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ABSTRACT Systematic operations make modern wars more and more complicated, thus it is a challenge to
design, develop, and select an excellent System-of-Systems. In this paper, we propose an equipment System-
of-Systems architecture (ESoSA) formalization framework based on the super network and an architecture
space searching algorithm. First, the formal definition of ESoSA and the problem of ESoSA space searching
problem framework are introduced, where the searching problem is transferred into a multi-agent dynamic
programming problem. Each agent searches for the optimal architecture in its corresponding architecture
space, and different architecture spaces may overlap with each other. Second, the objective of the problem
is to choose several optimal architectures with maximized sampling rewards and minimized cumulative
searching costs. Third, a sequential search algorithm based on decision indicators is proposed to solve the
problem. Finally, the proposed algorithm is evaluated by simulation experiments, where the experimental
results show that the proposed algorithm is with high quality, and outperforms other benchmark algorithms.

INDEX TERMS Super-network based architecture, multi-agent dynamic programming, sequential search.

I. INTRODUCTION
The interconnection between weapons has become more
and more diverse currently [1]. Particularly, the widespread
use of unmanned systems has led to major changes in the
combat methods of modern warfare [2], [3], and it is a
challenging issue to study warfare. The equipment system-
of-systems (ESoS) [4] is a manifestation of the SoS1 in the
field of warfare. The ESoS is such complicated, and how
to study the ESoS is a problem that needs to be solved
urgently. Fortunately, the architecture provides an effective
way to study this problem. The architecture is the combina-
tion of component systems in the ESoS and the interaction
among component systems and with the external environ-
ment [7], [8]. In systems engineering, the ESoS architec-
ture runs through the entire process, including requirement
demonstration, model design, prototype development, and
field testing [9]. Therefore, the ESoS is studied through its

The associate editor coordinating the review of this manuscript and

approving it for publication was Zonghua Gu .
1A system-of-systems (SoS) is the integration of a limited number of com-

ponent systems, which are independent and operable, and are interconnected
for a certain period of time to achieve a higher goal [5], [6].

architecture2 in this paper. Further a reasonable formal ESoS
architecture is defined, and anmulti-agent dynamic algorithm
is proposed to achieve the optimal configuration of the core
elements of the ESoS.

We believe that the ESoSA is the combination of equip-
ment systems connected by command and control network,
where these equipment systems have certain functions that
are capable to complete some tasks [10]. Like building archi-
tecture to guide building construction, the ESoSA is used to
guide the development of a specific ESoS. Assume that each
ESoS has the potential capability of the ESoSA, and the real
capability of ESoS is unknown before the ESoS being devel-
oped. Given this, an formalized architecture model, a space
exploration problem framework and a dynamic program-
ming3 algorithm are proposed. In this paper, the following
challenges need to be solved: First, the potential capabilities
of the architecture is uncertain. In previous studies, the SoS

2In general, the architecture is a conceptual blueprint defining the struc-
ture, operation of an organization, and evolution rule. In this paper, we give a
description of the system-of-systems architecture in the field of equipment.

3In the dynamic programming problem, the complex problem is decom-
posed into a set of several sub-problems, where one sub-problem is solved
each round and the system state has no aftereffect.
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capabilities were determined after the architecture was given.
However, the uncertainty of the potential capabilities of the
architecture exists and reflected in the two aspects: the task
uncertainty and the diversity of component combinations,
and some minor factors that is not considered in the design
process. Second, decision makers may have a variety of
actions to develop the same architecture and acquire the
actual capability. Therefore, decision makers should evaluate
the expected rewards of these policies in order to make the
best choice. Third, the decision makers may need several
optimal architectures. The previous studies often selected
only one architecture, and there was no research on the selec-
tion of multiple architectures in our knowledge. Given this,
a novel architecture model and the ESoSA space searching
problem are constructed, and a dynamic searching algorithm
of architecture space is proposed.

Specifically, the work of this paper mainly includes the
following three aspects:

• First, a super-network [9] based ESoSA framework is
proposed. The ESoSA is constructed based on the equip-
ment systems of the ESoS, that is, tasks, equipment sys-
tems, and command and control (C2) structures. Given
this, the ESoSA search problem framework is proposed,
where it is further transferred into a dynamic program-
ming problem [11].

• Second, a multi-agent searching algorithm is proposed
to find several optimal ESoSAs. Specifically, the deci-
sion indicator based sequential searching (DISS) algo-
rithm is proposed, where its computational complexity
is polynomial time and may be optimal.

• Third, the performance of DISS was tested and evalu-
ated by experiments, where experimental results show
that DISS is with high quality and outperforms other
benchmark algorithms.

