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ABSTRACT Real-time passenger flow prediction plays an important role in subway network design and
management. Most of the existing prediction algorithms only consider the sequence of passenger flow
volume, however, ignore the influence of other outer factors, for example, the weather conditions, air quality
and temperature. In this paper, a systematic framework, MetroEye, is proposed for weather-aware prediction
of real-time passenger flow. The framework contains an offline system and an online system. The offline
system adopts a conditional random field (CRF) model to establish the relationship between passenger
flow volume and weather factors. Experimental results show the superior prediction accuracy of the model,
especially in large stations. The online system provides efficient methods to simulate the real-time passenger
flow volume. Due to its high practicality, MetroEye has been adopted by Beijing Urban Rail Transit Control
Center to monitor the passenger flow status of the Beijing subway system.

INDEX TERMS Passenger flow prediction, subway network, conditional random field, intelligent trans-
portation.

I. INTRODUCTION
The subway transportation is an important way to solve the
urban traffic problems. In the developed cities, subway traf-
fic occupies a very large proportion in public transportation
especially in rush hours. In Beijing, the subway system serves
more than 10 million passengers everyday, while half of the
passengers gather in the morning and evening peak (7 am
to 9 am, and 5 pm to 7 pm). When enormous amount of
passengers rush into one subway station, health and safety
risks can be caused on crowded subway station platforms and
escalators. Therefore, the real-time prediction of passenger
flow volume is essential for passenger flow control in the
subway daily operation and management.
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In most subway networks, the automatic fare collec-
tion (AFC) system is adopted to collect the passenger
information. The passengers should swipe the trip-card when
they get-in or out of the system. However, the real-time
passenger location cannot be collected and their destina-
tion stations are not clear before they get out. Especially,
in some cases, the passengers don’t need to swipe the
trip-card again when get transfer. It is therefore difficult
to directly infer the subway real-time passenger flow from
AFC system.

Most existing real-time prediction methods only consider
the sequence of passenger flow as the mainly factor in predic-
tion models (autoregressive moving average, neural network,
support vector machine, etc.). However, an important factor,
weather, which has significant influence on people’s travel
mode, has been rarely considered in the prediction of passen-
gers’ traffic flow.
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Our analysis in Section III-A shows that weather such as
temperature, air quality, and rainy/sunny conditions signifi-
cantly affects the passenger flow volume at different subway
stations, especially stations of suburban lines. For example,
there are more passengers at stations of suburban lines on
sunny days than on rainy days. Stations close to entertain-
ment places are more crowded when air quality is better and
temperature is more pleasant. Therefore, this paper targets
on predicting the real-time passenger flow volume at each
station of a subway networkwith the consideration of weather
conditions.

In order to predict the real-time metro passenger flow
volume, we propose an approach (called MetroEye) for sim-
ulating passengers’ travel paths from their origins to destina-
tions based on collected historic records. MetroEye contains
an offline and online system. The offline system adopts a
conditional random field to model the influence of weather
factors on subway passenger flow volume. The online sys-
tem predicts the destination station and path, then simulates
the real-time passenger flow and predicts the flow volume.
Experimental evaluation on a data set from Beijing sub-
way system demonstrates the effectiveness and efficiency of
MetroEye. Due to its high practicality, MetroEye has been
applied by the government to monitoring the passenger flow
status of the Beijing subway system. More application details
will be found in Section VII.
The main contributions of this paper can be summarized as

follows:
• We propose a practical systematic framework, Metro-
Eye, to predict the real-time passenger flow volume in
subway system given only the entrance information of
passengers. MetroEye has been applied in Beijing Traf-
fic Control Centre (TCC), the government department to
manage the daily operation of Beijing subway system.

• We consider the weather factor to establish condi-
tional random field models for predicting the destina-
tion selections in the offline system of MetroEye. The
weather-aware model makes more accurate prediction
on passenger flow volume than other models without
weather factors.

• We design the online system to simulate the real-time
position of massive passengers. The simulation is driven
by passenger thread and train thread according to AFC
system and train schedule respectively. To speed up the
simulating process, MetroEye adopts some optimization
strategies such as Huffman tree for destination selec-
tions.

The remainder of this paper is organized as follows.
Related works for passenger flow prediction is presented in
Section II. The overview of MetroEye system is introduced
in Section III. The weather factors and their influence are
shown in Section III-A. In Section IV and VI, the destination
prediction model (CRF) is illustrated in detail. Section V
presents other specifics in real-time simulation. Section VII
shows applications of MetroEye. Finally, conclusion and
future works are discussed in Section VIII.

II. RELATED WORK
The prediction of traffic flow volume is strategically impor-
tant in transportation management systems [1]. It is of great
help for the trafficmanagers to detect the traffic condition and
improve traffic service. In particular, real-time prediction are
frequently used in monitoring traffic condition, which is very
important in real-time traffic management [2], [3]. Methods
for traffic volume prediction can be generally divided into
three categories: linear algorithm, non-linear algorithm and
hybrid algorithm, which will be introduced in the following
three subsections. In the last subsection, prediction methods
based on multiple factors will be presented.

A. LINEAR ALGORITHM
Linear prediction algorithm appears earlier and mainly
includes historical average algorithm [4], [5], autoregressive
moving average algorithm (ARMA) [6], [7], Kalman filter-
ing algorithm [8], etc. Historical average algorithm simply
uses an average of past traffic volumes to forecast future
traffic volume. Autoregressive moving average algorithm is
a statistical time-series model, which can capture the cyclic
pattern of traffic demand over time and performs better than
linear regression and historical average. Kalman filter auto-
matically provides dynamic error-bounds on its estimates
as well. Ghosh et al. [9] proposed a structural time-series
model to predict the serious traffic congestion in Dublin,
using a parsimonious and computationally simple multivari-
ate real-term traffic condition predicting algorithm. Further
more, Habtemichael et al. [10] proposed a non-parametric
and data-driven methodology for real-term traffic predict-
ing based on identifying similar traffic patterns using an
enhanced K-nearest neighbor algorithm.

The advantages of linear algorithms are obvious: easy
to implement, low-cost computation, and relatively accurate
results. For a long history, linear algorithms are the most
frequently used methods in real-term prediction of traffic
flow volume. However, they often fail to model the fluctua-
tions in the passenger flow sequence. Therefore, sophisticated
non-linear models are proposed to improve the prediction
accuracy.

