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ABSTRACT Using self-mixing interferometry (SMI) with a periodical modulated injection current, high
resolution displacement sensing can be achieved by retrieving the initial phase of an SMI signal at each
modulation period. However, the existing initial-phase-based detection methods can only obtain a single
point measurement of displacement within each single modulation period. Thus, they are only effective
when the target is subject to slow movement, or the injection current is modulated by a signal of very
high frequency, which are not practical in many applications. In this work, a new method is proposed
to tackle the problem. Firstly, a reference signal is obtained by setting the target still. Then Fast Fourier
Transform and its inverse (FFT/IFFT) are applied to the reference signal and the SMI signal, leading to
a formulation to obtain the SMI signal phase, which enables the SMI system to retrieve the time varying
displacement in eachmodulation period. As the proposedmethod is able to measure displacement at multiple
discrete time instances (dependent on the number of samples for FFT), the measurement resolution is
significantly improved over existing method. Hence, the measurement capability of the SMI system is
enhanced greatly. Both simulation and experiments are conducted and the results are presented to verify
the proposed algorithm.

INDEX TERMS Displacement measurement, semiconductor lasers, laser diode, self-mixing interferometry,
fast Fourier transform, time-frequency analysis.

I. INTRODUCTION
When a fraction of external optical feedback re-enters the
cavity of a laser diode (LD), the laser intensity and optical
frequency will alter. Such a laser diode system is often
called as self-mixing interferometry (SMI), the modulated
laser intensity is called an SMI signal. As a promising
noncontact sensing technology, SMI has attracted much
attention of researchers in recent decades due to its low
cost in implementation, and ease in optical alignment.
Various SMI-based sensing applications have been reported,
including the measurement of displacement, velocity, vibra-
tion, laser related parameters, thickness, mechanical reso-
nance [1]–[7], etc. Recently, SMI-based sensing has been
extended for imaging, material parameter measurement,
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near-field microscopy, chaotic radar, acoustic detection,
biomedical applications [8]–[12], etc.

Displacement measurement is one of the important
applications of SMI-based sensing. A typical SMI-based
displacement measurement system contains just an LD, a lens
and a target to be measured. In a class of SMI-based
displacement measurements, the LD is set with a constant
bias injection current. For example, in 1995, Donati, et al.
firstly developed a fringe counting method based on the
fact that each fringe on an SMI waveform corresponds to a
half-wavelength (λ/2) displacement of a moving target [13].
This sensing system can measure displacement with a maxi-
mum dynamic range of 1.2 m. The work in [13] was further
improved to enhance measurement resolution by Merlo and
Donati in 1997 [14]. The work in [14] implemented a phase
unwrapping algorithm to reconstruct displacement from an
SMI signal and achieved the measurement with the order
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of λ/13.5. However, the reconstruction algorithm can only
work for a weak feedback level where each fringe of an SMI
signal has approximately a sinusoidal shape. When an LD
receives moderated optical feedback, the fringes will change
to saw-tooth-like shape. In 1998, Servagent, et al. proposed
to perform linear interpolation within each fringe to obtain
displacement by using the saw-tooth feature of such SMI
signals [15]. The results showed that the proposed method
can achieve a measurement resolution of λ/12. However,
the linear interpolation has an error as the fringe shape at
moderate level is not a saw-tooth strictly. In 2005 and 2006,
Plantier, et al. [16] and Bes, et al. [17] presented a new
displacement reconstruction algorithm suitable for moderate
feedback level. In 2011, Fan, et al. [18] further improved
the work in [16], [17] by fully considering the fringe
shape at different feedback levels. This class of SMI-based
displacement is suitable for a displacement larger than λ/2.