II. RELATED WORK
In this section, related work on the ESoSA modelling frame-
work and solvers is reviewed.

A. THE EQUIPMENT SYSTEM-OF-SYSTEMs
ARCHITECTURE
The capability is to complete several operation missions to
achieve some desired operational effects under the premise
of certain preparations and environmental conditions [12].
On the basis of this, the U.S. Department of Defense regards
that the capabilities include doctrine, organization, train-
ing, education, personnel, facilities, and policy [13], [14].
In order to achieve the desired capability, equipment ele-
ments and non-equipment elements need to be combined
organically. Presently, many scholars have put forward their
understanding on the ESoSA, but the essential connotation
is still unclear. We believe that the ESoSA is to integrate
equipment systems with specific functions into a whole capa-
ble of accomplishing specific missions under constraints
of the organizational structure. The ESoS capability is the

comprehensive ability of the equipment system in the course
of completing missions and tasks. The ESoS capability is
hard to measure comprehensively and accurately, so we give
a formal problem description of the ESoSA in this paper.

In military applications, many SoSA frameworks are
widely used. Common operational architecture modeling
frameworks include: DoDAF citehandley2012incorporating,
MoDAF [16], NAF [17]. In fact, these frameworks can be
represented by the super-network model. The super network4

refers to a network with huge scale, complicated connection
and heterogeneous nodes, that means a super network is
composed of several networks with different characteristics,
such as multiple layers, multiple levels, multiple dimensions,
multiple attributes, etc. Therefore, the super network is a
general model that can be used to reflect the interaction
and influence in the ESoSA. Presently, many researchers
use super networks to study operational SoS problems.
Yu et al. [19] proposed a super network includes percep-
tion nodes, C2 nodes and strike nodes, and the association
between these nodes. Shi et al. [20] proposed a supernetwork
composed of five heterogeneous nodes, including sensor
node, information node, decision node, communication node,
and engagement node. There are different types of interaction
between nodes. Zhao et al. [21] established a weapon equip-
ment system super network, and proposed a granular analysis
to reduce the complexity of the weapon equipment sys-
tem scheme generation based on the network-centric combat
mode. The super network includes task sub-network, capa-
bility sub-network and system sub-network. Chen et al. [22]
put forward amulti-layer command and control supernetwork
model including sensing subnet, command subnet, and fire-
power subnet. Based on the capability generationmechanism,
it needs to take capability requirements into consideration to
construct the ESoS, where the ESoS should include equip-
ment, functions, and command and control structure. Given
this, a capability-oriented ESoSA is proposed in this paper.

B. ALGORITHMS FOR THE ESoSA SEARCHING PROBLEM
In this paper, each super-network is an architecture that has
the capability to complete a specific mission, while multiple
super-networks with their capabilities constitute the archi-
tecture space. The architecture space searching algorithm
needs to be proposed to select several optimal architectures.
The architecture space searching problem is modeled as an
optimization problem, and the architecture space searching
problem proposed in this paper can be converted into an
optimal path search problem, that is similar to the traveling
salesman problem. The traveling salesman problem is widely
used in real problems, such as vehicle routes and cargo place-
ment in warehouses [23]. The combinatorial optimization
problem is to find the best combination of different discrete
events that satisfy different constraints. The swarm intelli-
gence algorithms are effective means to solve combinatorial

4A super network is a network of networks, that has multi-layer, multi-
level, multi-dimensional, or multi-attribute feature [18].

VOLUME 8, 2020 125131



T. Wang et al.: Optimal Searching Algorithm for the Equipment System-of-Systems Architecture Space

optimization problems, such as genetic algorithm, particle
swarm optimization algorithm, ant colony optimization algo-
rithm, and firefly algorithm, bat algorithm, bacteria colony
foraging algorithm, bee colony algorithm, gray wolf opti-
mization, spider monkey optimization and other extended
algorithms [24]. These swarm intelligence algorithms find the
optimal value through a large number of simulation experi-
ments, but it is difficult to guarantee to find the optimal value
theoretically. However, the traveling salesman problem is
little different from the problem proposed in this article. The
objective of our problem is to find several optimal architec-
tures, where it takes cost to explore the unknown architecture,
so the exploring path is dynamically constructed; the reward
of each architecture scheme is subject to a certain probabil-
ity distribution before exploration, and the exact informa-
tion is only known after exploring. Therefore, the swarm
intelligent algorithms are difficult to apply to our problems
directly.