B. NON-LINEAR ALGORITHM
Non-linear prediction algorithm has been widely devel-
oped in the recent ten years and mainly includes artifi-
cial neural network algorithm [11]–[13], the support vector
machine (SVM) algorithm [14], [15], the gray algorithm [16]
and so on [17]–[19]. Artificial neural network algorithm
usually contains input, output and hidden layers to establish
the relationship between future passenger flow and historical
flow sequence. Support vector machine algorithm embodies
the structural risk minimization principle, by involving both
empirical and anticipant risk in the training cost function.
The gray model treats all variables as a grey quantity within
a certain range, then collects available data to obtain the
internal regularity. In order to further improve the accuracy of
the prediction algorithms, various data preprocessing meth-
ods and models were designed. Chen et al. [20] proposed
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the pretreatment method of residual error sequence, remov-
ing the intraday trend of data, which is shown to be effec-
tive on improving the accuracy of the prediction algorithm.
Duan et al. [21] developed a deep learning algorithm with
consideration of both temporal and spatial factors for traffic
data to improve the traditional neural network algorithm.
Zhang et al. [22] developed a deep neural network to pre-
dict equipment running data according to time-series data.
Li et al. [23] proposed a dynamic radial basis function (RBF)
neural network to forecast outbound passenger volumes and
improve passenger flow control.

Non-linear algorithms overcome some fatal flaws in linear
algorithms and more appropriately model the influence of
multiple factors on passenger flow. However, most of the
non-linear models ignored global information of the sys-
tem. In addition, complicated models [24] are easy to get
over-fitted when training data are relatively in a small size.

C. HYBRID ALGORITHM
Hybrid algorithms combine more than one method, and takes
the advantage of all combined methods [25]. For example,
Sun et al. [26] proposed a hybrid algorithm by combining
wavelet transform and SVM to predict passenger flows in
Beijing subway system. They divided the prediction into three
stages: Decomposition stage, to decompose data into high
and low frequency information by wavelet; Prediction stage,
to predict the high and low frequency information by SVM
respectively; Reconstruction stage, to reconstruct predicted
information series by wavelet. Jiang et al. [27] proposed
a hybrid model by combining wavelet and neural network,
which incorporates the self-similar, singular, and fractal prop-
erties discovered in the traffic flow. The wavelet frame is
designed to provide adaptable translation parameters in traffic
flow. Moreover, empirical mode decomposition (EMD) [28]
is also used frequently in data pretreatment. In these methods
the data will be pretreated into another form, and transform
back after prediction. Some researchers also combined deep
learningmethod to improve prediction. Li et al. [29] proposed
a deep feature leaning approach combined withmultiple steps
to predict short-term traffic flow. Jia et al. [30] integrates a
long short term memory neural network (LSTM) and stacked
auto-encoders (SAEs)to predict short-term passenger flows.
Gu et al. [31] proposed a Bayesian combination model with
deep learning (IBCM-DL) for traffic flow prediction.

Hybrid algorithms often have good performance on pre-
dicting accuracy. However, they mainly focused on the time
series or the traffic flow sequences, excluding other factors
whichmay have impact on the traffic flow. The external factor
like weather has not been considered in previous work.

D. MULTI-FACTOR ALGORITHM
Most of the traffic flow prediction algorithms only analyze
the trend and fluctuation of passenger flow sequence by
linear, non-linear, or hybrid methods. In fact, some people’s
travel patterns also depend on other multiple factors, such
as weather, air quality, traffic congestion, and so on. For

example, entertainment activities may be cancelled in rainy
days; citizens will travel less on polluted days; while the
commuting is almost unaffected by the weather. Usually for
subway stations, the distribution of travel patterns is different.
Thus, weather factors may have a potential impact on passen-
ger flow of subway stations. Most of the existing algorithms
predict traffic volume without considering these external fac-
tors, and thus have lower accuracy at the circumstances of
extreme weather and special conditions.

Therefore, multi-factor algorithms have been attempted
on traffic volume prediction. In literature [32], Zheng et al.
analyzed the relationship among the weather, air quality
index (AQI) and taxi data, and proposed a model for pre-
dicting the AQI of Beijing considering the factors of weather,
traffic volume and historic AQI, based onConditional random
fields (CRF). CRF is an identify probability model, widely
used in signal recognition, image segmentation, natural lan-
guage processing and other fields. Ristovski et al. [33] pro-
posed an effective CRF model for structured regression on
large, fully connected graphs. Tseng et al. [34] present a Chi-
neseword segmentation system byCRFmodels. He et al. [35]
used CRF models for image labeling, to classify every pixel
of a given image into one of several predefined classes. Sut-
ton et al. [36] present dynamic CRFs to improve performance
of the traditional CRF model in natural language processing
task. Radosavljevic et al. [37] used CRF in remote sensing
regression to predict output variables that have some internal
structures. Djuric et al. [38] proposed a series of CRF model
to improve traffic speed prediction accuracy.

In this paper, a CRF model is designed to predict the
destination choice of passengers. The relationship of the pas-
senger flow, weather factors and time period series will be
established by CRF models in the offline system.

III. MetroEye: MOTIVATION AND OVERVIEW
This paper targets at predicting the real-time passenger flow
volume of each station and section in a subway network, with
the passenger information gathered by the so-called auto-
matic fare collection (AFC) systems [41]. The system records
the origin station and the entrance time when passengers
swipe cards to pass through gate channels. With such limited
information, it is difficult to directly infer the passenger flow
volume at each station, as theAFC systemwill not receive any
information during traveling until passengers arrive at their
destinations and swipe cards to get out.

Be provided with a three-month real-world data set from
Beijing subway, we are able to have an after-event analysis of
the influence of weather on the traffic flow volume of subway,
which motivated our study of a weather-aware approach.
We will firstly present the analysis results and then give an
overview of our proposed approach MetroEye in this section.

A. WEATHER EFFECT
We mainly consider three weather factors: temperature, air
quality index (AQI) and rainy/sunny condition. These three
factors are easy to be perceived and accessed from weather
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FIGURE 1. Variation of passenger flow distribution entropy in main subway stations under different weather conditions averaged on
March to May. The larger radius means larger difference, which indicates stronger influence of the weather factor.

forecasting reports. More importantly, they have obvious
influence on people’s travel plans. For example, people are
more likely to go out in mild weather and good air quality.
So the weather has an overall effect on the passenger flow,
especially the elastic passenger flow.