Another class of SMI-based displacement measurement
method introduces a modulation to the SMI system through
LD injection current or external cavity. This class can mea-
sure a displacement with high measurement resolution and
the displacement can be less than λ/2. For example, in 1989,
Suzuki, et al. reported to modulate the injection current
with a sinusoidal waveform [19]. At each zero-crossing
point of the modulation, the phase of the SMI signal
can be detected. Thus, displacement measurements between
two zero-crossing points can be obtained in a modulation
period. The non-linearity of sinusoidal modulation may
cause unexpected measurement error. In 1995, Kato, et al.
used triangular/saw-tooth injection current into the SMI
system [20]. The SMI system can generate a pulse train
due to target displacement. The displacement is measured by
detecting the phase shift for the pulse train between adjacent
modulation periods with a resolution of 25 nm. In 1999,
Suzuki, et al. also implemented displacement measurement
with a triangular modulated injection current [21]. With
phase-locked technique, the initial phase of the laser intensity
signal correlated to the displacement can be obtained by
measuring the feedback control current to the LD. The
resolution is related to the modulation frequency of the
feedback control system. In 2001, Ming Wang presented a
system with a saw-tooth injection current [22]. By applying
Fast Fourier transform (FFT) on an SMI signal at each
modulation period, they can calculate the initial phase and
thus the displacement. They claimed that the method can
reached a precision of λ/50.

In the latter class of modulation-based displacement
sensing systems reviewed above [20]–[22], displacement is
obtained by detecting the initial phase of an SMI related
signal at each modulation period. Thus, only one measure-
ment point can be obtained within a modulation period.
Hence, the measurement resolution is largely limited by the
modulation frequency of the injection current. In addition,
to acquire more accurate phase detection, the signal within
a modulation period should contain many fringes. This will
require a long initial distance between the LD and the target

and high modulation magnitude. To relax these restrictions,
in this paper, we propose a newmethod, where the phase of an
SMI signal caused by displacement within each modulation
period is considered to be time varying. A measurement
formula is derived for calculating displacement by means
of Fourier transform on the observed SMI signal [23], [24].
This time-frequency analysis method can measure the
displacement for multiple points within a modulation period,
hence improving the sensing performance.

The paper is organized as follows. In Section II, we intro-
duce the basic principle of the FFT-based initial phasemethod
for displacement measurement, and then the proposed
algorithm is presented. In Section III, we present the details
of simulations and experiments to test the performance of the
proposed technique. Section IV concludes the paper.

II. A NEW ALGORITHM FOR SMI-BASED DISPLACEMENT
SENSING
A. BACKGROUND THEORY
The SMI-based displacement measurement with modulated
injection current is depicted in Fig. 1. The FFT-based
algorithm for retrieving the initial phase of an SMI signal with
weak feedback is summarized as below [22].

FIGURE 1. SMI-based displacement measurement with modulated
injection current.

The laser intensity captured by the photodiode (PD)
package at the rear of the LD is denoted as I (t), expressed
as:

I (t) = A(t)+ B cos8(t), (1)

where A(t) is the linearly modulated output intensity without
feedback, which corresponds to the injection current. In other
words, when the waveform of injection current is given, A(t)
can be considered as known. Also, as A(t) has nothing to
do with the external optical feedback of the laser, it can be
subtracted from (1) when the SMI signal is analyzed. B is the
undulation coefficient. 8(t) is the time varying light phase
in the external cavity and B cos8(t) is the conventional SMI
signal for processing.

The phase 8(t) is determined by both the laser frequency
υ0 + γ t and the external cavity length L0 + d(t), expressed
as:

8(t) = 4π
υ0 + γ t

c
(L0 + d(t))

= 4π
γ t
c
L0+4π

υ0

c
L0+4π

υ0

c
d(t)+4π

γ t
c
d(t), (2)
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where υ0 is the initial laser frequency, γ is the modulating
efficient corresponding to optical frequency change, which
can be regarded as a constant when the modulation frequency
remains below tens of MHz [25], L0 is the initial external
cavity length, d(t) is the displacement of target and c is
the speed of light. To simplify (2), we introduce the carrier
frequency fc = 2γL0/c. We also denote the constant part
of phase by φ0 = 4πυ0L0/c. φ(t) = 4πυ0d(t)/c and it
is the phase correlated to the displacement d(t). The term
4πγ td(t)/c can be neglected as it is very small compared to
other terms in (2). Thus, (2) can be re-written as:

8(t) ≈ 2π fct + φ0 + φ(t). (3)

When the target moves very slowly, the displacement
d(t) can be considered as constant within each modulation
period T of the injection current. We can obtain φ(t) by
applying FFT on signal B cos8(t) to get the phase of
fringe signal, and thus the displacement d(t). Obviously,
the resolution associated with this method is limited by the
modulation frequency of the injection current, as only a
single measurement point can be obtained for d(t) within
each modulation period T . In other words, for measurement
of a high-speed moving target, the injection current must
be modulated by a high frequency signal, this is limited by
the speed of LD’s response. When the modulation frequency
exceeds several tens of kilohertz, delay in the response of LD
to current modulation will become significant, leading to the
period of modulation unequal. Non-linearity in modulation
waveform will also be remarkable and can cause large
measurement error. To solve these problems, d(t) should
not be considered as a constant within each modulation
period, and instead, it is time varying. We will develop a new
algorithm for retrieving this time varying initial phase.

B. THE PROPOSED NEW ALGORITHM
As mentioned above, A(t) in (1) is only dependent on the
injection current, which can be considered as known and
hence can be subtracted from (1). In the case of fixed
target and modulated injection current, after subtracting A(t),
the laser intensity will be sinusoidal, which is called as the
reference signal and denoted as:

I0(t) = B0 cos(2π fct + φ0). (4)

Similarly, for the case of moving target with modulated
injection current, the laser intensity after subtracting A(t) is
called as the SMI signal and can be expressed as:

I1(t) = B1 cos(2π fct + φ0 + φ(t)), (5)

where B0, B1 are the undulation coefficients determined by
fixed and moving target respectively.

In order to obtain φ(t) from (4) and (5), we firstly sample
the two signals at speed higher than the Nyquist rate (i.e.,
twice of the highest frequency component contained by the
two signals), and within one modulation period, we have

N samples, given by:

I0(nTs) = B0 cos(
2π fc
Fs

n+ φ0), (6)

and

I1(nTs) = B1 cos(
2π fc
Fs

n+ φ0 + φ(nTs)), (7)

where Ts and Fs are the sampling interval and frequency
respectively. By applying Euler’s expansion and FFT on (6),
we have:
_

I 0(k) = F(I0(nTs))

= F(
B0
2
(ej(2π fcTsn+φ0)))+ F(

B0
2
(e−j(2π fcTsn+φ0))),

(8)

where F(·) denotes the FFT operation. Equation (8) will yield
N samples in the frequency domain. Due to the nature of
the complex exponential, we can assume that there is no
overlap between the contributions of the two terms on the
right hand-side of (8) as the FFT results in the frequency
domain. By setting an even number, the first half of theN FFT
samples correspond to the first term of the right hand side of
(8), and the second half of the N FFT samples correspond
to the second term of the right hand side of (8). Therefore,
by setting the following:

_

I 0,a(k) =

{
_

I 0(k) for k = 1, 2, . . . ,N/2
0 for k = N/2+ 1, . . . ,N

(9)

we have
_

I 0,a(k) = F(
B0
2
(ej(2π fcTsn+φ0))). (10)

Hence by applying the inverse FFT on (10) we have

B0
2
(ej(2π fcTsn+φ0)) = F−1

{
_

I 0,a(k)
}
. (11)

Similarly, we can apply FFT to (7), yielding:
_

I 1,a(k) = F(I1(nTs))

= F(
B1
2
(ej(2π fcTsn+φ0+φ(nTs)))