Another literature that is closely related to our paper is
the consider-then-choose policy [25], that is, the decision
maker first determines the set of unknown schemes that will
be explored, and chooses the most effective scheme after
the uncertainty of these schemes been eliminated. In recent
decades, researchers have put forward many workers on
how decision makers explore unknown schemes to solve
the uncertainty of the problem. Weitzman [26] studied the
problem of sequential search in the case of uncertain utility
values. In the paper, a searching rule and a stopping rule
are proposed that use the reservation value as the threshold,
where the reservation value depends on the trade-off between
the actual utility value of the searched scheme, the search
cost, and the evaluation of the utility value of the unsearched
scheme. Similarly, Peter and Morgan [27] proposed rules
based on fixed sample size and order, and sufficient con-
ditions for the algorithm to reach its optimal state. Roberts
and Lattin [28] studied the consideration set composition
model of commodities and predicted the price of new com-
modities based on the calibration of the utility function of
the commodities. Blanco et al. [29] developed a step-by-
step learning model in which decision makers spent costs
to learn information about unknown solutions and proposed
the best rules for when to stop searching. Ke et al. [30]
continued to search for information expanded to a variety of
options, and showed that only in the case of a sufficiently
high expected valuation should search or purchase goods.
Similar to our problem framework, Chen et al. [31] proposed
an optimal algorithm for the human-assisted robot search
problem, where the sequential search method is used to help
the robot choose an optimal solution from several solutions.
Although the above work has different research backgrounds,
they have similar research ideas and researchmethods, that is,
a sequential search algorithm based on indicators is proposed
to solve the optimal solution. But the disadvantage of these
algorithms is that they can only provide one solution, not
multiple solutions. Thus, further work need to be done to
solve the problems proposed in the paper.

FIGURE 1. An example of the supernetwork-based ESoSA.

III. THE ESoSA SPACE SEARCHING PROBLEM
Here the definition of ESoSA is given, and the ESoSA space
search problem is put forward. After that, the ESoSA space
search problem is transformed into a multi-agent dynamic
programming problem.

A. DEFINITIONS OF THE ESoSA
The ESoSA is formed by an organic combination of equip-
ment components and non-equipment components, where the
core elements are tasks, equipment systems and the C2 struc-
ture. The capability is used to measure the possibility that an
ESoS accomplishes its mission. Specifically, an equipment
system with certain functions can accomplish some tasks,
and the ESoS based on these equipment systems with the
C2 structure has the capability to complete a specific mission.
In fact, the architecture is a model of the ESoS, and only takes
core elements of the ESoS into considerations, so the ESoS
developed based on the architecture has uncertainties. Here,
developing an architecture means to build a ESoS based on
the architecture. The definition of architectural capabilities is
given as follows:
Definition 1 (Architecture Potential Capabiliy): The archi-

tecture potential capability refers to the capability of the ESoS
to complete a specific mission, where the ESoS is developed
according to the ESoSA, denoted as W .
The uncertainty of architecture potential capability can be

represented by a probability distribution, that is, W follows
a certain probability distribution. In the paper, the super-
network is composed of three different types of net-
works: task network, equipment network and command
network. Some definitions of the ESoSA is given as
follows.
Definition 2 (Task Node): The task node is an activity

process that can be performed by equipment, denoted as TA.
The mission can be represented as the task network, that

is composed of several task nodes. We regard that when
these tasks are completed, the mission is completed. The task
network is denoted as GTA = (V TA,ETA).

125132 VOLUME 8, 2020



T. Wang et al.: Optimal Searching Algorithm for the Equipment System-of-Systems Architecture Space

Definition 3 (Equipment Node):The equipment node refers
to the equipment system that has specific functions and can
independently complete specific tasks, denoted as ES.

Tasks are completed by equipment, so the relationships
between equipment are affected by tasks, and the equipment
network is denoted as GES = (V ES ,EES ).
Definition 4 (Command and Control Node): The command

and control (C2) node is used to process information, manage
organization, decision planning, control feedback, and the
C2 network is denoted as Gc2 = (VC2,EC2).
Given this, the architecture topology model, shown as 1,

is a heterogeneous network GA composed of three types of
nodes and five types of relationships, denoted as GA =
〈V TA,V ES ,VC2,ETA,EES ,EC2,ETE ,EEC 〉, where ETS rep-
resents the relationship between task nodes, and ESC

represents the relationship between equipment nodes and
C2 nodes. The supernetwork-based architecture modeling
method is as follows: First, the mission of the ESoS is
decomposed into a task network that can be performed by
equipment. Second, the correspondence between tasks and
equipment is given, and the system network is constructed
according to the task network. Third, the correspondence
between the equipment node and theC2 node is given, and the
C2 node is established. Note that each supernetwork means
an architecture, and the architecture space is composed of
all supernetworks. Forth, task nodes, equipment nodes, and
C2 nodes in the supernetwork should be contained in the real
system, and these systems make up an ESoSA.

