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ABSTRACT Resourcemanagement for cloud computing environments that are characterized bymany layers
emerges as a critical task for cloud computing providers. Such providers are compelled by the demands and
strategies of stochastic customers to adopt dynamic resource management for the top–bottom scaling of
the cloud resources on the basis of variable needs. Resource management in the infrastructure as a service
layer relies on virtual machine (VM) characteristics, such as estimated VM classes. Given that a cloud
provider offers a variety of VM classes that differ as regards the size of computing resources (e.g., central
processing unit, memory, and input/output devices), optimizing cloud resources to maximize cloud revenue
is a challenging dilemma. More specifically, the dynamic management of resources in cloud spot markets is
confronted with various severe obstacles. In consideration of these issues, this study investigated a dynamic
resource management model for cloud spot markets and put forward an efficient model that manages spare
resources for the purpose of expanding cloud revenue. The model estimates the available spare capacity of
a spot market, evaluates the maximum expected revenue of stagnant VMs on the basis estimated cumulative
capacity, and locates the optimum VM combinations that bear complementary workloads and capacities
and can coexist in a certain host. Our model also improves the understanding of cloud resource scaling and
generates inferences that can be adopted in managing cloud resources for all layers as well as Reserved and
On-Demand markets.

INDEX TERMS Resource management, resource allocation, dynamic allocation, cloud, IaaS, spot market,
virtual machine, CloudSim.

I. INTRODUCTION
Many cloud computing providers that offer infrastructure as
a service (IaaS) implement various pricing schemes, such
as on-demand, reserved, and spot pricing. Amazon Elastic
Compute Cloud [1] adopts these schemes, as does Microsoft,
which provides Rreserved and Pay-as-you-go pricing for
its Azure virtual machine instances [2]. These schemes are
roughly partitioned into two categories. The first, usually
called reserved pricing, involves the imposition of a static
price-per-time unit for long-term, uninterrupted usage under
a service level agreement (SLA). The second category, com-
monly referred to as spot pricing, entails the implementation
of a dynamic price-per-time unit for short-term usage that
can be interrupted in some situations and is ungoverned
by an SLA. These pricing strategies apparently discriminate
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VM prices and features to suit customer demand and will-
ingness to pay. Each pricing scheme is also underlain by
potential technical reasons and motivations. Spot pricing for
VM instances has raised considerable debate about accom-
panying techniques and objectives. Such discussion has been
directed, for example, toward Amazon and Google cloud
services. Amazon sells its spare computing capacity through
spot instances [1]. Whereas, Google initially offers Pre-
emptible VMs for batch and fault-tolerant jobs, before ter-
minating running instances when underlying resources are
needed [3]. Reference [4] identified the necessities and objec-
tives that drive cloud providers to adopt a spot pricing
strategy. The authors concluded that these companies offer
VM instances for a limited time at a dynamic price, depending
on the state of cloud resources and regardless of claims that
they provide cost-saving services to customers. The condi-
tion of cloud resources varies according to utilization level
and the extent of the gap between the computing capacities
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of aggregate VMs and physical machines (PMs). This gap
represents a set of unutilized VMs called stagnant VMs.
As can be seen, maximizing cloud revenue necessitates not
only the adoption of an appropriate spot pricing model but
also creation of an effective resource management model that
can be optimize cloud resources for spot markets.

The above-mentioned problems can be described as
tantamount to finding the optimum mapping from VMs to
PMs so as to reduce resource consumption and, hence, sub-
stantially augment total expected revenue. The key role of
resource allocation is to adjust a given set of assets in response
to the law of supply and demand, for the purpose of maximiz-
ing utilization levels on one hand and minimizing resource
consumption on the other. These tasks are accomplished
ultimately in service of expanded cloud profit. Tackling such
challenging problems requires overcoming many significant
obstacles, which include the following:
• Recognizing the underlying factors that affect supply in
a cloud

• Estimating the prospective computing capacity for sale
• Selecting a favourable market in which to sell VMs
related to prospective capacity

• Assessing the expected revenue from this capacity
• Finding an allocated VM algorithm that maximizes
cloud revenue

Most studies regarding cloud resource management inves-
tigated this issue as a general supply chain optimization
problem and failed to highlight the underlying relationship
between resource management and pricing as well as the
technical factors behind supply operations. For instance, [5]
made the best use of each running PM to reduce the consump-
tion of cloud power, but all the cloud’s resources were han-
dled under the same conditions. Likewise, [6] sought to save
asmuch power as possible by estimating the capacity required
in a succeeding time interval, subject to a probabilistic SLA.
However the proposed strategy is suitable only for a private
cloud and a certain form of contract.