We study the weather influence by considering the dis-
tribution of passenger flow at different subway stations.
For a subway station O, we define the destination distri-
bution from station O to other stations as a vector rO,t =
[r1,t , r2,t , . . . , rn,t ], where ri,t is the percentage of passengers
who travel from station O to the i-th station at time period t
among all passengers who started their travel from station O,
and n is the total number of stations. Notice that passen-
gers’ destinations are known and only used in the after-event
analysis, as they were recorded after passengers finish their
travels. In real-time prediction, the destinations are unknown
and need to be inferred. In this paper, we consider t as three
different time periods in a day: morning (from 5:00 to 9:00);
daytime (from 9:00 to 17:00); and evening (from 17:00 to
23:00). The entropy e of station O at t can be calculates as:

eO,t = −
n∑
i=1

ri,t ln ri,t (1)

Entropy is a measure of uncertainty, and used here as an indi-
cator of the randomness of the passenger flow distribution at
a subway station at t . A station at t with larger entropy means
the distribution of destinations is more chaos, passengers
from which perform more flexible, unlikely to concentrate
on some destinations.

By checking the weather at t , we can define different sets
of station entropies such as

e
Thigh
O,t = {eO,t |temperature at t > µttemperature + 2◦C},

eTlowO,t = {eO,t |temperature at t < µttemperature − 2◦C},

which are collections of station entropies when people travel
in warm days and cool days (µttemperature is the historic
average temperature at t in the three months), respectively.
Notice that t is a specific time period (e.g.,morning, daytime,
evening) in different days (March to May in our studied data
sets).

Similarly, we can define the sets

eAcleanO,t = {eO,t |AQI at t < 100},

e
Apolluted
O,t = {eO,t |AQI at t > 150},

which are collections of station entropies when people travel
in clean days and polluted days, respectively. The division
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is according to Technical Regulation on Ambient Air Qual-
ity Index (on trial)(HJ 633-2012) in China, in which AQI
< 100 means Good or Moderate, and AQI > 150 means
Unhealthy.

e
Wrainy
O,t = {eO,t |it’s rainy at t},

e
Wsunny
O,t = {eO,t |it’s sunny at t},

which are collections of station entropies when people travel
in rainy days and sunny days, respectively. In addition, other
weather type such as cloudy or windy are also integrated to
sunny. Passengers have to carry an umbrella during travelling
outside, and some outdoor activities will be greatly affected
by rainy days. As a result, rainy may cause obvious trouble to
passengers and we put it as a special weather.

For each set, we can calculate its average ēWeatherO,t , and
measure the influence of different weather factors on the
entropy of destination distribution from each station:

dTO,t = |ē
Thigh
O,t − ē

Tlow
O,t | (2)

dAO,t = |ē
Aclean
O,t − ē

Apolluted
O,t | (3)

dWO,t = |ē
Wsunny
O,t − ē

Wrainy
O,t | (4)

Fig. 1 demonstrates the influence in different time periods
and under different weather conditions in the whole Beijing
subway network. The circle radius at each station indicates
the magnitude of the difference. There are several interest-
ing observations from Fig. 1. First, the temperature has the
strongest influence on passengers’ travel patterns, including
the stations in central area and suburban lines, comparing
to the other two factors. It seems that the temperature has
an overall influences, however, there is also a hidden rea-
son. Temperature varies obviously among different months.
In March, it is usually a little cold outsides, while in May, it is
rather hot. This temperature factor is mainly affected by the
month. Therefore, the travel patterns maybe change monthly,
and would repeat annually.

Second, air quality (AQI) has more significant influence
in morning and daytime, especially in central area marked
in red circle in Fig. 1(d)(e). There is a conjecture that can
explain this phenomenon. People are more sensitive to air
quality during the daytime. Moreover, the air pollution is
more serious in the city center.

Third, rainy or sunny conditions affect passengers in subur-
ban linesmore than those in central area, especially in evening
period. For example, the LiangXiangDaXueCheng station
and the ShaHeGaoJiaoYuan station, marked in Fig. 1(i), are
located at suburban line. These stations are near to several
college campuses where people study and also live there.
Passengers taking subway at these stations are mostly stu-
dents who are not for commuting, but for other flexible
demands. They usually take subway to other shopping and
entertainment places, but can easily change their travel plans
if weather is not good. Therefore, the passenger flow vol-
umes of these stations are stronger correlated with weather
factors, than other stations close to large residential areas such

as HuiLongGuan, PingGuoYuan and GuanZhuang, marked
in Fig. 1(g), where passengers need to commute on every
workday regardless weather changes.

The above analysis results motivated us to build amodel for
learning the influence of weather factors on passenger flow
volume. This model will be used for making real-time predic-
tion of the passenger flow at t given the weather information
at t .

B. OVERVIEW OF MetroEye
The overview of our proposed framework named ‘‘Metro-
Eye’’ is shown in Fig. 2. Given the weather conditions,
MetroEye is designed to monitor the real-time passenger
flow volumes on the subway according to metro card swip-
ing records only. In other words, real-time passenger flow
prediction will be based only on the entrance information
of passengers, without knowing their destinations and their
preferences to travel paths in advance. MetroEye divides the
real-time prediction task into three steps:

1) when knowing the current weather conditions, predict
the destination of a passenger’s trip, given her entrance record
from the origin station;

2) given a pair of origin station (O) and predicted des-
tination station (D) (or OD-pair for short) of a passenger,
determine her travel path from O to D;

3) infer the exact position of a passenger at any time given
her estimated travel path and the trains’ running schedule.
By positioning all passengers on the subway, MetroEye can
finally ‘‘view’’ the real-time passenger flow continuously and
report the passenger flow volume at each station.

The framework of MetroEye consists of two major parts,
the offline system and the online system, as shown in Fig. 2.
The offline system is mainly for the storage of historical
data, the modeling of passenger flow volumes with time and
weather, and the computation of travel path selection ratios.
The online system is mainly for the selection of passengers’
destinations and travel paths, and also the simulation of
real-time passenger flows. In what follows, we describe the
two systems in detail.