It is worth noting that it takes a cost c ∈ C to develop
an architecture, and at the same time get a certain capa-
bility (reward) to complete the mission w ∈ W . Then,
the formalization of architecture model is composed of the
architecture topology model, cost and capability, which is
denoted as 〈GA,C,W 〉. If there are more nodes and more
complicated relationships in the supernetwork, then the cost
of architecture development will be greater, and the potential
capacity of the architecture may be greater. However, the cost
of developing an architecture and the assessment of its capa-
bilities are a complex subject that is oriented to specific fields
and situations. In this paper, we regard that the probability
distribution and cost of the architecture is known in advance.

B. THE ESoSA SEARCHING PROBLEM
Suppose there are N decision-makers, and each decision-
maker needs to select a different architecture to develop a
ESoS. There may be intersections between different architec-
ture spaces. For simplicity, decision-makers are represented
as agents, and we take the n-th agent as an example, denoted
as m. The ESoS capability here is equal to the reward, a com-
prehensive measure of the cost of developing architecture and
the benefits after executing the architecture.

The reward w of each architecture follows the probabil-
ity distribution W (w), and the reward of different architec-
tures are independent of each other. Let km ∈ Km,Km =
{1, 2, . . . , |Km|}, where Km is the number of architectures
of Agent m. In addition, there may be intersections between

FIGURE 2. An example of undeveloped architecture space and developed
architecture space.

different architecture spaces,Ki∪ Kj 6= ∅, while there may be
no intersections,Ki∪ Kj = ∅. The reward of each architecture
is uncertain before developing, but can be obtained through
different actions. Agent m can develop the architecture km
by taking action amk ∈ Amk ,A

m
k = {1, 2, . . . , |A

m
k |}. Agent

m explores the architecture in the undeveloped architecture
space, and finally chooses a best architecture as the final
architecture among all the developed architecture spaces. The
goal of each agent is to choose an architecture with the
maximized sampling reward and the minimized exploring
cost.
Definition 5 (Architecture State): The architecture state

refers to the form of the same architecture, including the
undeveloped state and the developed state.

Fig. 2 describes an architectural state transition rela-
tionship, where the undeveloped architecture represents the
architectural reward is unknown. After developing the archi-
tecture, the architectural reward is known and the architec-
ture is transferred from undeveloped architecture space to
the developed architecture space. Here, we define a formal
description of the equipment SoSA space searching problem
(ESoSASSP). Specifically, let us define two binary decision
variables: dma,k , when Agent m takes action amk to develop
architecture km, dna,k = 1, otherwise dna,k = 0; sma,k , when
Agentm finally chooses action amk to develop the architecture
k , smk = 1, otherwise smk = 0. Note that, the architecture k can
only be chosen once, different agents should choose different
architectures.

ESoSASSP

max E[
∑
n∈M

∑
k∈Km

∑
a∈Amk

(−dma,kca,k + nks
m
a,kwk )]

s.t. dma,k ≤ 1,m ∈ M , k ∈ Km, a ∈ Amk (a)

dma,k ≥ s
m
a,k , m ∈ M , k ∈ Km, a ∈ Amk (b)∑

k∈Km

∑
a∈Am

sma,k = 1,m ∈ M (c)

dma,k ∈ {0, 1}, m ∈ M , k ∈ Km, a ∈ Amk (d)

sma,k ∈ {0, 1}, m ∈ M , k ∈ Km, a ∈ Amk (e)

ca,k ∈ R+, k ∈ Km, a ∈ Amk (f ) (1)

The indicator is the sum of the maximum reward in devel-
oped architectures space and the cumulative developing cost,
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where the objective function is to maximize the indicator,
shown in Eq.(1). Specifically, constraint (a) ensures that for
any agent’s architecture space, the architecture is either devel-
oped or not. Constraint (b) means that if an agent finally
chooses a solution, then the architecture needs have been
developed. Constraint (c) means that each agent chooses only
one architecture from the developed architecture space in the
end. Constraint (d) and (e) represent the value space of two
types of decision variables. Constraint (f ) represents the value
of the cost when taking actions.

