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ABSTRACT The incidence of skin cancer around the world is increasing year by year. However, early
diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation
is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation
of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate
and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which
can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel &
Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention
and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input
images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used
at each side of the output layer to sum the total loss of the model. We evaluated in two published standard
datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with
99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively.

INDEX TERMS Deep convolutional neural network, multi-scale, attention mechanism, skin lesion
segmentation.

I. INTRODUCTION
As the largest organ of the human body, skin is usually
directly exposed to the air, which lead to skin diseases one
of the most common diseases in humans [1]. According to
statistics, there are 5.4 million new cases of skin cancer
every year [2]. Melanoma, as one of the most lethal malig-
nant skin tumors, causes more than 10,000 deaths each year
[3]. However, melanoma can be cured by simple resection
if it can be detected early. Early diagnostic survival rate
exceeds 95% and late detection is below 20% [4]. Therefore,
the early diagnosis and early treatment of dermatoses is very
important.

Dermatoscopy is widely used in the non-invasive early
detection of melanoma, and has a higher accuracy than the
naked eye assessment. Nonetheless, it is not possible to rely
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solely on their perception and vision to detect melanomas
correctly, even if an experienced dermatologist performs a
dermoscopy [5]. Computer-aided analysis avoids many of
these problems and is increasingly being studied to help der-
matologists to improve the efficiency and objectivity of der-
moscopy image analysis [6]. Automatic segmentation of skin
lesions is an important step in computer-assisted dermoscopy
image analysis [7], [8]. However, due to insufficient training
samples and blurred boundaries of skin lesions, the lesions of
different subjects shows significant differences in location,
shape and color of interference with the segmentation task.
In addition, a large number of artifacts including inherent
skin characteristics (such as hair, blood vessels) and artificial
artifacts (Such as air bubbles, ruler marks, uneven lighting,
incomplete lesions, etc. ) make the task of skin lesion seg-
mentation extremely difficult [9].

In the early days, edge-detection, thresholding [10], active
contouring [11], [12] or region-based techniques [13] were
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used to segment lesions. But these methods usually cannot
obtain accurate segmentation results. In recent years, convo-
lutional neural networks have been widely used in medical
image processing [14], [15], especially for medical image
segmentation. These CNN-based methods can be classified
by pixels to distinguish background objects from foreground
objects to achieve the final segmentation. The U-net net-
work proposed in [16] is specifically designed for biomedical
image segmentation based on the concept of a fully convo-
lutional network (FCN) [17]. Yu et al. [5] proposed a deep
residual network with more than 50 layers for automatic skin
lesion segmentation, in which several residual blocks [19]
were stacked on top of each other to increase the represen-
tativeness of the model. In [20], Bi et al. proposed a multi-
stage method to combine the output of a fully convolutional
network cascaded at each stage to achieve the final skin lesion
segmentation. Compared with earlier methods, convolutional
neural networks have greatly improved the performance of
image segmentation, but accurate segmentation of skin lesion
boundaries still poses huge challenges. Therefore, in addition
to these factors, we looked at another aspect of architectural
design, the attention mechanism. Many works [21], [22] have
proved that the attention mechanism can highlight the distin-
guished areas in the image, tell us the focus on attention, and
have excellent positioning capabilities. Therefore, we pro-
pose to use the attention mechanism to improve presentation
ability, focus on important features and suppress unnecessary
features.

Inspired by the above semantic segmentation depth model
and the latest advances in attention mechanism, we propose
a new framework based on deep CNN, Channel & Spatial
Attention Residual Module (CSARM) for automatic segmen-
tation of skin lesions in dermoscopy images. Our specific
work is as follows:

1) A new CSARM-CNN model is proposed to accurate
skin lesion segmentation in dermoscopy images. The
model adds a multi-scale input module, uses the convo-
lutional attention module to extract image features, and
updates parameters for training by using a multi-label
loss function Model to generate the final segmentation
map.

2) We have designed a novel attention learning module
- CSARM. This module embeds both the convolu-
tion module and the attention module, which further
improves the feature representation and can be widely
used in the network to improve the performance of
lesion segmentation. We verified the effectiveness of
the CSARM block through ablation experiments.

3) On the ISIC-2017 dataset [43], the performance of
the CSARM segmentation method is compared with
other latest algorithms, with significant improvements
in accuracy and specificity. The robustness of the algo-
rithm trained by ISIC-2017 was tested for another pub-
licly available dataset called PH2.