+F(
B1
2
(e−j(2π fcTsn+φ0+φ(nTs)))). (12)

Assuming that there is no overlap between the contribution
of the two terms to the FFT results in the frequency domain,
the first term on the right hand side of (12) will correspond to
the firstN/2 samples in the frequency domain, and the second
half corresponds to the remaining N/2 frequency samples.
Hence, we can set the following:

_

I 1,a(k) =

{
_

I 1(k) for k = 1, 2, . . . ,N/2
0 for k = N/2+ 1, . . . ,N

(13)

and
_

I 1,a(k) = F(
B1
2
(ej(2π fcTsn+φ0+φ(nTs)))). (14)
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Note that (14) only holds if there is no overlap between
F(B12 (e

j(2π fcTsn+φ0+φ(nTs)))) and F(B12 (e
−j(2π fcTsn+φ0+φ(nTs))))

in the frequency domain. Given ej(2π fcTsn+φ0+φ(nTs)) a com-
plex exponential signal with its phase modulated by φ(nTs),
its frequency spectrum will exhibits a band-pass surround the
carrier frequency fc, and the bandwidth depends on the rate
of variance of φ(nTs). Hence, when φ(t) varies significantly
slower than the carrier frequency fc, we can apply the inverse
FFT on (14) to yield the following:

B1
2
(ej(2π fcTsn+φ0+φ(nTs))) = F−1

{
_

I 1,a(k)
}
. (15)

Now we are able to detect the phase by considering the
product of (15) and the complex conjugate of (11):

B0B1
4

ejφ(nTs) = F−1
{
_

I 1,a(k)
} [
F−1

{
_

I 0,a(k)
}]∗

, (16)

Therefore we have:

φ(nTs) = arctan
Im
[
F−1

{
_

I 1,a(k)
} [
F−1

{
_

I 0,a(k)
}]∗]

Re
[
F−1

{
_

I 1,a(k)
} [
F−1

{
_

I 0,a(k)
}]∗] .

(17)

Equation (17) is the formula to determine the phase
correlated to the target displacement. As φ(t) = 4πυ0d(t)/c,
we can retrieve the time varying displacement dr (t). It can
be seen that for the number of samples we have for
I1(t), the same number of phase points (thus displacement)
can be obtained through (17). In addition, the undulation
coefficients B0 and B1 do not affect the phase measurement
in theory. Comparing to the existing techniques using initial
phase detection, where only a single measurement point for
displacement can be obtained, the proposed algorithm is able
to obtain N points of displacement within each modulation
period, and then is suitable for measurement of moving
targets.

III. VERIFICATION OF THE PROPOSED METHOD
A. SIMULATION TEST
In order to test the performance of the proposed method,
we conducted computer simulations on the case where
injection current is modulated by a triangular waveform with
a modulation period T1. The modulation component A(t)
in (1) can be expressed as:

A(t)

=


A0 + 2A1t/T1, t ∈ (nT1,

2n+ 1
2

T1)

A0 + 2A1(1− t/T1), t ∈ (
2n+ 1

2
T1, (n+ 1)T1)

(18)

where A0 is correlated to the DC offset and set as−50 mV in
the simulation, A1 is the peak-peak value and n is an integer.
In the simulations we set A1 = 100 mV, T1 = 0.01

s (i.e., F1 = 100 Hz), undulation coefficients B0 = 5 mV,

B1 = 6 mV, carrier frequency fc = 1100 Hz, initial
external cavity length L0 = 15.5 cm, laser wavelength
λ = c/υ0 = 830 nm. In this case, term 4πγ td(t)/c
in (2) is only 4.46∗10−4 rad and its influence can be
neglected.