C. THE ESoSA DYNAMIC PROGRAMMING PROBLEM
According to the description of ESoSASSP in the previ-
ous section, the problem can be transferred as a formal
multi-agent dynamic programming problem. The total archi-
tecture space is denoted as K =

⋃
m∈M Km, where km is

the architecture space of Agent m. Here, we take Agent m
as an example. Let Km be the space of developed architec-
tures, and let K̄m be the space of undeveloped architectures.
At the beginning, the agent owns the undeveloped space,
and the exact rewards of architectures are unknown. Suppose
that the architecture space and the reward probabilities dis-
tributions of architectures are known in advance. For each
decision, Agent m has the choice to explore an undeveloped
architecture from the set K̄m, or stop to select a developed
architecture from the set Km. If Agent m continues to explore
the undeveloped architecture space, then it can take the action
amk ∈ A

m
k , while if Agent m stops searching, it then chooses

the architecture with the highest sampling reward in the set
Km.

Let (K̄ , y) be the state of the problem, where y =
maxk∈K wk is the maximized sampling reward in the set K .
The global state assessment function 9(K̄ , y) is the expected
reward obtained by performing the developing route under
the condition that the maximized sampling reward is y and
the undeveloped architecture space is K̄ , where the devel-
oping route is the exploration sequence and length of the
unknown architecture. In this paper, each architecture reward
is independent of each other, then the global state assessment
function 9(K̄ , y) can be divided into the sum of all local
state assessment functions 9(K̄m, ym),m ∈ M , where ym =
maxk∈Km wk is the maximized sampling reward in the set Km.
Thus, the objective of the problem is to find developing route
that maximize the global state assessment function 9(K̄ , y).

9(K̄ , y) =
∑
m∈M

9(K̄m, ym) (2)

For the state 9(K̄m, ym), Agent m has several actions a =
{am1 , a

m
2 , . . . , a

m
|A|} to explore the unknown architectures, then

it chooses the action based on the Eq.(3).

9(K̄m, ym)=max{ym, 91(K̄m, ym), . . . , 9|A|(K̄m, ym)}

where

9k (K̄m, ym) = max
k∈K̄m
{−cma,k

+9(K̄m − {k}, ym)
∫ ym

−∞

dWk (wk )

+

∫
∞

ym
9(K̄m − {k}, yk )dWk (wk )} (3)

The variable 9k (K̄m, ym) represent the expected state
assessment function of Agent m after executing the action amk
at the state (K̄ , y). Further, the Agent needs to compare the
assessment function after taking different actions, and select
the action with the largest expected reward. Taking the action
amk as an example, if the sampling reward of architecture k
is less than the recorded maximized reward of Agent m, i.e.
wk < ym, the current highest reward will not change and the
assessment reward is −cma,k +9k (K̄m − {k}, ym); if wk ≤ ym,
then the current maximized sampling reward changes to wk
and the assessment reward is −cma,k +9k (K̄m − {k},wk ).
The process of finding the optimal architecture can be

regarded as an optimal route selection problem, that is, select-
ing the architecture with the largest sampling reward in the
optimal route. However, the computational complexity is
O(n22n) [32], making it hard to be solved in a limited time.

IV. THE DYNAMIC PROGRAMMING ALGORITHM
We put forward a decision indicator based Sequential Search-
ing (DISS) algorithm to solve the problem proposed in the
previous section. We first define indicators za,k for executing
the action amk for each architecture k , then give the theoretical
analysis about the DISS algorithm.

A. THE DISS ALGORITHM
According to Eq.(3), the indicators za,k for executing the
action amk for each architecture k are defined as follows:

za,k = −ca,k + za,k

∫ za,k

−∞

dWk (wk )+
∫
∞

za,k
wkdWk (wk ) (4)

The following equation can deduced based on Eq.(4):

ca,k =
∫
∞

za,k
(wk − za,k )dWk (wk ) (5)

With reference to the Pandora’s rule [26], a searching rule
is designed under the conditions of 9(K̄m, ym) and {za,k |k ∈
Km, a ∈ Amk }. The DISS algorithm is shown in Algorithm 1.
Without loss of generality, we take Agentm as an example.