II. RELATED WORKS
A. SKIN LESION SEGMENTATION
The skin lesion segmentation task is used to detect the
location and boundary of the lesion. In traditional image
segmentation algorithms, skin lesion segmentation methods
include threshold-based [10] region growth [13] segmenta-
tion methods and active contour-based [11], [12] methods.
The advantages and disadvantages of each method have been
discussed and compared with many papers such as [11], [12],
[23]. In recent years, with the continuous development of
deep learning, the segmentation method based on CNN[14]
was first applied in the field of image segmentation and
achieved significant [7], [9], [23]–[25] results in skin lesion
segmentation.

Bi et al. [20] proposed a multi-stage fully convolutional
network (FCN) method which uses parallel integration meth-
ods to combine the outputs of each stage to accurately
segment skin lesions. Yuan et al. [7] developed an end-to-
end DCNN with a loss based on Jaccard distance for skin
lesion segmentation without prior knowledge and sample
re-weighting. Li et al. [9] proposed a dense deconvolution
network based on residual learning to segment skin lesions.
The DSNet proposed by Hasan et al. [27] is an automatic
dermatological semantic segmentation network, which uses
depth-wise separable convolutions instead of standard convo-
lutions to project the learned distinguishing features onto the
pixel spatial at different stages of the encoder. These methods
have achieved some results in skin lesion segmentation.
However, there are still challenges to the task of boundary
segmentation for low-contrast images.

B. OVERVIEW OF U-NET ARCHITECTURE
In recent years, CNN has shown broad prospects of med-
ical image segmentation [26], [28], and most of the credit
goes to U-Net [16]. U-Net is a neural network specifically
designed for biomedical image segmentation based on the
concept of a fully convolutional network. The U-net model
learns deep features through different levels of convolution
during the downsampling process. Then recovers the image
size by deconvolution in the upsampling process. And finally
outputs a feature map of the number of categories. After that,
a large number of models are proposed based on the U-net
architecture to improve the performance of biomedical image
segmentation.

Fu et al. [29] proposed a multi-label deep network
composed of multi-scale input layer, U-shaped convolu-
tional network, side output layer and multi-label loss func-
tion, called M-Net.In the field of skin lesion segmentation,
Hasan et al. [27] proposed an u-net-based automatic depth
SLS model. In their model, the encoder network consists of
extended residual layers, and a pyramid-merging network of
three convolutional layers is used for decoder to enhance the
ability of learning features. Ibtehaz et al. [30] analyzed the
U-Net model architecture in depth, and proposed an enhanced
version of the U-Net architecture - MultiResUNet.
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C. ATTENTION MECHANISM
It is well known that attention plays an important role in
human perception [31]–[33]. Human vision quickly scans the
global image to obtain the target area that needs attention,
and then invests more attention resources in this area to
obtain more detailed information about the target that needs
attention, thereby suppressing other unnecessary informa-
tion. The attention mechanism in deep learning is similar to
the selective visual attention mechanism of human beings in
essence. The core goal is to select information which is more
beneficial to the current task goal from a lot of information.

Earlier, the Google Deep Mind team was the first to
use the attention mechanism on RNN models for image
description problems [34]. Subsequently, they proposed a
model for recognition of multiple objects in images based
on the attention mechanism [35]. Recently, attention mech-
anisms have been successfully applied to various fields of
computer vision and natural language processing to improve
the performance of DCNN, and considerable progress has
been made. And it has made great progress. Wang et al. [36]
proposed a residual attention network using an encoder-
decoder style attention module. By refining feature maps,
the network not only performs well, but it is also robust
to noisy inputs. Abraham et al. [37] Used improved atten-
tion U-Net for skin lesion segmentation and proposed a
generalized focus loss function based on Tversky index to
solve the problem of data imbalance in medical image seg-
mentation. Kaul et al. [38] proposed an attention-based full
convolutional network, FocusNet, which uses feature maps
generated by separate convolutional autoencoders to focus
attention on convolutional neural networks for medical image
segmentation. Chen et al. [39] shared the attention of spatial
and channel in the convolutional network. Spatial and channel
attention weights are generated by neural networks followed
by softmax layers, respectively. Although the above atten-
tion mechanism can effectively improve the performance
of deep learning models in large-scale image segmentation
tasks, the attention weight of these methods is learned by
using other learnable layers with many additional parameters,
which may not only lead to the computational costs but also
produce overfitting for small training datasets. To alleviate
this problem, Hu et al. [40] introduced a compact module to
leverage relationships between channels. In their ‘‘Squeeze
and Excitation’’ module, they use the global average pool-
ing function to calculate channel attention. Subsequently,
in addition to the channel, the CBAM module proposed
by Woo et al. [41] introduced spatial attention in a manner
similar to SE-Net [40]. They think that the importance of con-
sidering the pixels of different channels must also consider
the importance of pixels in different positions of the same
channel. Therefore, the attention map is inferred along two
independent dimensions (channel and space), and then the
attention map is multiplied by the input feature map for adap-
tive feature improvement. Although the lightweight model
effectively alleviates the problem of heavy computation, these

