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ABSTRACT In recent years, extreme learning machine (ELM) and its improved algorithms have been
successfully applied to various classification and regression tasks. In these algorithms, MSE criterion is
commonly used to control training error. However, MSE criterion is not suitable to deal with outliers,
which can exist in general regression or classification tasks. In this paper, a novel extreme learning machine
under minimum information divergence criterion (ELM-MinID) is proposed to deal with the training set
with noises. In minimum information divergence criterion, the Gaussian kernel function and Euclidean
information divergence are utilized to substitute the mean square error (MSE) criterion to enhance the anti-
noise ability of ELM. Experimental results on two synthetic datasets and eleven benchmark datasets show
that this method is superior to traditional ELMs.

INDEX TERMS Extreme learning machine, minimum information divergence criterion, kernel method,
gradient algorithm.

I. INTRODUCTION
Extreme learning machine (ELM) is a single hidden layer
feedforward neural network (SLFN) with universal approx-
imation capability [1], [2]. In ELM, the weights linking the
input layers to the hidden layers and the hidden bias terms
can be randomly initialize. Then, the corresponding weights
linking the hidden layers to the output layers can be directly
determined by the least square method based on the Moore-
Penrose generalized inverse [3]. Different from full parame-
ter determination algorithms such as back propagation (BP)
algorithm, the hidden nodes’ parameter random initialization
process with an analytical weight solution can reduce compu-
tational complexity [1]. Therefore, the important advantage
of ELM is the fast training speed. ELM has been widely
used in many actual engineering applications, such as stock
market forecasting [4], [5], image processing [6], [7], face
recognition [8], and nonlinear model identification [9].

In recent years, some new improved versions of ELM
have been proposed. In general, the performance of ELM is
improved from two aspects. One is to optimize the network
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structure (like evolutionary ELM (E-ELM) [10], ELM-kernel
(KELM) [11]), and the other is to improve the error statistics
method (like regularized ELM (RELM) [12], outlier robust
ELM (OR-ELM) [13]). In KELM, I/λ parameter is added in
the hidden layer matrix to address the randomness problem of
learning machine. RELM was proposed by Deng et al. [12],
which achieves optimal trade-off between empirical risk ‖ε‖2

and structural risk ‖β‖2 by introducing regularization param-
eters, and makes the model obtain the best generalization
performance. In OR-ELM [13], the `1 norm of the prediction
error is used as its objective function, which can obtain better
results when there are outliers in the regression task.

However, in essence, these ELMs use the mean square
error (MSE) criterion to measure the error. MSE only limits
the second-order statistics and shows a poor optimization
ability for nonlinear and non-Gaussian (e.g. finite range or
heavy-tail distributions) situations. MSE mainly focuses on
the scatter aspects of the error distribution and cannot draw
all the probabilistic information of the error, such as the shape
(kurtosis, tails, peaks, etc.) of probability density function.
To address this issue, Chen et al. [14]–[16] proposed a novel
minimum information divergence (MinID) criterion, in which
the Kullback-Leibler divergence between the actual error and
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the desired error is selected as the objective function for
adaptation algorithm. This criterion has been successfully
used in adaptive filtering.

In order to overcome the defects of above ELMs and
improve the anti-noise ability of ELM, a novel ELM-MinID
algorithm is developed in this paper. In this algorithm,
the MinID criterion based on Euclidean information diver-
gence is applied to extreme learning machine (ELM). The
main contributions of this paper are as follows:
1) we proposed a new method of error control: minimum

information divergence criterion based on Euclidean
information divergence.

2) we proposed a new ELM-MinID algorithm. Compared
to the traditional ELMs, this algorithm utilizes the
MinID criterion to substitute the MSE criterion, which
makes ELM-MinID more resistant to noise.

3) we simulated the function fitting with synthetic data sets
and the regressionwith benchmark data sets to verify our
method.

The structure of this paper is as follows. In part A of
section II, we provide a brief review of ELM. After that,
the MinID criterion based on Euclidean information diver-
gence is given in part B of section II. In section III, ELM
under minimum information divergence criterion is devel-
oped. Subsequently, the performance of the algorithm is
tested on synthetic data sets and benchmark data sets in
section IV. Finally, conclusion is given in section V.

