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ABSTRACT In the process of multi-axis contour tracking control, the traditional time-invariant method
could lead to a significant error in contour tracking due to the existence of two different motion conditions,
namely single-axis independent motion and multi-axis coupled motion. In order to tackle this issue, a
time-varying weighting matrix has been developed considering the trajectory and time-varying random
disturbance. In this paper, a time-varying control method for multi-axis motion based on norm optimal cross-
coupling iterative learning is proposed. Compared to the time-invariant control method, the simulation and
experiment results demonstrate that the proposed method can effectively reduce the contour error improving

the multi-axis control precision.

INDEX TERMS Time-varying weighted matrix, iterative learning, norm optimal, cross coupling, multi-axis

motion control.

I. INTRODUCTION

In multi-axis motion control, the contour error caused by
discordant movement between the axes and the tracking error
caused by each single axis in the machining process are the
main errors in the machining of complex parts. Uniaxial
tracking and contour control performances are both impor-
tant factors affecting the overall multi-axis motion control
performance. In this respect, coordinating the relationship
between them is extremely important for multi-axis motion
performance.

Multi-axis contour tracking control is a trend topic in
academic literature. Cross-coupling control (CCC) method
is used to reduce contour error by selecting appropriate cou-
pling operators to coordinate the motions between axes. Iter-
ative learning control (ILC) is a feed-forward control method
which does not rely on the detailed model of the controlled
system. Previous control information is used as current input
signal. Based on the effort of repeated iterations, accurate
tacking performance of the desired trajectory can be achieved.
First, Koren [1], [2] put forward the cross-coupling con-
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troller and variable-gain cross-coupling controller to improve
the multi-axis contour tracking performance. A common
approach to reduce the control error, is the application of
modern control theory. For example, Ouyang ef al. [3] and
[4], Brend et al. [5], Ge et al. [6], and de Rozario et al. [7]
proposed a cross-coupling control method based on the
location domain, which, compared with the time-domain
cross-coupling controller, reduced the dependence on the
precision of the coupling operator. Brend ef al. [5] proposed
an adaptive framework based on the norm optimized iterative
learning control (ILC) method, which can adapt to the system
uncertainty through a multi-model exchange. In this con-
text, Ge et al. [6] analyzed Robust Monotonic Convergence
(RMC) of norm optimization iterative learning control from a
frequency domain perspective. This research highlighted the
optimization algorithm effectiveness by analyzing the uncer-
tainty range of the model. In addition, a filter has been intro-
duced to optimize the iterative learning algorithm to solve the
phase distortion problem in the frequency domain. Moreover,
de Rozario et al. [7] designed an iterative learning method
for linear variable parameter (LPV) system, improving the
performance and convergence speed. Aschemann et al. [8]
proposed an improved recursive least square method-based
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iterative learning, with a new norm optimal iterative learn-
ing control algorithm, which significantly improved the
tracking control accuracy when meeting the safety require-
ments. Yu et al. [9] proposed a method integrating the nor-
mal optimal iterative learning control and linear quadratic
error state feedback tracking method, which achieved fast
error convergence and small residual error. In terms of lin-
ear time-invariant control system, Lin et al. [10] proposed
a new biaxial cross-coupling synchronization control strat-
egy based on the equivalent tangent contour error estima-
tion model. It has effectively reduced the synchronization
errors caused by servo parameter mismatch and external dis-
turbance. Ge et al. [11] focused on the norm-optimal itera-
tive learning control (NO-ILC) for single-input-single-output
(SISO) linear time invariant (LTI) systems. and developed
a NO-ILC weighted filter design method based on infinite
time domain, demonstrating the optimality of NO-ILC in
terms of tradeoff balancing between robustness, convergence
speed, and steady-state error. Chen et al. [12] proposed a
methodology that extends the recently developed point-to-
point ILC framework to allow automatic via-point time allo-
cation within a given point-to-point tracking task, thereby the
energy consumption has been effectively reduced. Owens and
Hatonen [13] proposed a parameter optimization approach
based on ILC norm optimization theory, which improved
convergence rates. Rong and Cheng [14] proposed an iter-
ative learning identification algorithm based on time-varying
neural network, which improved the convergence speed of the
algorithm and the identification accuracy of nonlinear time-
varying system. Lim and Barton [15] proposed the Pareto
iterative learning control method to discuss the optimization
of multiple performance objectives. In terms of the ILC norm
optimization theory, Son et al. [16] developed an ILC opti-
mization algorithm based on point-to-point robust monotone
convergence. It effectively solved the problem of low iteration
performance caused by the uncertainty of the model. McNab
and Tsao [17] proposed a time stepping linear quadratic
optimal control method for contour error, tracking error and
control input over a future finite horizon, which improved the
contour tracking control performance. Traditional optimiza-
tion methods are based on the assumption of time invariance,
focusing on the single axis tracking and contour tracking con-
trol. It is noted that different track changes in the whole move-
ment process and time-varying random disturbance would
generate larger error in trajectory tracing control process.