C. THE OFFLINE SYSTEM
The offline system contains various historical datasets about
weather conditions, traffic volumes in each OD-pair (or OD-
flow for short) collected after passengers completed their
trips, train schedules, and basic subway structures. This part is
mainly concerned with modeling the passenger flow volumes
according to travel time andweather conditions, as well as the
travel path selections (or path ratio for short) in eachOD-pair.
As we know, an OD-flow changes in different time periods

of a day, and can be influenced by various external factors
such as the weather conditions. Thus the offline system builds
a model for learning the influence of time (e.g., morning,
daytime, or evening) and weather (including temperature,
air quality and rainy/sunny condition) on the passenger flow
volumes, based on historical data. The learned model will be
used for the real-time prediction in the online system given
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FIGURE 2. Framework of MetroEye.

the current time period and weather. Section IVwill introduce
the detailedmodel based on conditional random fields (CRF).

Considering that the weather factors, including temper-
ature, air quality and rain/shine, may have an impact on
the travel patterns, the model conditional random fields
(CRF) [37] is adopted here to establish the relationship
between passenger flow volume and the weather factors. The
adoption of CRF also enables the modeling of interaction
effect of traffic volumes between two consecutive time peri-
ods. Note that for each OD-pair in a specific time period,
a CRF model will be built and saved to the offline system.
We leave the details of the model to Section IV.

After predicting the destination, the travel path selected
by the passenger should be determined. In Beijing subway
network, passengers don’t need to swipe cards when get
transfer, and therefore the travel path is not collected directly
in the data. So we have to infer the path from limited informa-
tion. In this part, given an OD-pair, the offline system firstly
detects the feasible paths fromO toD, and then calculates the
theoretical travel time for each path according to historical
subway train schedules and network structures. Secondly,
the system computes each passenger’s historical real travel
time from O to D, which is then compared to all paths’
theoretical travel time to find which path is actually selected
by that passenger. Then the system can aggregate the counts
of passengers’ path selection in this OD-pair, and finally
calculate its path ratio by normalizing the counts among
different paths. In addition, the path ratios are relatively stable
when subway lines and train schedules are fixed. So they are
only needed to calculate once in the offline system, which are
then saved for the further use in the online system. The path

ratios will be updated aperiodically when the subway system
has a substantial change in metro lines or running schedules.

D. THE ONLINE SYSTEM
The main task of the online system is to simulate real-time
passenger flow in the subway network. The implementation
consists of four steps, i.e., destination ratio inference, desti-
nation selection, path selection, and real-time passenger flow
simulation.

Firstly, given each origin station O, the CRF models learnt
in the offline system are employed with real-time weather
forecasting data to infer the passenger flow volumes to all
possible destinations, which are then normalized to obtain
the destination distribution (or destination ratio for short)
of O. In this way, the online system can learn the real-time
destination ratios for every origin station.

Secondly, passengers’ real-time entrance data (including
the origin station and the time) are acquired from the AFC
system. For each passenger, randomly select her destination
according to the destination ratio of the origin in the entering
period. To further accelerate the destination selection for huge
volumes of incoming passengers, a Huffman tree [39], [40] is
adopted with technical details given in Section V.

Thirdly, given each simulated OD-pair, the online system
randomly selects the travel path from the effective paths based
on the path ratio computed in the offline system. This process
is also accelerated by the Huffman tree to meet the computing
challenge.

Finally, the simulation of all passengers’ real-time posi-
tions on the subway is conducted according to the esti-
mated travel paths, estimated transfer time, and the train
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FIGURE 3. Flow chart of the online system.

schedules. The simulation is conducted periodically to reflect
the dynamics of passenger flow volumes on the sub-
way. Fig. 3 shows the running procedure of the online
system.

E. DISCUSSIONS
The most attractive characteristic of MetroEye lies in that it
provides a simple yet feasible way to monitor the real-time
passenger flows on the subway given only the entrance
information of passengers. The separate design of offline
and online systems makes MetroEye effective on modeling
the passenger flow w.r.t. time and weather and efficient on
real-time positioning the massive passengers. More applica-
tion details will be found in Section VII.

The practicality of MetroEye is under the support of
the well-designed offline and online systems, which serve
the goals of efficiently simulating passengers’ travel paths
from only their entrance information. In the offline system,
the introduction of the CRF model enables the modeling of
the weather influences to passengers’ destination selections,
which to our best knowledge is rare in most existing algo-
rithms for real-time passenger flow prediction. Moreover,
to speed up the simulation process for real-time positioning
of massive passengers, MetroEye adopts some optimization
strategies such as introducing the Huffman tree for both
destination and path selections.

FIGURE 4. Presentation of the CRF model. The temperature m, air quality
a, rainy or sunny w and historical passenger flow volume p are observed
as x, while the real passenger flow volume y is output.

TABLE 1. The symbols in CRF model.

IV. CRF MODEL IN THE OFFLINE SYSTEM
The CRF model in offline system is adopted to predict des-
tination ratio of passenger flow given an origin station, and
this part is divided into 3 steps. Firstly, the offline system
uses CRF model to learn the relationship between historical
passenger flow volume and other factors. Secondly, the online
system put the weather forcast results into CRFmodel to infer
the actual passenger flow volume. Finally, the passenger flow
volume is normalized to obtain the destination ratio and then
provided to online simulation. This CRF model considered
the effect of weather condition to improve the accuracy of
prediction. Next in this section, the representation, learning,
and inference of the CRF model will be introduced.

A. MODEL REPRESENTATION
In this model, a linear-chain CRF is used to detect the rela-
tionship of passenger flow volume with the weather factors
consisting of temperature, air quality index and rainy or
sunny. For one OD’s model in period t , the observed factor
xt = [mt , at ,wt , pt ] is consisted of temperature mt , air
quality index at , weather wt and historical passenger flow
volume pt . The output yt is the real passenger flow volume.
All the variables are normalized to [0, 1].

Fig. 4 shows the graphical structure G of the CRF model
and Table 1 shows the description of the main symbols. In the
graphical structure G, the gray nodes X = {x1, x2, . . . , xs}
represent observe variables, while the white nodes Y =
{y1, y2, . . . , ys} represent the real passenger flow volume, s
stands for the length of the sequence of a day.