Motivated by the need to address the above mentioned
challenges and accordingly formulate techniques that can be
used to improve resource management, we conducted this
research with a view to providing the following contributions:
• We put forward a new systematic approach to managing
spare cloud resources to expand cloud revenue. The
proposed method, which we call the dynamic resource
allocation for spot markets (DRASM), does not rely on
reducing power consumption in the cloud by maximiz-
ing use in each host or estimating the capacity demanded
by customers. Instead, our approach uniquely leverages
the positive differences between the cost and revenue
associated with active resources.

• We characterized the relationships between VM
virtualization and migration on one hand and between
VM virtualization and VM spot markets on the other
hand. Identifying and analyzing these relationships con-
tributes to enhancing spot pricing schemes, such as those
adopted by [4] and [7].

• We validated our approach by comparing its perfor-
mance with those presented by well-known research in
this area, namely [8].

The rest of the paper is organized as follows: Section II
reviews the related literature, and Section III describes the
proposed model. Section IV introduces the technical specifi-
cations and simulation tool used in this work, after which it
discusses the numerical results. Section V examines the effect
of assumptions. Section VI concludes the paper.

II. RELATED WORK
This section presents and discusses works related to resource
allocation and management for IaaS cloud resources such
as VMs. Lee et al. [9] proposed a priority-based resource
scheduling algorithm called the dynamic priority schedul-
ing algorithm (DPSA) to handle service request scheduling
problem. In DPSA, user requests are received, analyzed, and
categorized on the basis of particular requirements into task
units for the direct scheduling of adequate resources and the
provision of effective services that accord with user demands.
Mandal and Khilar [10] put forward a VM scheduling algo-
rithm to reduce the time spent on VM allocation to a server
and optimize resource utilization. The algorithm represents
a list of resources in a binary search tree (BST) instead of
presenting them in a queue. The use of the algorithm involves
creating a BST for VM specification and sending this BST to
aVMscheduler. TheBST also contains a list of servers. Using
the BSTs of the servers and VMs, the VM scheduler then
selects the VMwith the maximum requirements and searches
for a server that best satisfies the aforementioned machine’s
needs. Beloglazov and Buyya [11] developed a modified best
fit decrease scheduling algorithm for VM resource realloca-
tion, in which all VMs are sorted in descending order with
respect to the current utilization of a central processing unit
(CPU). Each VM is allocated to a host that generates the
least increase in power consumption due to the allocation.
This heuristic algorithm, which is based on the traditional
greedy algorithm, can optimize VM allocation, but it easily
reverts to the local optimum and difficultly achieves the
global optimum with a single point of a search strategy. Teng
and Magoules [12] created an equilibrium-based resource
scheduling technique that predicts the prospective prices of
resources under the absence of bidding information on com-
petitors. In this approach, the proportion of Nash equilibrium
allocation is received by users; deadlines are fulfilled, and
budget constraints are addressed through the implementation
of the technique on CloudSim. Tomás and Tordsson [13]
proposed a VM placement framework that involves moni-
toring and profiling applications to predict their behaviours
and the types of resource usage in which they engage. The
best location for deploying an application is determined via a
smart overbooking scheduler. This approach is more suitable
for a cloud environment that offers software as a service
(SaaS).

Xiao et al. [14] developed a virtualization-based
dynamic resource allocation mechanism that improves data
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center utilization. Resource prediction is grounded in the past
behaviors of VMs and the use of the exponentially weighted
moving average (EWMA). Then, a skewness algorithm is
employed to estimate disproportion in the multidimensional
use of a processor through hotspot mitigation. This approach
performs effectively in hotspot migration and load balancing
but does not allow for live migration. Reference [15] pro-
posed a joint VM provisioning approach in which multiple
VMs are consolidated and provisioned on the basis of an
estimation of their aggregate resource needs. In designing
this method, the authors exploited statistical multiplexing
among the workload patterns of multiple VMs. Reference
[16] provided Stackelberg game to model the pricing and
resource allocation problem between the IaaS and SaaS cloud
providers. The study concluded that the dynamic pricing
mechanism is more profitable than the fixed pricing for IaaS
and SaaS providers alike.Moreover, the SLA is a major factor
in the model, and IaaS cloud resources are fully available for
SaaS, the main purpose of which is to increase social wel-
fare. All previous works sought to manage cloud resources
considered merely identical characteristics for all VMs from
an engineering perspective, namely cloud resources that
provide VMs tailored for quality of service (QoS) and SLA.
Our approach classifies VMs into two categories (R-VMs
and S-VMs) according to their characteristics, and hence,
to the appropriate pricing strategy and market. The proposed
dynamic resource allocation for the spot markets (DRASM)
strives to maximize marginal revenue for cloud providers
targeting the spot market.