To solve the above-mentioned problems, a time-varying
weighting matrix is designed to adjust the single-axis tracking
weight and multi-axis contour weight in real time. Therefore,
this research proposes a multi-axis motion time-varying con-
trol method based on norm optimal cross-coupling iterative
learning [18], for an effective improvement of multi-axis
contour tracking and single axis tracking accuracies.

Il. CONTOUR ERROR MODEL
The contour error is defined as the distance between the actual
position point and the nearest point of the reference curve.
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The linear contour trajectory is shown in Figure 1. At a certain
moment, P is the reference position, P* is the actual position,
|PP*| is the tracking error, | AP*| is the contour error, and 6 is
the angle between the X and Y axes.

Based on the trigonometric relationship, the contour error
equations are reported below:

& = Eycosf — E sinf D
C, = sinf 2)
Cy = cost 3)

where Cy and Cy are the coupling coefficients in the cross-
coupling control. Then the Eq.(1) can be written as follows:

& = —Cyey + Cyey “4)

y & :Contour error

E :Tracking error
Desired trajectory

Ey

P* Ex

\

(4]

FIGURE 1. Contour error model.

IIl. NORM-OPTIMAL TIME-VARYING CROSS-COUPLING
ITERATIVE LEARNING CONTROL
A. NORM OPTIMAL CROSS-COUPLED ITERATIVE
LEARNING CONTROL
The norm optimal iterative learning controller [19], [20]
applies norm optimization and iterative learning to the multi-
axis motion control. Iterative learning control can lead to an
improved tracking performance in system with a repetitive
motion because the previous cycle control signal Uj_; and
the previous error signal E; | are used to form the current
control signal Uj. The block diagram of iterative learning
control system is shown in Figure 2. In the figure, Xr and Yr
are input signals of X and Y axes, and Xj and Yj are output
signals of X and Y axes

The norm optimal iterative learning controller is derived
from the quadratic optimal problem. The quadratic perfor-
mance objective function to evaluate the expected trajectory
can be expressed as per Eq. (5):

7= Jepsllg + N5 + 1 = wl
= ¢, 10¢j41 + ul Sujr + (i1 — u)" Rlujyr — up)

&)
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FIGURE 2. Iterative learning control block diagram.

where, |lej11 ||2Q is the norm of error signal, ||uj11 ||§ is the
norm of control signal, and ||u;j11 —u; ||12e is the norm of control
signal change rate. (Q, S, R) are respectively the error signal,
the weight matrix of the control signal and the control signal
change rate. They are all positive definite symmetric matrices
whose general form is.

(Q.S.R) = (gl sI. rI) 6)
The norm iterative learning control is usually expressed as:
U1 = Latj + Lee; ™

where, L, and L, is the optimal learning gain matrix. P is the
system matrix.

L, = (PTQP+S +R)7l (PTQP+R> ®)
~1
L, = (PTQP+S +R) PTO ©)

B. NORM-OPTIMAL TIME-VARYING CROSS-COUPLING
ITERATIVE LEARNING CONTROL

The norm optimization iterative learning control is based on
state space in a discrete form. In order to minimize the large
error of contour trajectory caused by trajectory and external
disturbance, the concept of weight matrix is introduced. The
design of the weight matrix aims at combining the optimal
iterative learning control with the contour error calculation
model for the dynamic adjustment of uniaxial tracking and
multi-axial coupling between multi-axis motions.

Xj

Xr B
—» + Ei Position | + State S e
L controller space o L"»
- +
Ej-1 .
Storage d P Uj
module -
Uj-1

FIGURE 3. Block diagram of norm cross-coupling time-varying iterative
learning control.