methods only use rescaling for feature fusion, which is not
effective enough for global context modeling.

In response to the above problems, our proposed CSARM-
CNN can effectively improve the balance between data
redundancy caused by extra parameters and weak context.
A large number of ablation experiments and comparative
experiments were conducted to demonstrate the effectiveness
of the proposed model in the skin segmentation task.

III. PROPOSED CSARM-CNN ARCHITECTURE
In this paper, the proposed CSARM-CNN model is an
end-to-end multi-label depth network composed of multiple
CSARM blocks, multi-scale input layer, U-shaped convo-
lutional network and side output layers. In each CSARM
block, the residual learning mechanism is used to solve the
degradation problem, and the channel attention module and
the spatial attention module are combined to design a new
attention mechanism to enhance the ability of discriminative
expression. Multi-scale input layer constructs image pyramid
to realize multi-level receptive field. U-Net is used as the
main network structure to learn rich hierarchical representa-
tions. The side output layer is used as an early classifier to
generate the accompanying local prediction maps of different
scale layers. Finally, a multi-label loss function is added to
update the parameters to train themodel and generate the final
segmentation map. The architecture of this mode is shown
in Fig.1.

A. CONVOLUTIONAL ATTENTION MODULE
In order to obtain good segmentation performance,
we propose the CSARM-CNNmodel, which embeds residual
learning and attention learning mechanisms. From an imple-
mentation perspective, both residual learning and attention
learning can be embedded in each CSARM block. We can
build a CSARM-CNN model with an arbitrary depth by
stacking multiple CSARM blocks and train it in an end-to-
end manner. Therefore, the architecture of the CSARM block
is the basic module of the model, where each CSARM block
is stacked by a fixed-mode of convolutional layers, channel
and spatial attention module, residual learning, and attention
learning mechanism. Convolution extracts image informa-
tion. Each attention module uses bottom-up and top-down
feed-forward structure trainable layers to learn weights, and
then multiplies the weights with the convolutional features.
The residual mechanism effectively alleviates the model
degradation problem. The CSARM block is shown in Fig.2.
Next, we will introduce the internal structure of the CSARM
block in detail.

1) CHANNEL & SPATIAL ATTENTION LEARNING
Given an input image, the channel attention module aims
to focus more on the meaningful parts by establishing the
association between channels, enhancing the channel’s spe-
cific semantic response capability, and emphasizing it. As a
supplement to channel attention, the spatial attention module
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FIGURE 1. The architecture of the CSARM-CNN model.

FIGURE 2. CSARM module structure.

aims to use the association between any two point features to
mutually enhance the expression of their respective features,
so it pays more attention to the features of the spatial posi-
tion. Two attention sub-modules are shown in Fig.3. In order
to further to obtain the characteristics of the global depen-
dency relationship, the output results of the two modules
are added and fused to obtain the final features for pixel
classification.

FIGURE 3. The Attention module. (a) Channel attention module. MLP:
Multi-layer perceptron. (b) Spatial attention module.