It should be pointed out that FFT should be carefully
applied to each of the data blocks. Firstly, sample frequency
must be integer multiple of the frequency of the injection
current, i.e., Fs/F1 must be a positive integer. Spectral
leakage will occur if this condition does not met. Secondly,
the sample frequency must be higher than the Nyquist rate
(i.e., twice of the highest frequency component). For the sake
of simplicity, we only considered that number of samples is
the power of 2, which is required by original FFT algorithm.
When the number of samples is not the power of 2, we can
pad zero-valued samples to make the total number of samples
to be the power of 2 so that FFT can be applied. For the
simulations, we choose 512-point FFT applying to half period
of the modulation signal, and hence the sampling frequency
should be Fs = 102.4 kHz. As the sampling frequency is
about 100 times higher than the carrier frequency, the Nyquist
condition should be met for both the reference signal and the
SMI signal.

To verify the proposed algorithm, the main procedure of
the simulation test is summarized as below:

1) Using (4) and (5) to generate the signals I0(t) and I1(t).
2) Obtaining 512 discrete samples by sampling I0(t) and

I1(t) over a rising or falling part of T1/2, as shown
by (6) and (7). Applying 512-point FFT on the two
discrete sequences I0(nTs) and I1(nTs), as shown by (8)
and (12).

3) Using (9) and (13) to obtain
_

I 0,a(k) and
_

I 1,a(k).
4) Using (17) to yield φ(nTs) in each rising and falling

part.
5) Repeating the step 2, 3 and 4 for all half modulation

periods, and then we can calculate and retrieve the
whole displacement.

Supposing a target is moving in sinusoidal vibration with
d(t) = d0 cos(2π ft t), where d0 = 100 nm and ft = 10 Hz.
Fig. 2 shows the simulation results. The target displacement
d(t) and triangular modulation A(t) are depicted in Fig. 2a,b.
After removing the modulation A(t), the reference signal
I0(t) and SMI signal I1(t) each contains 11 fringes within
each modulation period T1, 5.5 fringes on each rising and
falling part, as shown in Fig. 2c,d. Repeating the retrieving
procedure for all half modulation periods, we can obtain the
phase φ(t) and the retrieved displacement dr (t) comparing
with d(t) in a whole period of target displacement, as shown
in Fig. 2e,f. The error between the two displacements is
depicted in Fig. 2g. We evaluated the errors associated
with the simulation results above. The maximum phase
error in each rising and falling part is within 6.986∗10−4

rad, and the maximum displacement error in each part is
within 0.0461 nm. Thus, the maximum relative error of
the proposed method is max |d(t)−dr (t)|

max|d(t),dr (t)|
∗
100% = 0.0461%.

In comparison, the method in [22] has a maximum phase

123256 VOLUME 8, 2020



H. Wang et al.: New Algorithm for Displacement Measurement Using SMI

FIGURE 2. Simulation results for sinusoidal displacement. (a) The target
displacement d (t); (b) Triangular modulation A(t); (c) Reference signal
intensity I0(t) with fixed target; (d) SMI signal intensity I1(t) with moving
target; (e) The obtained phase φ(t); (f) The comparison of the retrieved
displacement dr (t) and d (t); (g) The error between d (t) and dr (t); (h) The
detailed retrieved displacement between 0.02 s ∼ 0.04 s.

error of 0.2 rad and a maximum relative error of 1% for the
displacement.

Another common problem associated with the application
of FFT and inverse FFT on block based signals is the
significant jumping error possibly occurring at the two edges
of the signal block. In order to investigate such errors,
we enlarged the results of the phase and displacement
corresponding two periods of the injection current signal.
As shown by Fig. 2h, no jumping error occurs between the
two successive blocks, because all the parameters associated
with the FFT are carefully chosen.

As the result shows, the retrieved target displacement
matches well with the displacement set in the simulation.
Within each rising and falling part of the triangle waves,
the number of samples is N = F∗s T1/2 = 512, which means
512 displacement points can be measured by the proposed
algorithm, and the resolution is 512 times higher than existing
methods in [20]–[22], where only one measurement point can
be obtained.