The single-agent searching algorithm can be divided into
three stages: indicator ranking (lines 5-9), indicator judgment
(lines 11-12), and architecture selection (lines 13-25). The
indicator ranking refers to calculating all the decision indi-
cators according to Eq.(5); the indicator judgment refers to
that if Agent m wants to explore another unknown archi-
tectures, then it chooses an architecture and action with the
largest indicator; the architecture selection means that when
the collected maximum sampling reward is greater than the
maximum indicator of all unknown architectures, Agent m
stops exploring and chooses the architecture with the highest
sampling reward.
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Algorithm 1: The DISS Algorithm

1 procedure DISS(D̄)
2 begin
3 D, π ← ∅;
4 c, y← 0;
5 for m ∈ M , km ∈ D̄m, amk ∈ A

m
k , do

6 za,k ← Solving(ca,k =
∫
∞

za,k
(wk − za,k )dWk (wk ));

7 for m ∈ M do
8 πm← Sorting(za,k |k ∈ Km, a ∈ Amk );
9 π ← π ∪ πm

10 for m ∈ M do
11 km← ParsingArchitecture(πm(0));
12 amk ← ParsingAction(πm(0));
13 if ym ≤ zma,k then
14 sma∗,k∗ ← 1;
15 continue;

16 s ∼ Wk (wk );
17 Dm← Dm ∪ {km};
18 D̄m← D̄m \ {km};
19 π ← π \ {za,k |a ∈ Amk };
20 dma,k ← 1;
21 c← c+ cma,k ;
22 if ym < s then
23 a∗← amk ;
24 k∗← km;
25 ym← s;

26 return (−c+
∑

m∈M ym);

B. PERFORMANCE ANALYSIS
The cost and effectiveness of the DISS Algorithm are anal-
ysed in this section.
Theorem 1: The time complexity of DISS is a polynomial.
Proof: From the Algorithm 1, it shows that the time

complexity of the DISS algorithm lies on the time complexity
of the sorting rule, since each agent executes corresponding
actions in order according to the architectural indicators,
while this order remains the same for the entire exploration
process. Thus, the time complexity of our proposed algorithm
is equal to that of the sorting algorithm.

From this theory, we know that the computational com-
plexity of DISS is due to the sorting algorithm. Specifically,
the average time complexity of heap sorting, bubble sorting,
Shell sorting is Olog2(n),O(n2),O(n1.3) separately, and the
space complexity of these sorting algorithms is O(1). There-
fore, our proposed algorithm is with reasonable cost.
Theorem 2: Each architecture selected by DISS is condi-

tionally optimal.
Proof: Each agent acquires the architecture based on

the sequential allocation method. In fact, the selection of
each architecture in the ESoSASSP can be mapped to the
classic Pandora problem. The Pandora problem is a type

of search problem that studies economics. In the Pandora
problem, the reward of each project is subject to a probability
distribution. The actual reward of the project is unknown
before running the project. In our problem, an architecture
corresponds to a project, where it has a reward wk follow-
ing a distribution. Once the reward of the architecture k is
sampled, the variables za,k with different actions related to
the architecture k are transferred into the set K . Since each
architecture is generated one by one, DISS computes each
architecture with regard to the exploration results of previous
architectures. In paper [26], it proves that this exploration
algorithm is able to solve the Pandora problem and acquire
the optimal results.

In general, it is hard to prove that the DISS algorithm is
optimal. However each architecture calculated by the DISS
algorithm is conditionally optimal, the total architectures will
get a good result. Thus the DISS algorithm is still a high
quality solution.

V. EMPIRICAL EVALUATION
In the previous section, we theoretically analyze the DISS
algorithm. Here, we analyze its performance based on sim-
ulation experiments.

A. EXPERIMENT SETUP
In order to complete a certain mission, åŞĹåĹ such as border
patrol, continuous reconnaissance, and electromagnetic inter-
ference, it is necessary to send a drone swarm to the target
area to perform the mission. For such a new mission, how
to build a drone swarm is the first issues. Here we give an
alternative method: first, the mission is decomposed into a
task network; second, as a drone with certain functions can
complete a specific task, it builds the relationships between
drones and tasks; third, constructing an C2 network based on
the drones; finally, a multi-agent systemmodel is established,
and each agent has a task list, specific functions, and C2 net-
work. The multi-agent system is a kind of equipment archi-
tectures. In order to achieve the highest operational efficiency,
we need to choose the best architecture.

Here we define some metrics to evaluate the performance:

• The reward is the difference between the maximized
sampling reward and the cumulative cost of developed
architectures.

• The number of development (NoD for short) is the num-
ber of developed architectures in a simulation.

• The runtime of a simulation records the running time of
the program.

To compare the performance of the DISS algorithm, some
benchmark algorithms for the ESoSASSP are given, includ-
ing two general algorithms (exploring all architectures and
randomly exploring architectures) and a specific algorithm
(exploring architectures based on expectations):

• Random algorithm (RA for short), that is, each agent
chooses an action at each moment randomly. Specifi-
cally, an architecture of Agent m, km ∈ K̄m is randomly
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selected. If km ∈ Km, that is, the architecture has been
developed, then the search is finished and the reward
of this architecture is obtained; if km ∈ K̄m, that is,
the architecture km has not been developed and its reward
is unknown, then Agent m randomly chooses an action
from its action space amk ∈ A

m
k until the search ends.