In order to design a control method that meets the norm
optimal iterative learning control requirements, the quadratic
performance objective function J is introduced to evaluate the
tracking of multi-axis contour trajectory, and its expression is
shown in Eq. (10):

J=el | OVejr1 +uy S ujr1 + Aujy R¥ Aujyy - (10)
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where, (Q",S"™,R") are respectively the time-varying
weight matrix of contour error signal, control signal and con-
trol signal change rate respectively. They are all symmetric
positive definite matrices, and their general form is reported
in Egs. (11-13):

0" =3 -[I1g+T2 - CfCo] (11)
A

sv=3". r15+rzs-c§cs] (12)
|

R =Y. F1R+F2R-C,€CR] (13)
|

C(-) matrix represents the coupling relationship between
signals in MIMO system. Cgp is the coupling coefficient
matrix defining contour error in multi-axis system; Cs is
the coupling coefficient matrix defining control signal in
multi-axis system; and Cg is the coupling coefficient matrix
defining control signal change rate in multi-axis system;
I'lp matrix and I'2p are the weight coefficients applying
to uniaxial tracking error signal and coupling error signal
respectively. I'lg and I'2g are weight coefficients applied to
uniaxial tracking control signal and coupling control signal
respectively. I' 1z and "2 are the weight coefficients applied
to the change rate of uniaxial tracking control signal and
coupling control signal respectively.

According to the contour error modeling method reported
in Eq. (4), the contour error can be expressed as ¢ = C,Ey —
CE;, or in the matrix form as per Eq. (14):

e(k)=C(k)e(k) (14)

where, C(k) is the coupling gain coefficient of contour error,
which can be expressed as:

C(k) = [ =Cx(k) Cy(k) ] 15)
Eq. (14) can be replaced into Eq. (10) yielding Eq. (16):
J = ejT_H (F2QCTC + I"IQI) ej1| + ujTHSujH
+Aul RAu 1 (16)
where, the multi-axis coupling weight matrix is as follows:
crToyco --- 0
c'c = : . :
6 CT(N—15C(N—1)
a7)

From the expression of the contour error gain coefficient,
it is possible to write:

cx (k) cx (k) —cx (k) Cy (k)j| (18)

—cy (k) ex (k) ey (k) cy (k)
Matrices I'1g and I'2¢ take the form of (19) and (20), as

shown at the bottom of the next page, where they are diagonal

matrices for a 2-dof system. where, I'l () + I'2(,) = I,Gain
() (k) determines the weight of uniaxial or contour tracking.

cT (k)C(k):[
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When y(y (k) = 1, the whole system focus on uniaxial
tracking, while when y, (k) = 0, the whole system focus
on contour tracking.

Gain weight matrix Z(,) determines the overall weight of
system error signal, control signal and control signal change
variable. When the motion type is switched, the position will
have a big mutation. Then the design of gain weight matrix
is applied to reduce the error caused by the movement path
switching. For a 2-axis system, the general form of Z(,) is
shown in formula (21).

[%) (1 }
o (1)

) 0 . o) (N) 0
0 a() (N)

(21)
Equation (11), (12) and (13) are substituted into the objec-

tive function, and the optimality condition %gi’ﬁ = Ocanbe
7
used to get:
(77077 + 5™ + RV wjs = [T Q"7 + R” | uj+77 @,
(22)

Then, the optimal iterative learning formula of time-
varying multiaxial coupling can be obtained from formula
(22).

(23)
-1
thtv — (PTQtVP+StV +Rtv) (PTQWP‘FRW) (24)

_ gyt v,
uiy1 = L, uj+ L, ¢

LY = (PTQWP+SIV +Rtv> lPTQtv (25)
C. PERFORMANCE EVALUATION

Convergence is a necessary condition for iterative learning
control algorithm. Given the ILC controller and the system
dynamics y; = Pu; (with yg = 0, d; = 0), the trial domain
dynamics is ujr1 = (Ly — L.P) uj + L.y,. For linear time-
invariant systems, general control systems are asymptotically
stable, so the convergence condition must be satisfied:

Based on Eq. (9) and Eq. (10), it is possible to write:
L,~L.P = (PTQ"P +S" + R")™' R".Since (0", S™, R")
is symmetric positive semi-definite, PT Q"P + S™ + R" is
positive definite, the spectral radius of L, — L.P is less than
1. Therefore, the system convergence is achieved [21].