III. PROPOSED APPROACH
Cloud resource management (or resource allocation) that
considers the entirety of cloud resources has been extensively
researched [13], [17], [18], and [19]. Therefore, we confirm
here that the proposed model is not intended to increase
the revenue of the entire resources of cloud, but rather to
take advantage of active sources that consume expenses. This
is called increasing the marginal revenue in the economic
literature. This section vividly discusses the various aspects
of our cloud resource management via spot pricing model,
which is anchored in the spare IaaS cloud resources regarded
as targets in this work.

Spare IaaS resources are non-virtualized and unutilized
capacities of powered-on resources, that is, capacities that
incur costs as they are operated. We refer to these resources
as stagnant resources (or stagnant capacities) in this paper.
Stagnant capacities are typically distributed over multiple
classes of hosts (PMs) that are each made up of many com-
ponents [e.g., CPU, random access memory (RAM), storage
devices, network interface cards, basic input/output system].
These resources are created by imposed conditions, namely,
those stipulated in SLAs or features that are provided to cus-
tomers. In other words, stagnant capacities can be considered
the ‘‘side effects’’ of elasticity, reliability, availability, and
security. Studies indicated that these unused resources are, for
most of their lifecycle, idle without any revenue generated

FIGURE 1. Block diagram of dynamic resource allocation composed of
Capacity Estimation, VM Scheduler, R-VM SLA model, S-VM Monitoring
and Spot Price Scheme.

from them; the majority of cloud resources generally suffer
from underutilization [13], [20], and [21]. Amazon, a pioneer
of spot market-based cloud computing, invented a dynamic
pricing scheme for its spot instances to drive resource use
to high levels [20]. In a similar vein, our model is designed
to identify optimum ways of resource management for stag-
nant capacities on the grounds of spot pricing and with a
view to earning the most substantial cloud revenue possible.
We emphasize that the proposed dynamic resource manage-
ment method is meant exclusively for stagnant resources
through which the greatest return is earned in a spot market.
Achieving this goal necessitates addressing two main issues:
• When to activate the model for the reconfiguration of
sources

• How to manage both hosts and VMs, that is, the
transition from current configurations to new ones

As illustrated in the block diagram in Fig. 1, our proposed
dynamic resource allocation approach is composed of three
core components. In brief, the approach put forward in this
work is implemented by estimating the accumulated capacity
of all hosts through a capacity estimation (CE) unit. This
unit accomplishes estimation in two stages. The first is car-
ried out by the utilization measurement (UM) unit, where
usage levels are determined. The second stage involves map-
ping the optimal distribution of VMs on a cluster’s hosts
through a capacity assignment (CA) unit. Subsequently, aVM
scheduler (VS) allocates VM combinations that achieve high
marginal revenue. The VS unit represents the core of our
model. It specifies the host that must be set in sleep mode
if an increase in stagnant capacity occurs, and it selects the
VM that must be terminated if a shortage in stagnant capacity
arises. TheVS unit also prompts the CE unit to generate a new
distribution, namely, a new allocation map, for VMs to obtain
optimal allocation whenever necessary. Finally, a spot price
scheme (SPS) refers to the optimum decision, migration, pro-
vision, or elimination of VMswhen applicable. The CE reacts
to a predetermined change in stagnant capacity to estimate the
stagnant candidate capacity from all PMs. The VS decides
to turn some PMs into sleep mode to shut down later to
reduce expenses or supply their resources for the spot market,
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FIGURE 2. State of the cloud after deploying R-VMs.

depending on the rewards earned. The VS accomplishes its
mission by cooperating with the SPS unit that determines
the dynamic price of each type of S-VM in the spot market.
Details regarding the proposed approach are as follows.