Inspired by the practical application of continuous con-
ditional random fields model [37], a real valued poten-
tial function ft (yt , yt+1, xt ;λ) is used to model interactions
among output Y . This function establishes the relationship

VOLUME 8, 2020 129819



J. Wang et al.: MetroEye: Weather-Aware System for Real-Time Metro Passenger Flow Prediction

between two connected periods, the bigger value indicat-
ing stronger relationships. Simultaneously, the interaction
between observed factors X and output Y is denoted by the
function gt (yt , xt ;α,β).
Actually, the values of elements in vector Y and X are

continuous except the value of rainy or sunny, so the dis-
crete variable wt is separated from other continuous vari-
ables in xt , that is x̃t = [mt , at , pt ]. And an indica-
tor function is introduced to show the effect of wt as
follows:

I (wt = vj) =

{
1; if wt = vj
0; if wt 6= vj

(5)

As a result, the feature functions ft (yt , yt+1, xt ;λ) and
gt (yt , xt ;α,β) can be expressed as equation (6) and (7). The
output yt is set to be quadratic to simplify the calculation.
λ,α,β are weight parameters in the functions.

ft (yt , yt+1, xt ;λ)

= exp(−
k∑
j=1

I (wt = vj)(λ̃
j
t x̃tytyt+1))

= exp(−
k∑
j=1

I (wt = vj)(
l∑
i=1

λ
j
t,ixt,iytyt+1)) (6)

gt (yt , xt ;α,β)

= exp(−
k∑
j=1

I (wt = vj)(
1
2
α̃
j
t x̃ty

2
t − β̃

j
t x̃tyt ))

= exp(−
k∑
j=1

I (wt = vj)(
1
2

l∑
i=1

α
j
t,ixt,iy

2
t −

l∑
i=1

β
j
t,ixt,iyt ))

(7)

Finally, the conditional probability expression of CRF
model can be represented as:

p(y|x;α,β,λ)

=
1

Z (x;α,β,λ)

s∏
t=1

gt (yt , xt ;α,β)
s−1∏
t=1

ft (yt , yt+1, xt ;λ),

(8)

where Z (x;α,β,λ) is a normalized factor.
Up till now, the relationship of weather factors and pas-

senger flow sequence is represented by a quadratic func-
tion with parameters, then the parameters can be learned
from historical data by the basic method of machine
learning.

B. LEARNING METHOD
The learning task is to find the parameter values that
maximize the conditional log-likelihood function LCL. The
parameter set is 5 = {α,β,λ}. Besides, regularization
parameters {uα, uβ , uλ} are introduced to avoid the over-
fitting. In practical applications, these parameters can be set

as uα = uβ = uλ for simplicity. So the LCL can be expressed
as follows:

LCL = log p(y|x;α,β,λ)−
uα
2

s∑
t=1

k∑
j=1

l∑
i=1

(αjt,i)
2

−
uβ
2

s∑
t=1

k∑
j=1

l∑
i=1

(β jt,i)
2
−
uλ
2

s−1∑
t=1

k∑
j=1

l∑
i=1

(λjt,i)
2

(9)

Different from the classic discrete CRF models, in this
model, the value of elements in vector Y and X are con-
tinuous, which brings a difficulty in calculating the value
of p(y|x;α,β,λ). To solve this problem, p(y|x;α,β,λ) is
assumed as multivariate Gaussian, and transformed to a mul-
tivariate Gaussian distribution by representing Z (x;α,β,λ)
as follows:

Z (x;α,β,λ)

=

∫ s∏
t=1

gt (yt , xt ;α,β)
s−1∏
t=1

ft (yt , yt+1, xt ;λ)dy

=

∫
exp(−

s∑
t=1

k∑
j=1

l∑
i=1

I (wt = vj)(
1
2
α
j
t,ixt,iy

2
t − β

j
t,ixt,iyt )

−

s−1∑
t=1

k∑
j=1

l∑
i=1

I (wt = vj)λ
j
t,ixt,iytyt+1))dy

=

∫
exp(−

1
2
yTAy+ bT y)dy

= (2π)s/2|A|−1/2 exp(
1
2
bTA−1b), (10)

where y = [y1, y2, . . . , ys]; A is an s × s matrix where

At,t =
k∑
j=1

l∑
i=1

I (wt = vj)α
j
t,ixt,i(1 ≤ t ≤ s) and At,t+1 =

At+1,t =
k∑
j=1

l∑
i=1

I (wt = vj)λ
j
t,ixt,i, (1 ≤ t ≤ s − 1). The

other entries of A are zero. b is a column vector and bt =
k∑
j=1

l∑
i=1

I (wt = vj)β
j
t,ixt,i(1 ≤ t ≤ s).

Note that maximization of LCL is a constrained opti-
mization problem and it should be guaranteed that At,t =
k∑
j=1

l∑
i=1

I (wt = vj)α
j
t,ixt,i > 0. Since xt,i > 0, the learning

only need to maintain αjt,i > 0. To address this problem,
logα is adopted instead of α when maximize LCL. As a
result, the new optimization issue becomes unconstrained
and the gradients of LCL to logαjt,i, β

j
t,i and λ

j
t,i are given

as:

∂LCL

∂ logαjt,i

= −α
j
t,i(
∂ logZ (x;α,β,λ)

∂α
j
t,i

+ I (wt = vj)
1
2
xt,iy2t + uαα

j
t,i)

(11)

129820 VOLUME 8, 2020



J. Wang et al.: MetroEye: Weather-Aware System for Real-Time Metro Passenger Flow Prediction

∂LCL

∂β
j
t,i

= −(
∂ logZ (x;α,β,λ)

∂β
j
t,i

− I (wt = vj)xt,iyt + uββ
j
t,i) (12)

∂LCL

∂λ
j
t,i

= −(
∂ logZ (x;α,β,λ)

∂λ
j
t,i

+ I (wt = vj)xt,iytyt+1 + uλλ
j
t,i)

(13)

For each step, supposing the learning rate is η, the param-
eters logα, β and λ are updated as:

logαnew = logαold + η ×
∂LCL

∂ logαold
(14)

βnew = βold + η ×
∂LCL
∂βold

(15)

λnew = λold + η ×
∂LCL
∂λold

(16)

Then let the parameter set 5 = {α,β,λ} reach the opti-
mal through iteration of gradient ascent, the relationship of
weather factors and passenger flow is confirmed.