Robustness is an index to measure the ability of a control
system to keep a performance unchanged under uncertain dis-
turbance, and it is the key to judge whether the designed con-
trol system can be applied in practice. In general, the actual
control system P; is composed of the nominal model P and
the uncertainty Ap, namely P; P (I + Ap). with the
multiplicative uncertainty Ap = WA and ||A|, < 1.

Therefore, the robust convergence condition of the actual
control system can be expressed as:

ILy — LePrllp < 1
= mAaX H(PTQIVP+SIV+RIV)—1(RIV_PTQWPWA)

<1
i2

(27)
Consider (27) with ||R|| = 0. Then a sufficient condition

for robust convergence is given by

(PTQ’VP i va)*l PTO"PWA| <1.  (28)

i2

with PTQ"P + S" a symmetric positive definite matrix.

PTQVP + 8" = XY X! with X a unitary matrix and ¥

diagonal and of full rank with diagonal elements A;.
Furthermore, with N £ (X=X")"'PTQ"PW and

IXEXD)"IPTOVPW | £ ¥ < 1 wehave [N||p =y < 1.

Therefore:

mAaX ”(PTQZ‘VP + S[V + RIV)*l(Rl‘V _ PTQIVPWA)”Q

—1
< max (XEXT + rl) (rI + XEXTNA>

i2

IA

max ”(2 ! (rXT + EXTNA)

i2

IA

H(z ) (T +yE) HQ

yritr
= max
i Ai+r

<1,VreR>0 29)

Therefore, the parameter R" = rl would not affect the

1Ly — LePrlln < 1 (26) robust convergence of the system. The parameter S should
[ v (D ] 0
[ vey (1)
0 [m ~N) 0 }
L 0 Yy (N)
[ L=y M) } 0
1=y (D)
2. = (20)
0 [ 1 -y (N) 0 }
| 0 1-— YY) (N)
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be designed to meet the condition of robust convergence in
Eq. (28). Similar statements and conlusions are also provided
in the research conducted by Donkers et al. [22].
The steady state error ey, is indicated as below:
egs 2 lim ¢; £ e (30)
]—)OO
The steady state error is derived from the steady state com-
mand signal u;:

gy 2 Hm 2 wineo = (I — Ly + LP) 'Ly, (1)
Jj—>00

With ex, =y — Puoo — dj, the steady state error is given
by,

eoo =1 = P(P'Q"P+ 5™)7'P "Iy,
T v tv =1 p! Aty
+ [ 4+PP Q"P+S" +2R)7IP QV1d;  (32)

According to formula (32), the external random distur-
bance signal d; will cause continuous fluctuations in the stable
error of the system. In addition, increasing the value of ||R||;»
will reduce the influence of d; on the steady-state error.

D. WEIGHT MATRIX DESIGN

In the norm optimal iterative learning control, the design
of the weight matrix plays a significant role since it affects
the convergence, robustness and control performance of the
algorithms. There is no fixed theoretical method for adjusting
the parameters of the weight matrix, therefore the selection
needs to be determined through an iterative debugging prior
to a practical application.

In order to avoid the instability of the actual system and
the influence of the control performance of the algorithm,
the first step is to analyze the performance of the algorithm
and identify the appropriate parameter debugging method
based on practical experience. This paper summarizes the
design method of a set of weight matrices:

1) Design of the weight matrix Q: The weight matrix Q is
related to the expected error weight. In the design of time-
varying matrix Q, the coupling condition and contour error
e of the system should be determined firstly, then the gain
matrix 'l g and I"2¢ of single or multi axis motion should be
allocated according to the contour track, then it is necessary
to determine the weight of control signal error in the overall
system performance. The design is completed upon the suc-
cessful performance. Alternatively, repeat if the performance
evaluation is not satisfied. A flow chart for the design of time-
varying weight matrix Q is shown in Figure 4. In general,
the single-axis tracking error decreases as Q increases.