A. CAPACITY ESTIMATION
To estimate the available spare capacity that can be supplied
to a spot market, we adopted the technique in [15], which
relies on aggregate capacity for this purpose. However, [15]
applied the aggregate capacity technique for VMs that depend
on reserved or on-demand pricing schemes. That is, reserved
VMs are used in conjunction with SLAs to supply the needs
of a static price market. We refer to such VMs as R-VMs
to distinguish them from spot VMs that are called S-VMs.
S-VMs are characterized by dynamic pricing and are not
bound by SLAs. They can therefore be terminated at any
time, and the resources that they hold can be relinquished
to R-VMs. To achieve this target, we split the task into two
phases. In the first, UM is implemented to scan all hosts
and calculate the usage level of each host, in addition to the
aggregate utilization level of all hosts in a cluster. These mea-
surements are then used in the second phase, CA, to detect
the optimal quantity and allocation of S-VMs throughout the
cluster.

The state of a cloud is depicted in Fig. 2. The state of
cloud resources that are currently powered on shows that
R-VMs consume part of these resources, and the rest are
represented as unutilized assets, as denoted by the dotted
line border in Fig. 2. The CE unit estimates and applies
stagnant resources for a spot market. Note that managing
cloud resources for a reserved market is beyond the scope of
this research. That is, R-VMdistribution is not covered by our
system, and CE reacts to any change in stagnant capacity that
occurs from the management of R-VMs and S-VMs alike.
In other words, alterations to stagnant capacity can happen
either to power on a new VM or to power off VMs for
customers from both reserved and spot markets. The former
reduces stagnant capacity, whereas the latter increases it.

Throughout this section, let κ denote the set of hosts in
a cluster, where the number of hosts is N , |κ|, and let
β represent the set of VMs located in a single host, where
the number of VMs is M , |β|. For each host i ∈ κ ,

let crij(t) refer to the average utilization level of virtual
machine R-VMj that is located in physical machine PMi at
time t , the term utilization refers to CPU utilization. On the
basis of these definitions, the UM unit calculates capacity,
that is, the average utilization level, consumed by all R-VMs
that are located in PMi as follows:

rClCr
i (t) =

M∑
j=1

crij(t)

M
. (1)

Likewise, the unit calculates the stagnant capacity of each
powered-on PMi and the aggregate stagnant capacity of all
powered-on hosts in the cluster thus:

Cs
i (t) = Ci −MCr

i (t) (2)

and

Cs(t) =
N∑
i=1

Cs
i (t), (3)

where Ci is the entire capacity of PMi.
That is, Cs

i (t) refers to the aggregate stagnant capacity for
PMi and Cs(t) represents the aggregate remaining capacity
from all compatible PMs after reserved instances R-VMs
consume Cr (t) out of the entire capacity.

The problem concerning packing m S-VMs into stagnant
capacity Cs(t) that is distributed on N host can be formulated
as a knapsack problem, for which the goal is to maximize
revenue f by provisioning the most worthy S-VMs. That is,

max f =
N∑
i=1

M∑
j=1

pjyij

s.t.
M∑
j=1

csj yij 6 Cs
i ∀i

N∑
i=1

M∑
j=1

csj yij > Ci ∀i

yij ∈ Z
+

0 (4)

where

yij =

{
number of S-VMj that are provisioned into host i
0 otherwise,

To achieve the most revenue from Cs(t), each capacity Cs
i (t)

must be packed with the S-VMj that features the most prof-
itable price pj and acceptable capacity csj . The first con-
straint maintains the stagnant capacity of each host i, whereas
the second restricts the entire stagnant capacity offered to
the spot market. We supposed that S-VMj’s capacity csj has
two dimensions, which represent computing capacity and
memory capacity.Without loss of generality, we assumed that
S-VMs are sorted so that

p1
cs1

>
p2
cs2

> · · · >
pm
csm
.