II. BACKGROUND
A. EXTREME LEARNING MACHINE (ELM)
For ELM, the input weights (connecting the input layer and
the hidden layer) and hidden bias terms are randomly ini-
tialized, and the output weights (connecting the hidden layer
and the output layer) are obtained by using Moore-Penrose
generalized inverse.

We are training a single hidden-layer feedforward neural
network with Ñ hidden neurons and activation functions g(x)
to learn N arbitrary distinct sample sequences {xk , tk}Nk=1,
where xk = [xk1, xk2, . . . , xkn]T ∈ Rn is the kth input vector
and tk = [tk1, tk2, . . . , tkm]T ∈ Rm is the associated desired
value. In ELM, the activation function g(x) is mathematically
modeled as

yk =
Ñ∑
i=1

βig(wi · xk + bi), k = 1, 2, . . . ,N (1)

where yk is the output weight vector of the SLFN for the kth
input weight vector xk , wi is the weight vector linking the
ith hidden unit to all the input units, bi is the hidden bias for
the ith hidden unit, and βi denotes the output weight vector
linking the ith hidden unit to all the output units. In this way,
the nonlinear system can be transformed to a linear system:

Y = Hβ (2)

where

H =

 g(w1 · x1 + b1) · · · g(wÑ · x1 + bÑ )
... · · ·

...

g(w1 · xN + b1) · · · g(wÑ · xN + bÑ )


N×Ñ

(3)

β =
[
β1, β2, . . . , βÑ

]T (4)

Y = [y1, y2, . . . yN ]T (5)

and

T = [t1, t2, . . . , tN ]T . (6)

β is the vector of the weights linking the hidden layer to
output layers, H denotes the output weight matrix of the
hidden layer, Y is the output vector of the output layer, and T
is the matrix of desired output.

The output weight vector β can be determined by minimiz-
ing the mean square error (MSE) (7)

eMSE =
1
N

N∑
j=1

e2j =
1
N
‖ Y− T ‖

=
1
N
‖ Hβ − T ‖

= E(e2j ) (7)

where E denotes the expectation operator and ej =

tj −
Ñ∑
p=1

g(wp · xj + bp)βp is the estimation error. Usually,

the solution of (7) can be determined by

∧

β = H†T (8)

where H† denotes the Moore-Penrose generalized inverse.
WhenHTH is nonsingular, the orthogonal projection method
can be used to calculate H† [1]:

H†
= (HTH)−1HT (9)

However, there are still some shortages in the above ELM,
such as the solution of the MSE function (7) is sensitive to
non-Gaussian noises. The reason is that the MSE criterion
captures only the second-order statistics of the residual and
may perform poorly in nonlinear and non-Gaussian cases.
In order to improve the robust performance in realistic situ-
ations, an alternative optimality criterion beyond the second-
order statistics has been adopted in this study.

B. INFORMATION DIVERGENCE
The information divergence is a kind of distance mea-
surement method between two distributions. Based on the
Euclidean distance, a symmetric information divergence is
given, called Euclidean information divergence. For two
probability density functions p(x) and q(x), the Euclidean
information divergence is given by

D(p ‖ q) =
∫

[p(x)− q(x)]2dx (10)
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which is always non-negative and equal to zero only if p(x) =
q(x). Obviously, the Euclidean information divergence is
symmetric, we have D(p ‖ q) = D(q ‖ p). In this work,
the symmetric divergence (10) is used to measure the distance
between two distributions.

In practice, the probability density functions p(x) and q(x)
of samples are unknown. In the present paper, we adopt the
kernel method [17] to estimate them. By kernel approach,
the estimated PDF could be differentiable. This is the premise
of the gradient calculation. The one-dimensional probability
density estimator with kernel K (.) is given by

∧
p(x) =

1∣∣Sp∣∣ σ ∑
xk∈Sp

K (
x − xk
σ

) (11)

where σ is the kernel width, Sp denotes the sample sequence
drawn independently from the probability density function
p(x), an

∣∣Sp∣∣ is the total number of samples in Sp. UsuallyK (.)
will be a radially symmetric unimodal probability density
function. The kernel function K (x) satisfies

∫
R K (x)dx = 1.