• Traversal Development Algorithm (TDA), that is, each
agent will develop all the architectures. For an unde-
veloped architecture k ∈ K̄ , the agent chooses the
action with the lowest cost, a∗k = argminck {ca,k |a

m
k ∈

Amk }. When agents have developed of all undeveloped
architectures, the architecture with the highest sampling
reward is chosen as the final solution.

• Expected Value Development Algorithm, (EVDA),
is similar to the algorithm of proposed in this paper. The
evaluation indicator of EVDA is the difference between
the highest expected value and the cost, namely {z̃ma,k =
{E(wk ) − cma,k |k ∈ K , a ∈ Amk }. When the highest
sampling reward exceeds the indicator, the search is
completed.

We design four cases to evaluate the scalability of the
architecture space by setting parameters based on experi-
ence. The number of undeveloped architectures is |K̄ | =
{20, 100, 1000, 10000}. There are three actions to develop
each architecture, where the costs are subject to three uniform
distributions c1 ∼ U (1, 3), c2 ∼ U (0.5, 4), c3 ∼ U (1.5, 2.5).
The reward of each architecture is subject to a probability
distribution, wk ∼ U (u1, u2) where u1 ∼ U (50, 60), u2 ∼
U (90, 100). Let the number of agents, i.e the number of
selected architecture schemes (NoS for short), be 1 to 10.

• Case A: Exploring in the space with |K̄ | = 20 architec-
tures.

• Case B: Exploring in the space with |K̄ | = 100 architec-
tures.

• Case C: Exploring in the space with |K̄ | = 1000 archi-
tectures.

• Case D: Exploring in the space with |K̄ | = 10000
architectures.

B. EXPERIMENT RESULTS
(1) Case A

The average rewards of RA, TDA, EVDA, DISS in Case A
are shown in Fig. 3. It reveals that as the number of selections
NoS grows, these average rewards grows gradually, and the
average reward of DISS is a little higher than that of other
algorithms.

The average NoDs of RA, TDA, EVDA, DISS in Case A
are shown in Fig. 4(a). It reveals that as the number of
selections NoS increases, the number of development NoD of
EVDA, RA, DISS increases gradually, and the NoD of TDA
remains at 20. Fig. 4(b) reveals average runtimes in Case A.
It shows that these average runtime are similar.

(2) Case B
The average rewards of RA, TDA, EVDA, DISS in Case A

are shown in Figure 5. The value of TDA at NoS = 1 is

FIGURE 3. Average rewards in Case A.

FIGURE 4. NoDs and runtimes of RA, TDA, EVDA, DISS in Case A, where
Fig. 4(a) shows the average NoDs in Case A, and Fig. 4(b) shows the
average runtimes in Case A.

FIGURE 5. Average rewards in Case B.

less than 0, it is not shown in this figure. As the variable
NoS grows, average rewards of these algorithms increase.
In summary, DISS performs a little betther than that of other
algorithms.

The average NoDs of the four algorithms in Case B
are shown in Fig. 6(a). Since TDA develops all archi-
tectures, the NoD is equal to the number of undevel-
oped architectures. The average NoDs of DISS are a little
larger than that of EVDA and less than that of RA in
these simulations. The average runtimes of the four algo-
rithms in Case B are shown in Fig. 6(b). It demon-
strates that the average runtime of TDA is highest in this
Case.

(3) Case C

125136 VOLUME 8, 2020



T. Wang et al.: Optimal Searching Algorithm for the Equipment System-of-Systems Architecture Space

FIGURE 6. NoDs and runtimes of RA, TDA, EVDA, DISS in Case B, where
Fig. 6(a) shows the average NoDs in Case B, and Fig. 6(b) shows the
average runtimes in Case B.

TABLE 1. Average rewards in Case C.

FIGURE 7. NoDs and runtimes of RA, TDA, EVDA, DISS in Case C, where
Fig. 7(a) shows the average NoDs in Case C, and Fig. 7(b) shows the
average runtimes in Case C.

The average rewards of RA, TDA, EVDA, DISS in Case C
are tabulated in Tab. 1. The average reward of DISS is much
higher than that of other algorithms in these cases.

Fig. 7(a) shows the average NoDs of RA, TDA, EVDA,
DISS in Case C. It reveals that the average NoD of DISS is
less than that of RA and TDA, and the average NoD of TDA
is always 1000. Fig. 7(b) shows the average runtimes of RA,
TDA, EVDA, DISS in Case C. The runtime of TDA is highest
in these simulations, and the runtime of DISS is between RA
and EVDA.

