bhuiyan, “Discrimination and classification of
focal and non-focal EEG signals using entropy-based features in the EMD-
DWT domain,” Biomed. Signal Process. Control, vol. 29, pp. 11-21,
Aug. 2016.

[5] Y. Gong and L. Jia, “Research on SVM environment performance of
parallel computing based on large data set of machine learning,” J. Super-
comput., vol. 75, no. 9, pp. 5966-5983, Sep. 2019.

[6] G. Caruana, M. Li, and Y. Liu, “An ontology enhanced parallel SVM
for scalable spam filter training,” Neurocomputing, vol. 108, pp. 45-57,
May 2013.

VOLUME 8, 2020

G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

IEEE Access

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Soualhi, K. Medjaher, and N. Zerhouni, “Bearing health monitoring
based on Hilbert-Huang transform, support vector machine, and regres-
sion,” IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 52-62, Jan. 2015.
J. H. Yan and L. Lu, “Improved Hilbert—-Huang transform based weak sig-
nal detection methodology and its application on incipient fault diagnosis
and ECG signal analysis,” Signal Process., vol. 98, pp. 74-87, May 2014.
G. Cheng, Y. L. Cheng, and L. H. Shen, “Gear fault identification based
on Hilbert-Huang transform and SOM neural network,” Measurement,
vol. 46, no. 3, pp. 1137-1146, Apr. 2013.

Y. Yang, D.-J. Yu, and J.-S. Cheng, “A fault diagnosis approach for
roller bearing based on IMF envelope spectrum and SVM,” Measurement,
vol. 40, nos. 9-10, pp. 943-950, Nov. 2007.

Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode decom-
position in fault diagnosis of rotating machinery,” Mech. Syst. Signal
Process., vol. 35, nos. 1-2, pp. 108-126, Feb. 2013.

F. Wu and L. Qu, “An improved method for restraining the end effect in
empirical mode decomposition and its applications to the fault diagnosis of
large rotating machinery,” J. Sound Vib., vol. 314, nos. 3-5, pp. 586-602,
Jul. 2008.

L. H. Smith, L. J. Hargrove, B. A. Lock, and T. A. Kuiken, ““Determining
the optimal window length for pattern recognition-based myoelectric con-
trol: Balancing the competing effects of classification error and controller
delay,” IEEE Trans. Neural Syst. Rehabil. Eng.,vol. 19,no. 2, pp. 186-192,
Apr. 2011.

P. Melin and O. Castillo, “A review on type-2 fuzzy logic applications
in clustering, classification and pattern recognition,” Appl. Soft Comput.,
vol. 21, pp. 568-577, Aug. 2014.

B. Boashash, N. A. Khan, and T. Ben-Jabeur, “Time—frequency features
for pattern recognition using high-resolution TFDs: A tutorial review,”
Digit. Signal Process., vol. 40, pp. 1-30, May 2015.

C. Corinna and V. Vapnik, “Support-vector networks” Mach. Learn.,
vol. 20, pp. 273-297, Sep. 1995.

M. Mohammadi and A. Hezarkhani, “A comparative study of svm and rf
methods for classification of alteration zones using remotely sensed data,”
J. Mining Environ., vol. 11, no. 1, pp. 49-61, 2020.

L. J. Cao and F. E. H. Tay, “Support vector machine with adaptive
parameters in financial time series forecasting,” IEEE Trans. Neural Netw.,
vol. 14, no. 6, pp. 1506-1518, Nov. 2003.

N. Ramesh Babu and B. Jagan Mohan, “Fault classification in power sys-
tems using EMD and SVM,” Ain Shams Eng. J., vol. 8,no. 2, pp. 103-111,
Jun. 2017.

W. Y. Duan, Y. Han, L. M. Huang, B. B. Zhao, and M. H. Wang, “A
hybrid EMD-SVR model for the short-term prediction of significant wave
height,” Ocean Eng., vol. 124, pp. 54-73, Sep. 2016.

S. Li, W. Zhou, Q. Yuan, S. Geng, and D. Cai, “Feature extraction and
recognition of ictal EEG using EMD and SVM,” Comput. Biol. Med.,
vol. 43, no. 7, pp. 807-816, Aug. 2013.

X. Liu, L. Bo, and H. Luo, “Bearing faults diagnostics based on hybrid LS-
SVM and EMD method,” Measurement, vol. 59, pp. 145-166, Jan. 2015.
Y. Huang, D. Wu, Z. Zhang, H. Chen, and S. Chen, “EMD-based pulsed
TIG welding process porosity defect detection and defect diagnosis using
GA-SVM,” J. Mater. Process. Technol., vol. 239, pp. 92-102, Jan. 2017.
N. E. Huang, Z. Shen, and S. R. Long, “A new view of nonlinear water
waves: The Hilbert spectrum,” Annu. Rev. Fluid Mech., vol. 31, no. 1,
pp. 417-457, Jan. 1999.