In this work, we choose the standard Gaussian kernel function

K (x) =
1
√
2π

exp(−
1
2
x2) (12)

The minimum of information divergence function (10) is
called the minimum information divergence (MinID) crite-
rion. Since divergence is insensitive to noises, it is better
than the MSE especially when there is impulse noise in the
samples [14].

III. ELM UNDER MINIMUM INFORMATION
DIVERGENCE CRITERION
According to ELM learning theory, multiple types of feature
maps can be used in ELM, so that ELM can approximate any
continuous objective function. (refer to [2] for details). That
is, given any continuous target function y(x), there is a series
of βi to make the error equal to zero.

e = lim
Ñ→+∞

∥∥y(·) − y(x)∥∥
= lim

Ñ→+∞

∥∥∥∥∥∥
Ñ∑
i=1

βig(·)− y(x)

∥∥∥∥∥∥
= 0 (13)

Equation (13) is the cost function of ELM training. The
purpose of ELM training is tomake error between the training
output and the desired output close to zero. The traditional
ELM training utilizes the MSE criterion, like (7). However,
the MSE criterion is sensitive to the non-Gaussian noises.
In this section, the MinID criterion based on Euclidean
information divergence is used as a cost function for
ELM training.

Based on theMinID criterion, the ELM-MinID is proposed
to minimize the information divergence between the actual
error e and the desired error e(d) by adjusting the parameter
β. In other word, the output weight matrix β will be adjusted

to make the PDF of error ek close to the desired density
function pe(d) . By setting the desired density function pe(d) to
a Dirac delta function at zero, the actual error e of ELM also
converges around zero.

We can get a new objective function of ELM-MinID which
minimizes the divergence between the actual error e and the
desired error e(d), as follows:

D(β) = arg min
β

D(pe||pe(d) ) (14)

we use kernel method (11) and Gaussian kernel function (12)
to estimate the PDF of actual error e, that is

pe(e) =
1
N

N∑
i=1

1
√
2πσ

exp(−
(e− ei)2

2σ 2 ) (15)

where ei(i = 1, 2, . . . ,N ) is the error sequence of ELM and
σ is the kernel width. From (2), one can get the error of the
kth output:

e = Y− T

= [y1 − t1, y2 − t2, . . . , yN − tN ]T

= [e1, e2, . . . , eN ]T (16)

in which the error sample ei(i = 1, 2, . . . ,N ) will be
expressed as

ei =
Ñ∑
q=1

g(wq · xi + bq)βq − ti

= hiβ − ti (17)

where hi = g(W ◦Xi + b) is the row vector of H (the output
matrix of the hidden layer). Here, W = [w1,w2, . . . ,wÑ ],
Xi = [xi, xi, . . . , xi], b = [b1, b2, . . . , bÑ ].

Theoretically, we try to make the error values as concen-
trated around zero as possible. For the desired error e(d),
we can choose the δ function as the probability density func-
tion pe(d) , i.e.,

pe(d) (e) = δ(e) (18)

However, in practice, the above situation is difficult to
operate. In real application, the estimated information diver-
gence is used as an alternative cost function, in which the
desired error distribution is also estimated by kernel method.
We have the desired density function

pe(d) (e) = δ(e) ∗
1

√
2πσ

exp(−
e2

2σ 2 )

=
1

√
2πσ

exp(−
e2

2σ 2 ) (19)

The information divergence between e and e(d) can be
written as

D(pe
∥∥pe(d) ) = ∫ [pe(e)− pe(d) (e)]

2de. (20)
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TABLE 1. Parameters of algorithms in function fitting.

A detailed mathematical deduction of (20) is given in
Appendixes. At last, we have the function of informa-
tion divergence (21). Substituting (17) into (21), we get
function (22), as shown at the bottom of the page.