Correspondingly, to solve such an integer linear programming
(ILP) problem, particularly in a way that sustains large pack-
ages, the CA unit employs a column generation approach,
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as was done in [4] and [22]. More specifically, a branch
and bound technique is adopted. The use of the column
generation approach in resolving this issue emphasizes its
necessity. This scheduling problem is NP-hard, and reaching
the global optimum point of an ILP is unsustainable and
time-consuming. The technique works by decomposing the
problem into two sub-problems-a master LP problem and an
auxiliary LP problem (referred to as the pricing problem).
Initially, a possible set of patterns must be identified. These
patterns refer to a distinct combination of complementary
S-VMs from each class that each PM can host in a cluster.
Subsequently, the pricing problem suggests new promising
candidates or patterns for the master problem. If the newly
proposed patterns improve the objective underlying the mas-
ter problem, they will be appended to the pattern set as a
new column. Interested readers are referred to [4] and [23]
for more details on the aforementioned column generation
technique. Algorithm 1 illustrates the detailed steps taken
by the CE Unit to achieve its purpose. The outcomes of
CE are fed to the SPS unit to assess the spot price of each
S-VM in the next horizon, namely, the number of S-VMs
from each class that can be involved in the spot market. It is
worth mentioning that each cluster consists of compatible
PMs regardless of their capabilities (e.g., Hz for CPU and
byte for RAM). The intention is to alleviate complexity where
the proposed approach can work for inhomogeneous clusters
separately.

Algorithm 1 Estimating S-VMs
1: Initialize:
2: Cr

i (t) = 0 for all PMs
3: for each PM i, i = {1, . . . ,N } do
4: for each R-VM j, j = {1, . . . ,M} do
5: Cr

i (t) = Cr
i (t)+ c

r
ij(t)

6: end for
7: Cr

i (t) = Cr
i (t)/M

8: end for
9: for each PM i, i = {1, . . . ,N } do

10: Cs
i (t) = Ci −MCr

i (t)
11: end for
S-MAP
12: ← Using (4), find the optimum number and allocation

for S-VMs
13: return S-MAP

As mentioned previously, this capacity results from
technical constraints and the need to satisfy customer require-
ments. One of the most crucial of such requirements is the
SLA between parties. Therefore, the manner by which Cs(t)
capacity is sold in a spot market and its use through S-VMs
must not violate the SLA that governs R-VMs.

B. R-VM SLA MODEL
We define an SLA-violate function V (.) that is used as basis
for determining the possibility of any potential violation of an
R-VM SLA as a result of abandoning part of current capacity

to reduce operational expenses. An SLA violation occurs
when the following inequality holds for PMi:

rClCs(t + 1) ≥ (Cs(t)− Ci)α (5)

where α ∈ [0, 1] denotes a threshold parameter imposed by
an SLA, and Cs(t + 1) refers to the new stagnant capacity in
the succeeding period after the capacity of PMi is dispensed.
Therefore,

V (x) =

{
1 if x is true
0 otherwise,

(6)

through which the S-VM scheduler can decide to arrange
any PM to sleep mode. If the PM switches to sleep mode
to a shutdown later, the new stagnant capacity will decrease
in the next time interval by subtracting the capacity of PM
from the current stagnant capacitance. The model provides a
percentage, defined by α, of new resulting stagnant capacity
to the spot market rather than providing the full stagnant
capacity to maintain SLA and QoS for R-VMs. In other
words, the new stagnant capacity should not exceed a certain
limit, especially in case of high demand and workload for
R-VMs in reserved markets.

C. S-VM SCHEDULER
To use stagnant resources and derive the highest expected
return, we divided the VS into two separate session deci-
sions, with the first decision referring to a computing ses-
sion and the subsequent decision pertaining to a networking
session. Any noticeable change in stagnant capacity initiates
the VS unit to configure and adjust both PMs and VMs
to the optimum status from a cloud provider’s perspective;
here, ‘‘noticeable change’’ is equivalent to the minimum-size
class of VM and is called k in Algorithm 2. The computing
session elects candidate hosts and S-VMs for termination in
consideration of the governing SLA. Hence, the networking
session chooses the most convenient host from the candi-
dates in accordance with the status of network congestion.
Note that work during the networking session is deferred
for future operations. We therefore assumed that networking
resources are smoothly available. Detailed information on
VS tasks and the corresponding technique is discussed in the
following subsections. Changing aggregate stagnant capacity
Cs(t) refers to the demands and deals that are held under the
auspices of a reserved market in time t .