C. MODEL INFERENCE
In online inference, the prediction is equal to find the optimal
y that makes the model expression p(y|x;α,β,λ) reach its
maximum value with input weather factors.

y = argmax p(y|x;α,β,λ)

= argmax(−
1
2
yTAy+ bT y)

= A−1b (17)

In summarize, the whole prediction steps are as follows:
Step 1: (in offline system) normalize the training data:

historical passenger flow volume and weather (temperature,
aqi, rainy or sunny);

Step 2: random initialize α,β,λ;
Step 3: while (the max number of iterations is not reached)

maximize the log-likelihood LCL
update the gradients parameters α,β,λ

if (log-likelihood has converged)
break

end while;
Step 3: output α,β,λ;
Step 4: (in online system) input the real weather of the day

to predict real passenger flow volume y by equation (17);
Step 5: compute the destination ratio by normalize the

passenger flow volume from the same origin station;

V. PATH SELECTION AND REAL-TIME SIMULATION IN
ONLINE SYSTEM
As introduced in section III-D, MetroEye online system
mainly involves 4 steps: destination ratio inference, destina-
tion selection, path selection and real-time passenger flow

simulation. The first step can be easily conducted by applying
the learned CRF model in the offline system with real-time
weather conditions. Then for each origin station, we have a
destination ratio vector indicating the probability of reaching
other stations as destinations. Next in this section, we intro-
duce the details of the other three steps to follow.

A. DESTINATION SELECTION
Given a passenger’s real-time entrance data such as the origin
station and entrance time, the online system will infer his/her
destination according to the inferred destination ratio vector.
As the selection occurs frequently in online system and the
number of destination options is very large, we adopt a Huff-
man tree to make the sampling process efficient.

The steps to create Huffman tree are as follows:
Step 1: create the leaf nodes Leafi, the weight wit of each

node i is the probability to the station i, where
N∑
i=1

wit = 1;

Step 2: sort the leaf nodes by the weight and put them into
a queue;

Step 3: pick up the two leaf nodes (Leafm,Leafn) of the least
two weight (wmt ≤ wnt ), create an InnerNode, with a weight
as the sum of the two leaf nodes, the left subtree is Leafm and
the right subtree is Leafn;

Step 4: put the InnerNode back into the queue according to
the weight. Return to step 3 until the queue contains only one
node.

The steps to sampling in the Huffman tree are as follows:
Step 1: for each passenger record of getting in, randomly

generate a probability p ∈ [0, 1] and initial the current state
at the root of the Huffman tree;

Step 2: if (p ≤ Nodecurrent .Pleftchild )
set the current state at the left child node
else
set the current state at the right child node and
p = p− Nodecurrent .Pleftchild
end if;

Step 3: return to step 2 until the current state is a leaf node.
Step 4: the station corresponding to the current state is the

destination of the record.

B. PATH SELECTION
The selected destination and the given origin station form
an OD-pair. Then path selection is to select the real path of
the passenger between this OD-pair. However in subway net-
work, the feasible paths are usually more than one. Actually,
only k-shortest paths, which are called candidate paths, with
fewer transfer will be adopted by a real passenger. So that
path selection in online system is to select one real path from
the candidate paths.

Now the task is to find all candidate paths and the proba-
bility to choose each path. In most cases, passengers usually
adopt fixed paths. So the candidate path and the probability of
each OD-pair almost stay the same, under the circumstances
that the structure of subway network does’t change a lot, and
this will be done by path allocation in offline system. Path
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allocation includes three basic steps as follows: calculate the-
oretical travel time; select candidate path; and path matching.

1) THEORETICAL TRAVEL TIME
When a passenger travel along a path, the theoretical travel
time includes the time to platform, the time to wait for train,
the time of train travels, and the time to get out. If the path
includes transfer station, the theoretical travel time needs to
add the time to get transfer platform and the time to wait
again. In addition, if the passenger need to transfer for more
times, the theoretical travel time is also need to add the
transfer time for more times. The details of the each pieces
of time can be get from the train schedule and the basic
information of subway networks.

2) SELECT CANDIDATE PATH
Generally, not all the paths are feasible to be adopted by
passengers. People don’t like to transfer too many times,
and a penalty factor will be added to the theoretical travel
time when transfer occurs. So there is no need to find all the
paths between each OD-pair. Instead, the offline system only
selects k-shortest paths as candidate paths. In practice, k = 10
is enough.

3) PATH MATCHING
For each historical passenger travel record, just compare the
real travel time and the theoretical travel time, and find the
candidate path closest to the real travel time. This candidate
path is selected tomatch the record.When all the recordswere
matched to the candidate paths, the path ratio of each OD-pair
is easy to calculated by statistic analysis.

C. REAL-TIME SIMULATION
The real-time simulation includes all the trains and passen-
gers traveling in the subway system, so the simulation is
composed by two threads. One thread is for passenger pro-
cessing, dealing with the information of passenger getting in
or out at each station according to AFC system. The other
thread is for train processing, dealing with all the trains
arriving at and leaving each station according to the schedule.
Besides, each station has two queue buffers (two directions)
for the passengers waiting for the trains, and each train has a
maximal capacity of passengers.

1) PASSENGER THREAD
When a passenger getting into an origin station according to
AFC system, select the destination and path, then put him/her
into the buffer of origin station and wait for the train. When
a passenger arriving at the destination according to AFC
system, delete the passenger immediately.

2) TRAIN THREAD
When a train arriving at a station, drop the passenger to
get transfer or reach the end, and deliver them to passenger
thread; When a train leaving a station, take as many as pas-
sengers from the waiting buffer of the station. If a passenger

has arrived at the destination while he/she doesn’t get out
according to AFC system, select a new destination again.

VI. EXPERIMENTAL EVALUATION OF CRF MODEL
The experiments in this section are for validating the destina-
tion distribution prediction made by the CRF model, which
is introduced in the previous section IV. Classical linear and
non-linear algorithms are compared as baseline methods.

A. EXPERIMENTAL SETUP
1) DATA
The experimental data was the passenger flow data of Beijing
subway in the working days from Mar. 1st to May 20th,
2016. The dataset included more than 500 million trips, and
the count of passengers every 5 minutes for each OD-pair
stations. The evaluation was made on the prediction tasks:
predicting the passenger flow volumes on the working days
from May 9th to May 20th based on the past 8 weeks data.
For example, to predict passenger flow volumes on May 11th
(rainy, AQI = 187) based on the past 8 weeks (March 16th
to May 10th). The prediction error (the difference between
the predicted volume and the after-event collected data) will
be reported. The total flow volume and weather factors is
shown in Table 2 left part. The temperature of these days were
getting warmer, especially little hot in May.

2) BASELINES
The proposed model is compared with classical lin-
ear baseline autoregressive moving average algorithm
(ARMA) [6], nonlinear baseline support vector machine
algorithm (SVM) [14], artificial neural network algorithm
(ANN) [12], and Long Short-Term Memory algorithm
(LSTM) [22]. In order to evaluate of importance of consid-
ering the weather effect, a default conditional random field
algorithm (CRF0) is conducted, in which the weather factors
are set as default value: zeros (isolate weather factors).