D(pe
∥∥pe(d) ) = 1

N 2

N∑
j=1

N∑
i=1

[
1

√
2πσ

exp(−
(ej − ei)2

2σ 2 )]

− 2
1

√
2πσN

N∑
j=1

exp(−
ej2

2σ 2 )+
1

2
√
πσ

(21)

One can update the parameter β by the following gradient
algorithm:

β(k + 1) = β(k)− η
∂D(pe, pe(d) )

∂β
(24)

where η > 0 is the step-size and β(k) denotes the parameter
vector at iteration k .
Based on the above model optimization strategy, a robust

learning algorithm for SLFNs under MinID can be obtained,
which is referred to as the ELM-MinID and is described in
Algorithm 1.

Algorithm 1 ELM-MinID

Input: training samples {xi, ti}Ni=1, kernel widths σ , initial-
ize the number of hidden units Ñ , iteration step-size η,
maximum iteration number K and termination tolerance ξ ,
the vector β(0) = 0.

Output: weight vector β.

1) Randomly initialize the weight vectors
{
wj
}Ñ
j=1 together

with their corresponding bias terms
{
bj
}Ñ
j=1.

2) Calculate the hidden layer output matrix H.
3) Update the weight vectors β.

For k = 1, 2 . . .K do
Compute the actual errors based on β(k − 1): ei =

hiβ(k − 1)i − ti, i = 1, 2, . . . ,N
Calculate the gradient of the information diver-

gence: ∇D(pe
∥∥pe(d) )

Update the bias term vector and the weight: β(k) =
β(k − 1)− η

∂D(pe,pe(d) )
∂β

Until ∇D(pe
∥∥pe(d) ) < ξ

EndFor

IV. EXPERIMENTAL RESULTS
In this part, we present experimental results to illustrate
the performance of ELM-MinID proposed in the previous
section. Parameters of all algorithms are chosen by grid-
search method and cross validation method. In each indepen-
dent trial, the training datasets and testing datasets are fixed.
Average RMSE of 50 trials of simulations for each algorithm
are obtained and then finally the performance obtained is

D(pe
∥∥pe(d) ) = 1

N 2

N∑
j=1

N∑
i=1

[
1

√
2πσ

exp(−

(
Ñ∑
q=1

g(wq · xj + bq)βq − tj −
Ñ∑
q=1

g(wq · xi + bq)βq + ti)
2

2σ 2 )]

− 2
1

√
2πσN

N∑
j=1

exp(−

(
Ñ∑
q=1

g(wq · xj + bq)βq − tj)
2

2σ 2 )+
1

2
√
πσ

(22)

∇D(pe
∥∥pe(d) ) 1= ∂D(pe

∥∥pe(d) )
∂β

=
1

√
2πσN 2

N∑
j=1

N∑
i=1

exp(−
(ej − ei)2

2σ 2 )
(ej − ei)
σ 2 (

∂ei
∂β
−
∂ej
∂β

)

−

√
2

√
πσN

N∑
j=1

[exp(−
ej2

2σ 2 )−
ej
σ 2 (

∂ej
∂β

)]

=
1

√
2πσN 2

N∑
j=1

N∑
i=1

exp(−
(ej − ei)2

2σ 2 )
(ej − ei)
σ 2 (hi − hj)

−

√
2

√
πσN

N∑
j=1

[exp(−
ej2

2σ 2 )−
ej
σ 2 hj (23)
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TABLE 2. Average testing RMSEs (Sinc date set).

TABLE 3. Paired t-test between the best performance and runner up
(Sinc date set).

TABLE 4. Specification of the datasets.

TABLE 5. Parameters of algorithms in regression.

reported. All the experiments are carried out in the MATLAB
R2018a environment running inInter(R) Xeon(R) E-2124G
processor with the speed of 3.40GHz.

A. FUNCTION FITTING WITH SYNTHETIC DATASETS
In this subsection, two synthetic datasets are utilized to val-
idate the proposed algorithm. The description of them is as
follows.
Sinc: The synthetic data set is produced by yi = sinc(xi)+

n, where n denotes a noise and the sinc function is given as

sinc(x) =

{
sin(x)/x x 6= 0
1 x = 0.