As mentioned above the proposed method requires that the
two terms on the right hand side of (12) do not overlap in
frequency. For above example simulated, we have d(t) =
d0 cos(2π ft t) and ft = 10 Hz. As φ(t) = 4πυ0d(t)/c,
the phase also varies sinusoidally at the frequency ft = 10Hz.
As ft = 10 Hz is significantly smaller than the carrier
frequency fc = 1100 Hz, the SMI signal still exhibits a
very narrow band in frequency domain at fc. As the sampling
frequency Fs is much higher than fc, it is reasonable to believe
that overlap between the two terms on the right hand side
of (12) can be ignored. In this case, we do not need to employ
windowing techniques to reduce the influence of spectral
spread of FFT components [26].

At the same time, based on our observation on the signals
collected from experiments, there are fluctuations of below
3 mV in the amplitude of the signals (which is about 60mV).
Thus we can assume that the signals contain a signal-
to-noise ratio of higher than 25 dB. In order to test the
influence of noise to the proposed algorithm, with the same
parameters in Fig. 2, a Gaussian white noises of 25 dB is
altered to both the I0(t) and I1(t), as shown in Fig. 3a,b.
The retrieved displacement dr (t) is compared with d(t)
in Fig. 3c, and the error with noisy signals is depicted
in Fig. 3d, with an amplitude of 4.97 nm and a relative error
of 4.97%.

We also tested the proposed method for the cases of
non-symmetric displacement. Supposing a target moves in
a saw-tooth vibration with d(t) = 2d0 × (ft t − [ft t]) − d0,
where d0 = 100 nm is the amplitude, ft = 100 Hz is
the vibration frequency and [] is the integer-valued function.
Fig. 4 shows the simulation results. The target displacement
d(t) and triangular modulation A(t) are depicted in Fig. 4a,b.
After removing the modulation A(t), the reference signal
I0(t) and SMI signal I1(t) are shown in Fig. 4c,d, each
containing 11 fringes within each period injection current
modulation T1. By applying the proposed method over all
half modulation periods, we can obtain the phase φ(t) and the
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FIGURE 3. Simulation results for signals with noise. (a) Reference signal
intensity I0(t) with fixed target; (b) SMI signal intensity I1(t) with moving
target; (c) The obtained phase φ(t); (d) The comparison between retrieved
displacement dr (t) and d (t); (e) The error with noisy signals.

retrieved displacement dr (t) containing 10 periods of target
displacement, as shown in Fig. 4e,f.

B. EXPERIMENTAL TEST
To further verify the proposed algorithm, an experimental
system was built in our laboratory as depicted in Fig. 5.
The LD in the experiment is a single mode LD (Hitachi
HL8325G, λ = 830 nm, output power P0 = 40 mW), which
is driven and temperature-stabilized by an LD controller
(Thorlabs, ITC4001). An injection current with triangular
wave modulation is applied on the LD with DC offset of

FIGURE 4. Simulation results for saw-tooth displacement. (a) The target
displacement d (t); (b) Triangular modulation A(t); (c) Reference signal
intensity I0(t) with fixed target; (d) SMI signal intensity I1(t) with moving
target; (e) The obtained phase φ(t); (f) The retrieved displacement dr (t).

65mA, peak-peak value of 20 mA. The modulation period is
T1 = 1 ms. The temperature of the LD is stabilized at 23 ±
0.1◦C. The laser emitted by the LD is focused by a lens and
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FIGURE 5. Experimental setup.

then hits a mirror as the external target. The mirror is glued
on the surface of a piezoelectric actuator (Thorlabs, PZT,
PAS005). The PZT is driven by a PZT controller (Thorlabs,
MDT694) to provide a micro-displacement. A variable
attenuator (VA) is inserted in between the lens and target
to adjust the feedback level of the SMI system. The laser
intensity of the modulated signals are detected by the PD
packaged in the rear of the LD, further manipulated by a
detection circuit, and finally captured and recorded by an
oscilloscope (Tektronix, DSA 70804).