3) METRICS
From the after-events collected data, we can have the ground
truth of passenger flow volume in period t starting from a sta-
tion O to each of the potential destination station, denoted by
ytO = {y

t
O,1, y

t
O,2, . . . , y

t
O,n}. Denoting the predicted passen-

ger flow volume in period t from a station O to other stations
ŷtO = {ŷ

t
O,1, ŷ

t
O,2, . . . , ŷ

t
O,n}. The prediction performance is

evaluated by four metrics:
Mean Relative Error (MRE): The average relative error

is a measure of the average of relative errors between the
predicted passenger flow values ŷtO,i and the real passenger
flow values ytO,i. For one stationO (e.g., the k-th station), it is
calculated as:

MRE tk =
1
n

n∑
i=1

|ŷtk,i − y
t
k,i|

ytk,i
(18)

Root Mean Square Error (RMSE): Root mean square error
is the square root of the mean of the quadratic sum of the
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TABLE 2. Comparison of the performance of evaluated algorithms.

difference between the predicted passenger flow values ŷtO,i
and the real passenger flow values ytO,i. For one station O
(e.g., the k-th station), it is defined as:

RMSE tk =

√√√√1
n

n∑
i=1

(ŷtk,i − y
t
k,i)

2 (19)

Absolute Error Sum (AES): Absolute error sum measures
the absolute difference between the predicted passenger flow
values ŷtO,i and the real passenger flow values ytO,i. For one
station O (e.g., the k-th station), it is calculated as:

AES tk =
n∑
i=1

|ŷtk,i − y
t
k,i| (20)

Accuracy: Accuracy measures the accuracy of the predic-
tion ŷtO,i to the real passenger flow values ytO,i. For one station
O (e.g., the k-th station), it is calculated as:

Accuracytk = 1−
AES tk
n∑
i=1

ytk,i

(21)

By taking the average of MRE, RMSE and the sum of AES
on all stations, we have the final performance metrics defined
as:

MRE tmean =
1
n

n∑
k=1

MRE tk (22)

RMSE tmean =
1
n

n∑
k=1

RMSE tk (23)

AES tsum =
n∑

k=1

AES tk (24)

Accuracyt = 1−
AES tsum
n∑

k=1

n∑
i=1

ytk,i

(25)

Notice that the sum of AES indicates the total error of
the subway network. Small values of MRE tmean, RMSE

t
mean,

and AES tsum indicate good performance of the evaluated
approaches.

Results of proposedmethod and different baselinemethods
will be reported in next subsection. All the The experiments

were conducted in a standard desktop computer, with double
core i7-4790 3.60GHz CPU, 8GB RAM.

B. EVALUATION RESULTS AT ALL STATIONS
Table 2 shows the results of the proposed CRF algorithm and
the baseline algorithms when predicting the passenger flow
volumes in working days from May 9th to 20th, 2016. The
best results are highlighted in bold, and the second best is
marked with stars. CRF model have the best performance,
especially in bad weathers. LSTM is the second best model,
which is a little better than CRF0. CRF0 and CRF employ
a similar model, while CRF considers weather factor and
CRF0 does not. Comparing the performance of CRF0 and
CRF, we can see that the consideration of weather factor
effectively increase the prediction accuracy. The following
analyses focus on May 11th and 19th, the two days with bad
weathers.

Table 3 shows the results at different time periods of
May 11th and 19th, 2016. The accuracy of CRF in the
three periods of the two days are:88.16%, 84.27%, 87.86%;
88.70%, 84.33%, 87.88%, always performs the best. For
more details, in May 11th, the rainy weather and the bad air
quality disturbed the prediction of the passenger flow. All the
algorithm performs a little worse than that inMay 19th. Actu-
ally, the weather situation in May 11th does not frequently
appear, so the travel mode is relatively harder to predict.
The CRF algorithm performed better than other algorithms
in such day.

Fig. 5 shows the distribution of accuracy for three periods
in May 11th 2016 with different methods. For most stations,
the accuracy is distributed from 70% to 95%. CRF (red),
CRF0 (blue), LSTM (black) and SVM (green) performsmuch
better than other methods, and CRF is the best for most cases.

C. EVALUATION RESULTS AT SELECTED STATIONS
The influence of weather on passenger flow at different
stations varies according to the location of these stations.
The passenger flows of the stations in residential or working
region usually hold steady regardless the weather condition.
However, the entertainment districts are influenced greatly.
We select three stations for evaluating and comparing the
prediction performance of different algorithms. The selected
subway stations are GuanZhuang station (in residential
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TABLE 3. Comparison of the performance in bad weathers.

district), Agricultural Exhibition Center station (in entertain-
ment district) and Biomedical Base station (in technology
park).

The prediction result of GuanZhuang station is shown
in Table 4. Since it is in a residential district, the inflow
in the morning (period 1) is the largest of the all day. All
algorithms thus perform quite good, comparing to the period
2 and 3 (daytime and evening). Especially in the evening
when the inflow sharply decreases, the performance of com-
pared algorithms decreases to different extents. However,
CRF model significantly outperforms other baseline meth-
ods. This is because the passengers in GuanZhuang station
in the evening have flexible travel demands and easier get
affected by weather conditions. CRF model takes into con-
sideration of the weather influence, and thus performs better
on predicting the passenger flow volume.

Table 5 shows the result of Agricultural Exhibition Center
station, which is in an entertainment district, and usually
attracts more passengers in the afternoon, and has a peak in
the evening. Passengers gathered at this station has flexible
and various travel purposes, which are easy to be affected by
different factors and thus difficult to be predicted. CRF still
demonstrates better performance than other baseline meth-
ods. More interestingly, the 18th Beijing international toys

FIGURE 5. Distribution of accuracy for each method in May 11th 2016.
The CRF model (red) preforms the best.
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TABLE 4. The result of GuanZhuang station in bad weathers.

& preschool tools exhibition was held during May 11th to
13th just near the station. Hence, the total inflow in period 2
on May 11th was much bigger than that on May 19th. The
prediction of CRF model is still better than others in this
situation.

Table 6 shows the prediction performance on Biomedical
Base station, which is near to the end of a suburban line
(DaXing line). The passenger flow volumes at stations of
suburban lines are small in general. However, the variance of
the distribution is relative large. Biomedical Base station is
one of the stations in suburban line with the mixed feature of
residential and working district. The destination distribution
from this station often has large variance and can be greatly
influenced by weather factors. The result shows that CRF
algorithm performs better in the suburban stations than all
other methods.