(25)

FIGURE 1. Function fitting results of four algorithms upon Sinc with three
noise: (a) α-stable noise (α′ = 1.5, τ = 0.5); (b) α-stable noise
(α′ = 1.3, τ = 1); (c) Laplace noise (0, 0.5).

we generate 1000 data points with xi drawn randomly from
[−10, 10].
Func: This artificial data set is generated by (yi, yj) =

func(xi, xj)+ n, where n is also a noise and the func function
is given as

func(x1, x2) = x1 · e(−(x
2
1+x

2
2 )). (26)

1000 data points are constructed by randomly chosen from
the evenly spaced 50× 50 on [−2, 2].
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TABLE 6. RMSE and computing time of four algorithms (uncontaminated).

TABLE 7. RMSE and computing time of four algorithms (contamination rate 20%).

For Sinc date set, we consider three long-tailed distribu-
tions of n: 1) symmetric α−stable(SαS) distribution [18]
with characteristic function φ(t) = exp(−τ |t|α

′

), with
shape parameter α′ = 1.5 and scale parameter τ = 0.5;
2) SαS distribution with shape parameter α′ = 1.3 and scale
parameter τ = 1; 3) Laplace distribution with zero mean
and variance 0.5. Similar Laplace noise is also added to the
Func data set. In our simulations, 500 noisy data are used
for training and another 500 clean data are used for testing.
The activation function in this paper is the sigmoid function
f (x) = 1/(1+ e−x).
We contrast the performance of the proposed ELM-MinID

with three existing ELMs including ELM, RELM and ELM-
RCC [19]. In order to make a fair comparison, these algo-
rithms are compared at their best fitting accuracy based
on optimal parameter combination. Therefore, we need to
predetermine these parameters: the number of hidden nodes

Ñ , the regularization parameters λ, the kernel width σ , and
the step size η. In ELM optimization, the parameters are
usually chosen by grid-search method and cross validation
method, such as k-fold, as done by Inaba et al. [20], Kai
and Luo [13], Huang et al. [21], Da Silva et al. [22] and
others. Similarly, in this part, we obtain the best parameter
combination by the grid search on each parameter and the
five-fold cross-validation on every training set. We calculate
the validation accuracy by using different parameter combi-
nations of the hidden nodes number Ñ ∈ {10, 20, . . . , 400},
the regularization parameters λ ∈

{
10−10, 10−9, . . . , 105

}
,

the kernel width σ ∈ {0.02, 0.04, . . . , 1}, and the step size
η ∈ {0.01, 0.02, . . . , 0.1}. The maximum number of hidden
nodes for ELMs is set to 400 because there are only 400 train-
ing data available (since we use a 5-fold cross validation on
500 training data) [23]. Additionally, in ELM-MinID, the ter-
mination tolerance ξ is 0.001 and the maximum iteration
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FIGURE 2. Function fitting results of four algorithms upon func with Laplace noise (0,0.5). (a) The original function. (b) The result of ELM. (c) The
result of RELM. (d) The result of ELM-RCC. (e) The result of ELM-MinID.

number K is 300. The best parameters for each algorithm are
chosen according to the validation accuracy and summarized
in Table 1.

The experiments were run 50 times, using the parameters
in Table 1. Fig.1 demonstrates the fitting results of the four
algorithms upon Sinc with three different noises. Further,
the average (and standard deviation) values of testing RMSEs

are shown in Table 2, where the best result for each noise
distribution are highlighted in bold. Table 3 is a statistical
significance report between the best performance and runner-
up using the paired T-test. From Table 3, P < 0.05, that is,
there is a significant difference in the testing RMSEs between
the two algorithms. This shows that ELM-MinID has a better
fitting ability. Fig.2 is the fitting results of four algorithms
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TABLE 8. RMSE and computing time of four algorithms (contamination rate 40%).

TABLE 9. Paired t-test between the best performance and runner up
(contamination rate 20%).

upon func with Laplace noise (0,0.5). Clearly, the ELM-
MinID is more robust than other algorithms under the same
noises.