First, releasing or terminating an R-VM in a reserved
market increases the Cs(t) amount, which in turn, induces
the VS to search for any possible host, PM, without neither
R-VM nor S-VM consuming its computing power, if any.
If such a PM is captured, whether it can be discarded from a
set of stagnant resources is determined to reduce the expenses
incurred by a cluster. The rationale of this decision is that it
sets the proposed PM to sleep mode for later power off if the
abandonment of this redundant capacity does not adversely
affect the SLA of R-VM customers. Otherwise, this PM is
retained to supply a spot market. Providing a spot market with
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Algorithm 2 Scheduling S-VMs
1: Given:
2: Cs(t): the current aggregate stagnant capacity
3: Cs(t − 1): the aggregate stagnant capacity at time t-1
4: Monitoring: if the change exceeds the threshold k
5: while (|Cs(t)− Cs(t − 1)| ≥ k) do
6: if (Cs(t)− Cs(t − 1) > 0) then
7: if (Is there any PM without any VM) then
8: if (terminating the PM violates the SLA) then
9: Keep the PM and initiate Algorithm 1
10: else
11: Convert the PM to the sleep mode
12: end if
13: else
14: if (is there any PM with only S-VMs) then
15: if PM’s revenue < PM’s cost then
16: if (terminating the PM violates the SLA)

then
17: Keep the PM and initiate Algorithm 1
18: else
19: Terminate all PMs’ S-VMs
20: Convert the PM to the sleep mode
21: end if
22: end if
23: end if
24: Keep the PM and initiate Algorithm 1
25: end if
26: else
27: Initiate Algorithm 3
28: Initiate Algorithm 1
29: end if
30: end while

additional capacity stimulates the CE unit to compute (1),
(2), and (4) using Algorithm 1. Such calculation is intended
to estimate and pack potential S-VMs. Conversely, when the
VS reaches a PM that hosts only S-VMs, the VS evaluates
the revenue generated from hosting these S-VMs and then
preserves the PM in its current state and activates the CE
unit to estimate new possible S-VMs when the approximated
revenue exceeds the host’s operational costs. However, if the
return gained from these S-VMs is insufficient (i.e., the profit
is non-positive), the VS checks whether reducing stagnant
capacity by placing the PM in sleep mode has negative effects
on an SLA. The negative effects on an SLA prevents the
VS from abandoning the PM. In the reverse case, the VS
retains the targeted PM and again initiates Algorithm 1 to
update the S-MAP.

Second, decreasing Cs(t) refers to a situation wherein a
new R-VM is provisioned in a reserved market or to a host,
PM, in which failure prevents the availability of the host’s
resources. This incident drives the VS to notify the S-VM
monitoring unit to terminate S-VMs that compete against
the R-VMs on a PM’s resources. The selection process for

Algorithm 3 S-VM Monotring
1: for each PM i, i = {1, . . . ,N } do
2: Li← workload for each PMi
3: end for
4: for each PM i, i = {1, . . . ,N } do
5: while (Li > Ciα) do
6: for each S-VM j, j = {1, . . . , m̄} do
7: TS-VM← S-VM with minimum price
8: end for
9: Terminate TS-VM
10: end while
11: end for

such termination is based on price, wherein the lowest priced
S-VM is terminated. To this end, the S-VM monitoring unit
applies Algorithm 3, after which the VS notifies the CE unit
to reconfigure the stagnant capacity and relocate the pool of
S-VMs over to PMs to achieve optimal placement.

D. S-VM MONITORING
The S-VM monitoring unit is responsible for keeping track
of the workload and utilization of each host in a cloud. If the
workload of any host exceeds a predefined threshold, this unit
first terminates the S-VM that generates the lowest revenue to
reduce the workload and so on until the workload of the target
PM falls in the allowable range. If the price of a new request
for S-VM exceeds the current assigned price, and stagnant
capacity is available, the request is fulfilled. Otherwise, the
S-VM Monitoring unit terminates the lower price S-VM and
fulfills the higher price S-VM request. The rationale behind
this step is the allocation of PM resources to worthy S-VMs,
that is, those that generate high revenue, or to R-VMs in case
of PM failures or maintenance.