In Table 4, 5 and 6, we can see that CRF often has
the best performance, and better than LSTM and SVM.
The evaluation days May 11th and 19th are polluted days
with different AQI values. The more accurate prediction of
CRF on these days verifies that CRF effectively learns the
influence of weather factors and guarantees that MetroEye
will make accurate prediction of real-time passenger flow
volume.

TABLE 5. The result of agricultural exhibition center station in bad
weathers.

D. PREDICTION PERFORMANCE W.R.T. PASSENGER FLOW
VOLUMES
It is interesting to study how the prediction performance
varies w.r.t. the real passenger flow volumes at different
stations. In other words, we evaluate whether stations with
a large amount of passengers are easier or more difficult to
predict than those with a small number of passengers. The
x-axis in Fig. 6 are the index of stations ordered by their real
passenger flow volumes, which is shown as the blue curve
(with scales on the left y-axis). The AES in three periods on
May 11th 2016 is also shown in the figure as the green curve
(with scales on the left y-axis) to be compared with passenger
flow volumes directly. The prediction accuracy of CRFmodel
in the same period is shown as the red curve (with scales on
the right y-axis).

From Fig. 6, we can see that the accuracy rate increases
when stations have a larger number of passengers. Especially,
for the large stations with more than ten thousand passen-
ger flow volume in the period, the CRF model has a high
accuracy of prediction. It has great significance for subway
systems. The large stations usually have a large scale of the
passenger flow, which would lead to serious congestion in
the downstream station especially in rush hours. Therefore,
the accurate prediction for the large stations is essential for
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TABLE 6. The result of biomedical base station in bad weathers.

the whole subway system. Nevertheless, CRF model still
has some weakness in prediction for the small stations with
less than one thousand passenger flow volume in the period.
The accuracy rate is usually less than 50% in these small
stations. Considering that there are 276 stations in Beijing
subway network, the passenger flows from the small stations
are less than 4 on average for each OD-pair. Thus, the error
of prediction is too small to cause a serious problem on the
whole network.

There are two exceptional large stations on which the pre-
diction accuracy is low in period 1 (after Index 250 at x-axis
shown in Fig. 6(a)). They are Beijing West Railway Station
and Beijing Railway Station, where passengers arrived from
other cities by over-night trains and might have high uncer-
tainty on their destinations in Beijing. Thus, the prediction of
their destination distribution is not as accurate as other large
stations. Predictions in period 2 and 3 for these two stations
are not obviously bad, which because the passengers have less
choices for destination. Especially in the evening, the only
choice may be to go home.

VII. APPLICATIONS OF MetroEye
There are some details in online simulation which will not
be illustrated in this paper, such as destination selection,

FIGURE 6. The variation of prediction performance at stations with
different passenger flow volumes (from small to large on x-axis).

path selection, and real-time simulation. This section only
introduce the application of MetroEye system to show the
practicability of it.

The MetroEye framework has been adopted by the Beijing
Urban Rail Transit Control Center (TCC) to monitor the
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FIGURE 7. An example of real-time passenger flow prediction of Beijing subway network at 8:30 on May 11th 2016. The passenger
flow load level is marked on the right side of each direction by green (free), yellow (crowded) and red (overload) according to the
prediction and simulation. Only line names and transfer station names are marked. The sections from the residential regions to the
working regions are crowded or even overload.

real-time network status. The information of real-time pas-
senger flow volume will be published to the station software
application and mobile software application.

An example of real-time passenger flow prediction at
8:30am on May 11th 2016 is conducted and shown in Fig. 7.
For visualizing the network traffic status in an easy-to-read
manner, we publish the load level categorized as ‘free’ (less
than 0.5), ‘crowded’ (0.5-0.8) and ‘overload’ (over 0.8),
rather than the real number of passengers at stations and
sections between stations.

The load level is calculated as the average number of
passengers on the trains passing the section divided by the
maximal capacity of the train during a piece of time. In the
network shown in Fig. 7, the load level of each station and
each section between two stations are displayed on the right
side of each direction of each line, in color green (free),
yellow (crowded) or red (overload).

As we can see, the sections from the residential regions
(e.g., HuoYing) to the working regions (e.g., HaiDian-
HuangZhuang) are crowded or even overload at 8:30am,
which matches the impression of people. However, not all
stations in the subway network are crowded and overload.
Massive passengers gathered only at some large stations (e.g.,
GuoMao) and the downstream stations (e.g., the stations after
GuoMao in Line 1 and Line 10.) for commuting. Thus, it is of
great importance to accurately predict the passenger flow in
the large stations, which is just the advantage of theMetroEye
model.

Notice that the dataset used for evaluation in this paper
are from weekdays. In real application of MetroEye, two
different offline models are built for weekday and week-
end traffic flow. This is because the feature of passen-
ger flow in weekday is totally different from that in
weekends.
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VIII. CONCLUSION
Real-time passenger flow prediction is playing an important
role in subway management. This paper proposed a system-
atic framework, MetroEye, to predict real-time passenger
flow in subway system with weather awareness. The frame-
work consists of an offline system and an online system. The
offline system is mainly for OD-flow modeling, while the
online system is for real-time simulation. Weather conditions
also have influence on people’s travel plans. Especially bad
air quality and bad weathers have drawn much attention of
the urban residents and make people re-plan their non-urgent
and unnecessary travels.

A conditional randomfieldmodel based onweather factors
is proposed in the offline system, aiming at establishing the
relationship between passenger flow volume and weather
factors. Experimental results proved that the conditional
random field model has higher accuracy among the com-
pared algorithms. Especially for the large stations with over
10 thousands passengers, the accuracy is quite high, which is
significant in subway passenger flow prediction.

The online system proposes a practical way to select
the destination, path and conduct the real-time simulation.
An example of real-time simulation on Beijing subway net-
work is provided for showing the practicability of MetroEye.
The offline-online system structure is also scalable for other
prediction method. Each module’s algorithm can be updated
independently. The MetroEye framework has been adopted
by the Beijing Urban Rail Transit Control Center.

As a result of the limitation of the used data set, this paper
concentrates on the prediction of working days. However,
the weather effect on weekends/holidays can be totally dif-
ferent. It will be very interesting to analyze the difference of
working days and weekends/holidays in the future.
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