B. REGRESSION WITH BENCHMARK DATASETS
In the second experiment, eleven benchmark datasets from
UCI machine learning repository [24] are utilized to confirm
the better regression performance of the ELM-MinID com-
pared with the KELM, RELM and ELM-RCC. The descrip-
tions of the data sets are presented in Table 4. In order to
illustrate the robustness of these algorithms, training samples
with different contamination rates are generated. This is made
by assigning the random values from [0, 1] to the target values
of some training samples (all target values are normalized
into [0, 1]).

The parameters of these algorithms are selected through
grid search and five-fold cross-validation with the same
parameter interval as those in section 4.1. In addition, in the
KELM algorithm, the grid-search range of kernel parameter
γ is {2−10, 2−9, . . . , 210}. The optimal parameters are sum-
marized in Table 5, except that the iteration number K is
preset to 300 and the termination tolerance ξ is fixed to 0.001.
The 50-run training and testing RMSEs are shown

in Tables 6, 7, and 8, which are for uncontaminated data

TABLE 10. Paired t-test between the best performance and runner up
(contamination rate 40%).

sets and contamination rates of 20% and 40%, respectively.
The best simulation results were highlighted in bold. We can
notice that when there is no contamination in the training
data, all training methods can obtain similar results. When
considering that 20%, 40% of each training sample is con-
taminated with outliers, KELM, RELM and ELM-RCC show
worse regression performance than ELM-MinID. This is to be
expected, because they use the `2 norm,which are not suitable
to deal with the data sets with outliers. Unlike `2 norm,MinID
criterion can capture the more characteristics of the error and
reduce errors from many ways. Table 9 and 10 are statistical
significance report between the best performance and runner-
up for contamination rates of 20% and 40%, respectively.
In those reports, P < 0.05, that is, there is a significant
difference in the testing RMSEs between the two algorithms.
According to the analysis above, we can draw conclusion that
the proposed ELM-MinID has good robustness performance
in benchmark datasets with outlier.

V. CONCLUSION
In this paper, we proposed a robust learning algorithm for
single-hidden layer feedforward neural networks (SLFNs)
called ELM under minimum information divergence criterion
(ELM-MinID), which provides a new error control method
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for ELM. The simulation results on function fitting with syn-
thetic data and regression with benchmark data sets showed
the superior noise tolerant capability and stable regression
performance of the proposed method.

APPENDIXES
The information divergence between e and e(d) can be written
as

D(pe
∥∥pe(d) ) = ∫ [pe(e)− pe(d) (e)]

2de

=

∫
[pe(e)]2de− 2

∫
pe(e)pe(d) (e)de

+

∫
[pe(d) (e)]

2de

= A− 2B+ C

among them

A = Ep[pe(e)]

=
1
N

N∑
j=1

p̂(ej)

=
1
N

N∑
j=1

[
1
N

N∑
i=1

1
√
2πσ

exp(−
(ej − ei)2

2σ 2 )]

=
1
N 2

N∑
j=1

N∑
i=1

[
1

√
2πσ

exp(−
(ej − ei)2

2σ 2 )]

B = Ep[pe(d) (e)]

=
1
N

N∑
j=1

p̂e(d) (ej)

=
1
N

N∑
j=1

[
1

√
2πσ

exp(−
ej2

2σ 2 )]

=
1

√
2πσN

N∑
j=1

exp(−
ej2

2σ 2 )

C =
∫

[pe(d) (e)]
2de

=
1

2πσ 2

∫
exp(−

e2

σ 2 )de

=
1

2πσ 2

∫ √
2π (σ/

√
2)

√
2π (σ/

√
2)

exp(
−e2

2 · (σ/
√
2)

2 )de

=
1

2
√
πσ

∫
1

√
2π (σ/

√
2)

exp(
−e2

2 · (σ/
√
2)

2 )de

=
1

2
√
πσ

∫
1
√
2π

exp(
−

e2

(σ/
√
2)

2

2
)d(

e

σ/
√
2
)

e∈(−∞,+∞)
−−−−−−−→

t= e
σ/
√
2

1
2
√
πσ

∫
+∞

−∞

1
√
2π

exp(
−t2

2
)d(t)

=
1

2
√
πσ
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