R. Damasevicius, C. Napoli, T. Sidekerskien¢, and M. WozZniak, “IMF
mode demixing in EMD for jitter analysis,” J. Comput. Sci., vol. 22,
pp. 240-252, Sep. 2017.

S.-W. Fei, “Kurtosis forecasting of bearing vibration signal based on the
hybrid model of empirical mode decomposition and RVM with artificial
bee colony algorithm,” Expert Syst. Appl., vol. 42, no. 11, pp. 5011-5018,
Jul. 2015.

C. J. Zhu, K.-Y. Lam, J. K. Y. Ng, and J. Bi, “On the VC-dimension
of unique round-trip shortest path systems,” Inf. Process. Lett., vol. 145,
pp. 1-5, May 2019.

C. Bazgan, F. Foucaud, and F. Sikora, “Parameterized and approximation
complexity of partial VC dimension,” Theor. Comput. Sci., vol. 766,
pp. 1-15, Apr. 2019.

H. C. C. Carneiro, C. E. Pedreira, F. M. G. Frang¢a, and P. M. V. Lima, “The
exact VC dimension of the WiSARD n-Tuple classifier,” Neural Comput.,
vol. 31, no. 1, pp. 176-207, Jan. 2019.

H. Hatami and Y. Qian, “Teaching dimension, VC dimension, and critical
sets in latin squares,” J. Combinatorics, vol. 9, no. 1, pp. 9-20, 2018.

VOLUME 8, 2020

(31]

(32]

(33]

(34]

(35]

(36]

(37]

[38

—

[39

—

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

(51]

(52]

(53]

A. Munaro, “The VC-dimension of graphs with respect to k-connected
subgraphs,” Discrete Appl. Math., vol. 211, pp. 163174, Oct. 2013.

C. Cao, R. L. Tutwiler, and S. Slobounov, “Automatic classification of
athletes with residual functional deficits following concussion by means
of EEG signal using support vector machine,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 16, no. 4, pp. 327-335, Aug. 2008.

G. M. Foody and A. Mathur, “A relative evaluation of multiclass image
classification by support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 6, pp. 1335-1343, Jun. 2004.

Q. Wu, X. Shen, Y. Li, G. Xu, W. Yan, G. Dong, and Q. Yang, ““Classifying
the multiplicity of the EEG source models using sphere-shaped support
vector machines,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1912-1915,
May 2005.

X. Liang, L. Zhu, and D.-S. Huang, ‘“Multi-task ranking SVM for image
cosegmentation,” Neurocomputing, vol. 247, pp. 126-136, Jul. 2017.

V. K. Sharma and K. K. Mahapatra, “Visual object tracking based on
sequential learning of SVM parameter,” Digit. Signal Process., vol. 79,
pp. 102-115, Aug. 2018.

J. Cervantes, F. Garcia-Lamont, L. Rodriguez, A. Lépez, J. R. Castilla, and
A. Trueba, “PSO-based method for SVM classification on skewed data
sets,” Neurocomputing, vol. 228, pp. 187-197, Mar. 2017.

S. Sahran, D. Albashish, A. Abdullah, N. A. Shukor, and S. Hayati Md
Pauzi, “Absolute cosine-based SVM-RFE feature selection method for
prostate histopathological grading,” Artif. Intell. Med., vol. 87, pp. 78-90,
May 2018.

Z.Tang, A. Zeng, X. Zhang, L. Yang, and K. Li, “Dynamic memory-aware
scheduling in spark computing environment,” J. Parallel Distrib. Comput.,
vol. 141, pp. 10-22, Jul. 2020.

Y. Wang, Z. Gui, H. Wu, D. Peng, J. Wu, and Z. Cui, “Optimizing and
accelerating space—time Ripley’s K function based on Apache Spark for
distributed spatiotemporal point pattern analysis,” Future Gener. Comput.
Syst., vol. 105, pp. 96118, Apr. 2020.

H.Zhang, H. Huang, and L. Wang, “Meteor: Optimizing spark-on-yarn for
short applications,” Future Gener. Comput. Syst., vol. 101, pp. 262-271,
Dec. 2019.

Z. Shmeis and M. Jaber, “A rewrite-based optimizer for spark,” Future
Gener. Comput. Syst., vol. 98, pp. 586-599, Sep. 2019.

S. Lopez-Huguet, A. Pérez, A. Calatrava, C. de Alfonso, M. Caballer,
G. Molté, and I. Blanquer, “A self-managed mesos cluster for data
analytics with QoS guarantees,” Future Gener. Comput. Syst., vol. 96,
pp. 449461, Jul. 2019.

S. Lépez-Huguet, I. Natanael, A. Brito, and I. Blanquer, ‘“Vertical elasticity
on marathon and chronos mesos frameworks,”” J. Parallel Distrib. Comput.,
vol. 133, pp. 179-192, Nov. 2019.