2) Design of the weight matrix S: It is noted that the
design of the parameters has a close relationship with the
system model. However, the control system has difficulty in
recognize its model in practices. Thus, S must be designed
such that the system is robustly monotonically convergent.
Start with an S yielding ||S|;» =~ 0.01 ||P]|;»-

3) Design of the weight matrix R: in case of an external
random disturbance in the control system, the steady-state
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Determine the overall error
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evaluation

¢ satisfied
finish

unsatisfied

FIGURE 4. Time-varying weighting matrix design block diagram.

error of the system would fluctuate. Therefore, when adjust-
ing the weight matrix R, it is necessary to start from R = 0 and
gradually increase the value of R until the steady-state error of
the system fluctuates within the expected range (or until the
root mean square error RMS of the system stop increasing).

4) Repeating the process: If the performance process of
the optimal iterative learning control cannot meet the design
requirements, the system identification needs to be reestab-
lished. Therefore, the theoretical model established by the
system is closer to the actual system while the influence
of the model uncertainty is reduced. Steps 1)-3) would be
repeated until the designed weight matrix meets the desired
performance requirements and converges within the required
number of iterations.

Weight matrix design steps 1)-4) provide a general method
to design a standard optimal learning controller.

IV. SIMULATION AND EXPERIMENT

In order to verify the feasibility of the time-variant norm
iterative learning-cross coupling control method, the time-
variant and time-invariant weights of arc linear trajectories
are simulated. In addition, the contour errors are compared
by time-variant and time-invariant trajectory simulations and
experiments.

The experimental equipment used in this research includes
three units in Figure 5: upper machine, under machine and
motion control platform.

The upper computer integrates the hardware and software
systems, including a PC and LabVIEW. It establishes a local
area network communicate with the lower computer and
based on TCP/IP protocol. The lower unit computer integrates
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Upper machine:
Pc+labview2013

LalMEW

¢ ?Ethernet :TCP/IP protocol

Under machine:CompactRio 9082

. g —
" Motion control | |==“"@  Motion control
board card board card
NI9516 NI9516
= Motion output/ L= Motion output/
— acquisition . acquisition
X position Y position*
[

——— - = ~
‘ f‘ X axis grating

Driver

Ylaxis grating

I

i -axis motor ‘ 78

FIGURE 5. Experimental control platform.

the CompactRio 9082 rapid prototype control hardware pro-
duced by national instruments (NI) and the NI9516 motion
control board card. The motion control platform is an x-y
working platform composed of the servo motor and the-lead
screw guide rail(5mm). Two permanent magnet synchronous
motors with different parameters are used in this experimental
work. Specifically, the X-axis is driven by Mitsubishi’s MR-
JE-10A series driver and HF-KN13J-S100 servo motor while
the Y-axis is driven by Panasonic MSDA-023A1A series
driver and MSMAO022A1C servo motor. The position infor-
mation is collected by closed grating ruler with a resolution
of Sum.

A. MATLAB/SIMULINK SIMULATION RESULTS

The first step is to develop the system model and compute
its state space. The model identification is performed on
the controlled objects (i.e. the driver, the motor and the NI
motion platform) to obtain input and output signals collected
by NI9516 control board card. Combined with system iden-
tification tools in MATLAB toolbox, the state matrix of the
controlled object on X axis and Y axis can be obtained as
follows:

A — 1 0.00108 _ | -0.00001432
7 1-0.0214 0.8394 T 0.01778
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C: =[97.720.03964] D, =[0]

A — [ 1 -0.0009441] B — [0.0009379]
Y -0.01842  -0.9989 y -0.8658
Cy = [77.45 -0.002833] D, = [0]

In the simulation experiment of circular linear trajectory
motion, the simulation time and the sampling period are
set to be 4s and 1ms, respectively. Then the parameters are
adjusted, i.e. control signal coefficient s=0.01 and control
signal change coefficient r=0.02. In order to facilitate analy-
sis, STV and RTV are set to be sl and r1, respectively. In addi-
tion, the X-axis and Y-axis position controller proportional
coefficients are 35 and 30, respectively.

The time-varying trajectory strategy used in this paper is
shown in Figure 6. Two trajectory tracking strategies are
marked in the figure, where t1-t2 and t3-t4 represent uni-
axial independent tracking segments. Additionally, for the
axes coordinate motions, t2-t3 and t4-t1 segments adopt the
principle of contour tracking control. In order to reduce the
influence of the arc and the line switching, the overall weight
of the error is shown in Figure 7, where tl, t2, t3, and t4
represent the turning points of the arc and the straight lines.

Single axis tracking
.