E. SPOT PRICE SCHEME
The main purpose of the SPS unit is to assign an initial
dynamic price to an S-VM in a spot market. First, the CE
provides an estimated volume for each capacity csj , and SPS
unit uses this estimate to set initial price pj. The initial price
is determined on the basis of the average of many values
obtained from the SPS unit for the same capacity state, where
initial price pj is inversely proportional to stagnant capacity.
Note that there is no known distribution of VM [24] prices
specifically in a spot market. This absence is attributed to the
fact that the spot price is actually the bidding price, which
is influenced by the information available to both consumers
and providers. Nevertheless, the SPS unit scales the price up
and down on the grounds of supply and demand. To accom-
plish this task, we employed the dynamic pricing scheme
from [25] to control prices over the horizon; the time look
ahead is one hour. The dynamic pricing scheme is formulated
as a finite horizon stochastic Markov decision process.

On the other hand, the VS induces the SPS unit to provide
updated spot prices for the purpose of terminating undesirable
S-VMs and freeing up space for the most profitable S-VMs.
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FIGURE 3. Active hosts.

TABLE 1. Hosts specifications.

TABLE 2. VMs specifications.

IV. EXPERIMENTS
This section discusses the empirical evaluation findings.
We closely followed the steps and techniques involved in
DRASM that were discussed in Section III to demonstrate the
effects of dynamic allocation in view of aggregate capacity.

A. TECHNICAL SPECIFICATIONS
In this assessment, we implement Cloudsim [26] as a
simulation tool and modelling framework for our provi-
sioning technique. Further, we use a workload dataset from
Google’s Compute Clusters [27], which represent resource
consumption for both CPU and memory for seven hours. The
cloud data center is characterized by 100 hosts (or PMs) and
a dynamic workload normally distributed with mean value
equal to the normal workload in real data centers. Without
loss of generality, we assume that the cloud contains two
types of hosts and the specifications for the hosts are given
in Table 1. The PMs consolidate 100 VMs of four classes
with different configurations, as shown in Table 2. We also
considered the spot prices of Amazon T2 spot instances and
set all bidding prices for S-VMs as equal to or greater than
setting-up prices.

B. NUMERICAL RESULTS
Figure 3 illustrates the findings derived from an average
of 10 executions for our model using CloudSim. The results
showed that the average number of powered-on hosts within
an hour’s interval is approximately 41, but this figure at

the beginning of the period is 100. This finding indicates
a capacity savings of 59%. An interesting point about the
results is that the significant savings originates not only from
the S-VMs pool but also from the activities of R-VMs, with
the latter consuming amere 25% of cloud capacity. Reference
[15] demonstrated that the average capacity savings is around
40%, but this calculation takes into account only R-VMs.
This difference is attributed to the fact that S-VMs are
volatile (when a host contains highly loaded R-VMs) com-
pared with R-VMs. Let us move on to the utilization levels
of powered-on hosts. The result on the monitoring of host
utilization is shown in Figure 4, which reflects the average uti-
lization of all hosts (i.e., Each time slot represents the utiliza-
tion of 100 hosts, from host-1 to host-100.) within one hour.
A high utilization level is observed at t = 0.16, t = 0.27, and
t = 0.64, indicating that some of the hosts are overloaded.
The explanation for this result is that some S-VMs attempt to
consume a much greater quantity of their aggregate capacity,
yet the individual capacities of these S-VMs enable them to
consume more resources than that allowable in aggregated
capacity. In subsequent time slots, utilization levels fall below
80%, thereby validating our algorithm. That is, the cloud
must terminate the least profitable S-VM to release more
capacities for use by either R-VMs or S-VMs. Furthermore,
we observed that utilization levels peak under a small number
of hosts (e.g., between 25 and 50 hosts). This case reflects
that a cloud provider reduces the resources supplied to a spot
market.

Figure 5 illustrates the distribution of S-VM classes over
cloud hosts during the analysis period (one hour). In order to
clarify the comparison process, we performed this experiment
using 12 hosts and 12 R-VMs. In an effort to maximize the
marginal revenue of a cloud through spot marketing, we com-
puted the capacity available for each host, then identified the
best hosting configurations for all S-VM classes on the basis
of price. The outcome showed that at time t = 0.10, the most
favorable hosting configurations are 13 units of S-VM1,
two units of S-VM2, three units of S-VM3, and three units
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FIGURE 4. Utilization levels.

FIGURE 5. S-VMs hosting configurations.

of S-VM4. At time t = 0.17, the best hosting configurations
are 14 units of S-VM1 and seven units of S-VM3.