Z.H. You, J. Z. Yu, L. Zhu, S. Li, and Z. K. Wen, “A MapReduce based
parallel SVM for large-scale predicting protein—protein interactions,” Neu-
rocomputing., vol. 145, pp. 37-43, Dec. 2014.

W. Zhao, T. Fan, Y. Nie, F. Wu, and H. Wen, “Research on attribute
dimension partition based on SVM classifying and MapReduce,” Wireless
Pers. Commun., vol. 102, no. 4, pp. 2759-2774, Oct. 2018.

N. K. Alham, M. Li, Y. Liu, and M. Qi, “A MapReduce-based distributed
SVM ensemble for scalable image classification and annotation,” Comput.
Math. with Appl., vol. 66, no. 10, pp. 1920-1934, Dec. 2013.

J. W. He, Y. Lyu, J. Han, and C. Wang, “An SVM approach for five-
phase current source converters output current harmonics and common-
mode voltage mitigation,” [EEE Trans. Ind. Electron., vol. 67, no. 7,
pp. 5232-5245, Jul. 2020.

F. Cheng, J. Chen, J. Qiu, and L. Zhang, “A subregion division based
multi-objective evolutionary algorithm for SVM training set selection,”
Neurocomputing, vol. 394, pp. 70-83, Jun. 2020.

H. B. He and J. A. Starzyk, “A self-organizing learning array system for
power quality classification based on wavelet transform,” IEEE Trans.
Power Delivery, vol. 21, no. 1, pp. 286295, Jan. 2006.

E. Meng, S. Huang, Q. Huang, W. Fang, L. Wu, and L. Wang, “A robust
method for non-stationary streamflow prediction based on improved EMD-
SVM model,” J. Hydrol., vol. 568, pp. 462-478, Jan. 2019.

K. Thirumala, S. Pal, T. Jain, and A. C. Umarikar, “A classification method
for multiple power quality disturbances using EWT based adaptive filtering
and multiclass SVM,” Neurocomputing, vol. 334, pp. 265-274, Mar. 2019.
L. Jollans, R. Boyle, E. Artiges, T. Banaschewski, S. Desrivieres,
A. Grigis, J.-L. Martinot, T. Paus, M. N. Smolka, H. Walter, G. Schumann,
H. Garavan, and R. Whelan, “Quantifying performance of machine learn-
ing methods for neuroimaging data,” Neurolmage, vol. 199, pp. 351-365,
Oct. 2019.

131899

IEEEACCGSS G. Xian: Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark

[54] I.U. Din, M. Guizani, J. J. P. C. Rodrigues, S. Hassan, and V. V. Korotaev,
“Machine learning in the Internet of things: Designed techniques for
smart cities,” Future Gener. Comput. Syst., vol. 100, pp.826-843,
Nov. 2019.

[55] E. D. M. Silveira, I C. Passos, J. Scott, G. Bristot,
E. Scotton, L. S. T. Mendes, A. C. U. Knackfuss, L. Gerchmann,
A. Fijtman, A. R. Trasel, G. A. Salum, and M. Kauer-Sant’Anna,
“Decoding rumination: A machine learning approach to a transdiagnostic
sample of outpatients with anxiety, mood and psychotic disorders,”
J. Psychiatric Res., vol. 121, pp. 207-213, Feb. 2020.

[56] M. Sharif, M. Attique, M. Z. Tahir, M. Yasmim, T. Saba, and U. J. Tanik,

GUANGMING XIAN (Member IEEE) received
the B.Eng., M.Eng., and Ph.D. degrees from
the South China University of Technology,
Guangzhou, China, in 1998, 2003, and 2007,
respectively. From 2009 to 2011, his postdoctoral
scientific project research was jointly carried out in
the computer science and technology postdoctoral
scientific research flow station of the South China
University of Technology and the postdoctoral sci-
entific research workstation of Guangzhou Tianhe

“A machine learning method with threshold based parallel feature fusion Software Park Management Committee. The content of his Postdoctoral
and feature selection for automated gait recognition,” J. Organizational Research Report was the application of machine learning in financial time
End User Comput., vol. 32, no. 2, pp. 67-92, Apr. 2020. series prediction. He is currently an Associated Professor with the School of
[57]1 J.Meyerson, “Ben hindman on apache mesos,” IEEE Softw., vol. 33, no. 1, Software, South China Normal University, Foshan, China. He has published
pp. 117-120, Jan. 2016. a series of papers in academic journals and international conferences. His
[58] D.Cheng, X.Zhou, P.Lama,J. Wu, and C. Jiang, “Cross-platform resource current research interests include artificial intelligence, parallel machine
scheduling for spark and MapReduce on YARN,” IEEE Trans. Comput., learning, deep learning, big data, cloud computing, and mobile robot.

vol. 66, no. 8, pp. 1341-1353, Aug. 2017.

131900 VOLUME 8, 2020