Multi-axis tracking
Sunjoen SIxe-nN

Single axis tracking

FIGURE 6. Time-varying trajectory assignment strategy.

After 21 iterations, the time-varying and time-invariant
arc linear simulation motion track is shown in Figure 8. It
demonstrates the contour track after the convergence of two
kinds of contour errors. In Figure 9 (a, b) show partially
enlarged views of the two parts indicated as a and b in Fig-
ure 8, respectively. It can be noticed that compared to the
time-invariant norm optimal cross-coupling Iterative learning
control, the contour trajectory after convergence in the time-
variant norm optimal cross-coupling iterative learning control
is closer and smoother than the command contour trajectory.

The simulation diagram of the relationship between RMS
contour error and iteration times of time-varying and time-
invariant control is shown in Figure 10. It shows that the
state RMS contour error can be steady over 5 times iteration,
which demonstrates that the control system can converge
quickly. Therefore, compared with the traditional method,
the time-varying cross-coupling iterative learning control
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t1 t2 t3 t4

N N N N
o a o a

Overall weight of error o

[¢)]

0 1000 2000 3000 4000

Sample number

FIGURE 7. Overall weight of error o.

Theory
2.5( Time-invariant
Time-varying
ot
g
g
=
2
= 15[
2
é |
N 1
0.5]
of
-1 0 1 2

X-axis position/mm

FIGURE 8. Time-varying and time-invariant arc linear motion trajectory
(simulation).

method based on the optimal norm has better tracking per-
formance.

TABLE 1. Simulation diagram of time-varying and time-invariant RMS
errors (um).

Control method X axis RMS Y axis RMS RMi;g;ltour
Time-invariant 4.71 4.21 1.62
Time-varying 1.03 1.25 0.64

In the motion simulation, the error values of the two
different control methods are shown in Table 1. The RMS
error values of the time-invariant norm iterative learning
control and the time-varying norm iterative learning control
in the uniaxial tracking error and the contour error con-
vergence are listed. According to Table 1, compared with
the time-invariant control method, the X-axis error, Y-axis
error and contour error of the time-varying control method
were reduced by 78.01%, 70.24% and 60.49%, respectively.
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x 107
| Theory |
15 Time-invariant
é Time-varying
E
= 10
g
> 5/
o
1.08 1.085 1.09 1095 1.1 1.105
X-axis position/mm
(a)
2.015] Theory
| Time-invariant |
2.01 . .
Time-varying
E 2,005
E
£ 2 \
z \
-% 1.995
” 1.99]
1.985]
1.98"

103 104 1.05 1.06 1.07 1.08

X-axis position/mm

(b)
FIGURE 9. Local enlarged view of two parts of arc linear contour track a
and b (simulation).

— — — Time invariant
Time-varying

RMS contour error/um

5 10 15 20
Iterations
FIGURE 10. Relationship between RMS contour error and iteration
number of time-varying and time-invariant control (simulation).

Compared with the time-invariant norm cross-coupling itera-
tive learning control method, the time-varying norm cross-
coupling iterative learning control method has significant
advantages in improving contour control accuracy.
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In order to analyze the effect of sampling period on control
performance, the comparative simulation experiments were
carried out whose sampling periods are set to be 10ms,
Sms and 1ms, respectively. Based on the results presented
in Figure 11 and Figure 12, the smaller the sampling period
is, the better tracking performance is achieved. Moreover,
the benefit of reducing sampling period from 5Sms to 1ms
is less than reducing sampling period from 10ms to 5ms.
In addition, the reduction of the sampling period increases
the amount of computation, the memory sources, and the
requirements on the controller. Therefore, there is a trade-off
between resource consumption and tracking performance in
selecting the sampling period.

25 Ref
b 10ms
2r Sms
E = = = |ms
£ 15[
2
a,
S "
>
0.5]
a
(o)
-1 0 1 2 3

X-axis position/mm

FIGURE 11. Simulation trajectory of 1ms, 5ms and 10ms(simulation).

B. EXPERIMENT
The parameter setting method of the arc linear experiment can
refer to the parameter setting of the simulated contour trajec-
tory. In the experiment of circular linear trajectory motion,
the experiment time is set to be 16s. Due to the size limit of
the controller memory, the sampling period is set to be Sms.