C. PERFORMANCE EVALUATION
We do not claim that the aggregate capacity technique
and dynamic resource allocation are contributions of this
research. Nevertheless, we deemed it necessary to pinpoint
that to the best of our knowledge, our strategy for dynamic
resource allocation in a cloud is the first that considers sep-
arate categories of VMs (S-VMs and R-VMs). Therefore,
comparisons of performance is not possible at the current
time. Consequently, we could evaluate DRASM only from
the utilization perspective of all VM categories. We thus
compared DRASM with the MPC presented by [8].

For this purpose, we used a workload dataset from
Google’s Compute Clusters [27], as mentioned earlier, which
represent resource consumption for both CPU and memory
for seven hours. We simulated IaaS cloud infrastructure that
is similar to that used to implement MPC, which consists
of 7000 PMs that all contain identical CPUs of 10640 MHz
capacity. We also adopted three classes of VMs that match
the specifications in [8]. Figure 6 depicts the first hour of
utilization for all VM classes on the basis of the servic-
ing of 173,751 distinct requests for VMs. At time t = 0.5,

the average utilization levels are 53% and 39% for MPC and
DRASM, respectively. This variance is ascribed to MPC’s
allocation of fixed capacity to each class of VMs over
the established horizon compared with DRASM’s alloca-
tion of aggregate capacity to each class of VMs. Another
interesting point about these findings is that in DRASM,
3000 PMs were placed in sleep mode during the exper-
iment; hence, the utilization of 39% refers to usage by
4000 hosts instead of 7000 hosts, as in the experience
with MPC. After time t = 0.7, however, the utilization
of both approaches reach very close levels a status that
occurs when each VM is highly overloaded. In other words,
the aggregate capacity of VMs is equates with the cumula-
tive maximum capacity of such machines. Indeed, the num-
ber of hosts and their utilization level has an essential role
in reducing hosting costs. Neutralizing 3000 hosts results
in 53% energy saving. In addition, [28], referring to the
relationship between the utilization level and the energy
consumption of the HP ProLiant G5, indicates that 30%
and 50% of utilization incur 105 and 116 watt/h respec-
tively. Finally it should be noted that the indicated energy is
only due to the host’s consumption regardless of any other
energy consumed in the data center such as cooling and
others.
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FIGURE 6. DRASM vs MPC, the Utilization depicts the proportion of S-VMs operating in the
cluster.

V. THREATS TO VALIDITY
It is obvious that the experiments’ findings have achieved
substantial progress and opened the door to new insights in
managing profitable cloud sources. The findings result from
feeding DRASM with real requests and workload. However,
it must be noted here that the proposed approach has been
restricted by some assumptions. It is important to clarify the
extent and sensitivity of these assumptions to the results.
The model adopts aggregate stagnant capacity, as indicated
in Equation 2, which is based on average utilization levels.
However, at a very high peak load, the proposed stagnant
capacity exceeds the actual stagnant capacity. To avoid the
effect of such circumstances, the cloud should estimate an
appropriate value for the threshold parameter α in Equa-
tion 5. Monitoring the history of the α values over thoughtful
time periods or using other prediction methods to estimate
the exact value of α improves system efficiency. Moreover,
VS decisions, in Section IV-C, only relate to computational
resources. Despite the critical importance of computational
resources in the cloud, network resources also have an impact
on imperial evaluations (e.g., choosing a PM with a high
level of network congestion requires a queue, another PM
choice, or the use of hardware technique). The inclusion of the
network congestion issue requires additional network-level
consideration that has been deferred for future work.

VI. CONCLUSION
This research presented a new dynamic resource allocation
approach for spot markets called DRASM. The study was
aimed at minimizing hosting costs and maximizing cloud
revenue through the creation of an efficient resource man-
agement technique that consolidates a spot market’s VMs.
First, the CE unit determines the prospective capacity for sale
in a spot market, after which it creates the optimal mapping
between S-VMs and PMs in view of revenue generation.
This mapping results from applying the column generation
approach. Second, the VS unit monitors and controls the
S-VM pool to increase the utilization of a cloud’s hosts
and reduce hosting costs. This work leveraged and applied
several techniques to fulfil the desired tasks, aggregate
capacity, dynamic resource allocation, and dynamic price.

The empirical evaluations based on actual requests and work-
loads exhibited promising hosting savings. As for future
work, we have initiated efforts to realize dynamic collabo-
ration between dynamic resource management and dynamic
pricing schemes for spot markets on one hand and resource
management for reserved markets on the other.
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