(4) Case D
The average rewards of RA, TDA, EVDA, DISS in Case D

are tabulated in Tab. 2. Similar to the results in Case C,
DISS performs much better than RA, TDA, EVDA in all
simulations.

Fig. 8(a) depicts the average NoDs of RA, TDA, EVDA,
DISS in Case D. It shows the average NoDs of DISS ranges
from 6 to 60 and the average NoDs of EVDA developments
is from 1 to 10 in these simulations. Fig. 8(b) depicts the

TABLE 2. Average rewards in Case D.

FIGURE 8. NoDs and Runtimes of RA, TDA, EVDA, DISS in Case A, where
Fig. 8(a) shows the NoDs in Case D, and Fig. 8(b) shows the Runtimes in
Case D.

FIGURE 9. Average rewards and runtimes of DISS and EVDA in four cases.

average runtimes of RA, TDA, EVDA, DISS in Case D. The
runtime of TDA is highest, while the average runtime of DISS
is between RA and EVDA.

(5) Comparison of DISS and EVDA
Finally, the average rewards and average runtimes of DISS

and EVDA in Case A, Case B, Case C, and Case D, are
comprehensively compared. The average rewards are shown
in Fig. 9(a). It demonstrates that the quality of DISS is
better than that of EVDA in these simulations, especially
the average reward of DISS increases as the architecture
space increases. The average runtime of DISS and EVDA
in these simulations are depicted in Fig. 9(b). It obviously
show that as the number of architecture space increases,
the average runtime of DISS increase polynomially, and the
runtime of EVDA is slightly lower than that of DISS in these
simulations.

C. EXPERIMENT ANALYSIS
Based on the above simulation results, some interesting
phenomena could be found for the DISS algorithm. First,
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since the reward of each architecture is greater than zero,
the average reward of DISS will increase with the increase
of NoS. Second, the DISS algorithm is a kind of sequential
allocation methods, which means that each agent’s architec-
ture is determined in turn. As the variable NoS increases,
the variable NoD will also increase. Third, the increasing
speed of runtime may decrease with the increase of NoS.
On one hand, a new architecture is selected each round, and
the total runtime will increase gradually; on the other hand,
the developed architectures without been selected could be
used as the condition for subsequent sampling, hence the
runtimemay decrease. Forth, the experiment results show that
the performance of DISS is better than RA, TDA, and EVDA.
The reason is that DISS selects the architecture greedily
through the index-based method, which can find the optimal
development path and select best architecture. In the DISS
algorithm, it develops a suitable number of architectures, and
stops to select the architectures with the highest sampling
reward. The indicator is calculated based on the specific prob-
lem characteristics. Intuitively, the indicator is the trade-off
of the maximum sample value, the searching cost, and state
evaluation value, which seams to the expected reward of the
problem.

VI. CONCLUSION
In this paper, we propose a supernetwork-based ESoSA
model with some prior knowledge and a multi-agent architec-
ture space searching algorithm. Specifically, the objective of
the problem is to choose several optimal architectures in each
agent’s own space. The architecture space search process is
modeled as a multi-agent dynamic programming problem.
In the paper, we assume that the probability distribution
of the potential capabilities of each architecture is known
before exploration, but the specific capability of architecture
is unknown until an agent develops it. In order to solve such
problem, a sequential search algorithm is proposed based on
decision indicators. Finally, the simulation experiments show
that the time complexity of the proposed algorithm is poly-
nomial and the reward is much higher than other benchmark
algorithms

The research work in this paper has some academic value
and practical value. First, we expand the problem frame-
work from the single-agent dynamic programming to the
multi-agent dynamic programming, and propose an algorithm
analyzed from both aspects of effectiveness and cost theoret-
ically. Specially, the algorithm may be optimal through theo-
retical analysis, which is able to compute the best exploration
path and architecture scheme. Second, our work has a wide
range of applications. Instead of only recommending one
architecture in the previous research, our proposed algorithm
could recommend any number of architectures within limited
time and resources.

The proposed algorithm can be applied in the field of
exhibiting the property of sequential search. Since we give
many of assumptions of the formulation, such as the indepen-
dent reward distribution, sequential searching, our algorithm

has many limitations. It is very hard to model well and puts
forward an optimal algorithm to solve the problems, that is,
dependent reward distribution, parallel search, and pay-as-
you-go research. Future work will focus on extending our
algorithm to settings with these problems.
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