When applying sinusoidal vibration on the target, the max-
imum vibration frequency ft max of the PZT is limited by the
formula ft max =

Imax
πVppC

, where Imax is the maximum driving
current of the PZT driver, Vpp is the peak to peak driving
voltage, and C is the capacitance of PZT. In the experiment,
Imax of the PZT controller (MDT694) is 60 mA, Vpp is set
as 500 mV to adjust an appropriate amplitude of micro-
displacement, and C of the PZT (PAS005) is 20 µF. With this
setup, the maximum vibration frequency ft max = 1.91kHz.

In the experiment, the initial external cavity length is L0 =
15.5cm. The sinusoidal controlling voltage for the PZT is
provided by a signal with ft = 100 Hz and an amplitude of
250 mV, as shown in Fig. 6a, which results in a sinusoidal
displacement with an amplitude of d0 = 67 nm, as shown
in Fig. 6b.While comparing to conventionalmethods, in order
to treat the displacement as a constant within eachmodulation
period, the vibration frequency of target is limited to 2 Hz
in [22].

Before starting the experiment, we record the laser
intensity without the PZT target, as shown in Fig. 6c.
Then the PZT without its control signal is added to the
system. The system is adjusted to work at a weak feedback
regime. The laser intensity at this step is recorded as a
reference signal. The reference signal after removing the
modulation part is shown in Fig. 6d. Applying the driving
signal to the PZT and recording the corresponding laser
intensity signal, we obtained the SMI signal. The SMI
signal after removing the triangular modulation part is
shown in Fig. 6e. In the two figures, the signals collected
contain an SNR about 25 dB. The carrier frequency fc

FIGURE 6. Experimental results. (a) The PZT driving signal corresponding
to target displacement; (b) The target displacement; (c) Triangular
modulation; (d) Reference signal intensity with fixed target; (e) SMI signal
intensity with moving target; (f) The retrieved displacement; (g) The error
between the original displacement and the retrieved displacement.
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in the experiment is about 1300 Hz. We apply 512-point
FFT on the signals and the sampling frequency Fs =
1024 kHz. Using the experimental data and following the
measurement procedure described in simulation test, we are
able to retrieve the displacement applied on PZT, as shown
in Fig. 6f.

The error between the original displacement and the
retrieved displacement is shown in Fig. 6g and the peak-peak
amplitude of the error is 4.08 nm (or λ/200), while
the experiment result in [22] contains an error of λ/50.
The error might be resulted from multiple factors, e.g. the
temperature change of LD, the non-linear reaction of PZT,
the disorder of the amplifier circuit, etc. The experimental
results again show that the proposed algorithm can retrieve
the micro-displacement accurately. In this work, the main
contribution is that we are able to obtain more measurement
points for displacement within each modulation period.
This will thus allow a target to move faster than the
existing phase detection methods under same modulation
condition.

IV. CONCLUSIONS
In this paper, we have proposed a new method to improve
measurement performance for an SMI-based displacement
sensing system. In the proposed method, the laser intensity
of the SMI system with a fixed target is used as a reference
signal. By applying FFT and IFFT to the SMI signal and the
reference signal, we can obtain the phase of the SMI signal,
thereby the displacement can be retrieved.

Based on the Nyquist sampling theorem, the highest
frequency of a signal to be digitized should not exceed half
of the sampling frequency. Hence the proposed technique
is able to measure the displacement of target vibrating at
the frequency up to half of the sampling frequency. The
proposed method is able to yield N points of displacement
results within each modulation period of injection current,
where N is the number of samples of the SMI signal
available. In contrast, the existing method can only produce
a single measurement point on each period of injection
current. Therefore, the proposed method is able to measure
the displacement of a target vibrating at a frequency N
times higher than the existing method, which is a significant
performance increase.
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