Then the parameters are adjusted. The control signal coef-
ficient and control signal change coefficient are set to be
$s=0.01, r=0.02. In order to facilitate analysis, the STV and
RTV are set to be sI and r1, respectively. The X-axis and Y-axis
position controller proportional coefficients kx and ky are 30.

The motion trajectory of the time-invariant and time-
invariant arc straight line experiment is shown in Figure 13.
It shows the contour trajectory of the experiment after the
convergence of the two kinds of contour errors by the time-
invariant and time-invariant norm optimal cross-coupling
iterative learning control. In Figure 14, a and b are the
local enlarged pictures of part a and part b in Figure 13,
respectively. Compared with the time-invariant norm opti-
mal cross-coupled iterative learning control, the converged
contour trajectory is also closer to the instruction contour
trajectory.

The experimental diagram of the relationship between
RMS contour error and iteration times of time-varying and
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FIGURE 12. Partial enlargement of parts a and b (simulation).
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FIGURE 13. Time-varying and time-invariant arc linear motion trajectory
(experiment).

time-invariant control is shown in Figure 14. After iteration,
the RMS contour error of time-varying control method is
stable at about 13m, and the RMS contour error of time-
invariant control method is stable at about 5pum. After 4 times
iteration, the system converges to a steady state value, and
the RMS contour error of the time-varying control method
is significantly less than that of the time-invariant control
method.
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FIGURE 14. Local enlarged view of two parts of arc linear contour track a
and b (experiment).
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FIGURE 15. Relationship between RMS contour error and iteration
number of time-varying and time-invariant control (experiment).

TABLE 2. The time-varying and time-invariant rms error table with a
control period of 5ms (um).

RMS contour

Control method X axis RMS Y axis RMS error
Time-invariant 34.63 31.67 13.18
Time-varying 16.34 13.25 5.21

In addition, the track tracking performance of time-varying
control method is significantly improved (see Figure 14 and
Figurel5). In the trajectory movement experiment, the error
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TABLE 3. The time-varying rms error table with control cycles of 10ms
and 5ms (um).

Control period X axis RMS X axis RMS RMzrcrg?tour
10ms 32.75 20.68 9.33
5ms 16.34 13.25 5.21

values of the two different control methods are shown
in Table 2. Compared with the time-invariant control method,
the X-axis error, Y-axis error and contour error of the time-
varying control method are reduced by 52.82%, 58.16% and
60.47%, respectively.

50
— — — 10ms
Sms

w B
(=] (=]

N
o

RMS contour error/um

10

0 10 20 30
Iterations

FIGURE 16. Comparison of time-varying RMS errors with control periods
of 10ms and 5ms (experiment).

The results of time-varying algorithms under different
sample periods are demonstrated in Table 3 and Figure 16.
It is identified that EMS errors would become stable after
5 iterations in the sampling periods of 10ms and Sms. In addi-
tion, compared to the results in sample period of 10ms,
the errors in X-axis, Y-axis and EMS contour error in sam-
pling period of 5ms were reduced by 54.88%, 64.72% and
49.89%, respectively.

Simulation and experimental results indicate that the time-
varying norm optimal cross-coupling iterative learning con-
trol method proposed in this paper can effectively reduce the
multi-axis contour tracking error and significantly improve
the precision of contour control.

V. CONCLUSION

In this paper, a time-varying norm based iterative learning
control method has been proposed. In addition, the conver-
gence, stability conditions and time-varying weights of the
controller are provided. Compared with the time-invariant
control method, the proposed method reduces the x-axis
error, y-axis error, and contour error by 78.01%, 70.24%
and 60.49% respectively in simulation, and decreases by
52.82%, 58.16% and 60.47% in experiments. The results
indicate that the time-varying control method proposed can

VOLUME 8, 2020



W. Xu et al.: Multi-Axis Motion Control Based on Time-Varying Norm Optimal Cross-Coupled Iterative Learning

IEEE Access

effectively reduce the single-axis tracking error of the system,
increase the compatibility between the axes, and significantly
reduce the contour error of the moving system. The paper
also provides the four-step tuning guidelines for the decision-
making of the controller coefficients for specific tracking
improvements.

Future research would focus on the optimization of the
algorithm, i.e. reduce the complexity of the computation and
lower the requirements on controller performance. In addi-
tion, the approach proposed in this research can be adjust and
applied in coordinated control of multi-axis systems.
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