In the channel attention module, since each channel of
the feature map is considered as a feature detector [42].
Therefore, we use the channel attention module to build the
interdependence between channels. Using the dependency
relationship between feature channels, the feature represen-
tation of specific semantics can be improved to generate
channel attention maps. The input feature FC ∈ R×C×H×W is
used to aggregate the spatial information of the feature maps
by using average pooling and maximum pooling operations
to generate average pooling features and maximum pooling
features. The multi-layer perceptron (MLP) consists of the
Fc1 layer, theRelu activation function and the Fc2 layer. It can
learn from the given training data and make accurate predic-
tions based on the new data given. When two pooling oper-
ations are used at the same time, both of aggregated channel
features are located in the same semantic embedding space.
Therefore, we use a shared MLP to perform attention infer-
ence to save parameters and obtain the correlation strength of
the two channels, and output feature maps FCAvg ∈ R

×1×1×1

and FCMax ∈ R
×1×1×1 respectively. Then use the element-by-

element summation through the attention graph between the
channels, so that each channel can produce a global correla-
tion to further enhance the feature representation, and merge
the output feature map XC , as shown in formula (1), and
then go through the sigmoid operation obtain the final output
channel attention feature map AC , as shown in formula (2).

XC = FCArg ⊕ F
C
Max , XC ∈ RC×1×1 (1)

where, ⊕ means adding element by element.

AC =
c⋃
i=0

1

1+ exp
(
−Xi,1,1

) , AC ∈ RC×1×1 (2)

where C represents the number of channels, Xi,1,1 represents
the element whose coordinate is C×1×1, and

⋃
represents

the contact element by element.
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The spatial attention module encodes extensive contextual
information into local features, thus enhancing their expres-
sive power. We use the spatial relationships among the ele-
ments to generate the spatial attention maps. For features at a
certain location, they can be updated by using weighted sum-
mation to aggregate the features at all locations, so regardless
of their distance in the spatial dimension, features at any
two locations with similar features can promote each other.
In order to calculate spatial attention, we use the average
pooling and maximum pooling operations of the original
feature FS ∈ R×C×H×W along the channel axis to summa-
rize the channel information of the feature map to generate
two 2-dimensional feature maps FSAvg and F

S
Max (the specific

process is shown in formula (4) and (5)).And then perform
weighted fusion on the features, so that for the points at
various positions, it fuses similar features in the global space
through the attention map. Then the convolutional layer is
used to generate 2D space attention map XS as:

XS = Conv
(
Cat

(
F sAvg;F

S
Max

)
W + b

)
, AS ∈ R×1×H×W

(3)

Among them,W , b respectively representMLP weight,MLP
biase; Cat(.) Represents concatenate; Conv(.) Represents
convolution operation.

F sAvg(x, y) =
1
C

c∑
i=1

Xi,x,y, FSAvg ∈ R
×1×H×W (4)

F sMax(x, y) =
c

max
i=0

(
Xi,x,y

)
, FSMax ∈ R

×1×H×W (5)

Finally, after the sigmoid operation, the spatial attention
feature map AS obtained by the final output as follows:

As =
H⋃
m

W⋃
n

1

1+ exp
(
−XSm,n

) , AS ∈ R×1×H×W (6)

where, m, n represent mth position and nth position respec-
tively.

⋃
represents the contact element by element.

It should be noted that for feature images, average pooling
is usually used to summarize spatial information, and max-
imum pooling can be used to infer more detailed channel
attention. Therefore, in both modules, we have chosen to use
both average pooling and maximum pooling functions.The
channel sub-module uses the maximum pool output and the
average pool output of the shared network. The spatial sub-
module uses similar two outputs, which are pooled along the
channel axis and transmitted to the convolutional layer.

2) CSARM BLOCK
The traditional attention mechanism strengthens attention
learning by using additional learnable layers, such as the
convolutional layers used in [36] or the fully connected lay-
ers used in [40]. The CBAM proposed in [41] divides the
attention process into two independent parts, the channel
attention module (look what) and the spatial attention module
(look where). These lightweight models all use the attention

mechanism to enhance their own feature extraction ability to
a certain extent, but they do not fully utilize the global context
information. Different from these solutions, we propose that
the proposed CSARM block can effectively model the global
context by addition fusion while having the properties of
the lightweight model. In addition, the experimental part
of IV.B.2) and IV.B.3) also showed that CSARM block is
superior to other attention modules in the skin lesion segmen-
tation task.

The structure of the CSARM module is shown in Fig.2.
Firstly, three consecutive convolutional modules are used to
extract image information, and the channel & spatial attention
module is used to recalibrates the importance of different
spatial positions and channels for feature fusion.

Secondly, the designed attention learning mechanism gen-
erates attention through the network itself to strengthen the
discriminative representation of the network. We believe that
the higher layers of the network have stronger effective infor-
mation than the lower layers. Therefore, we use the higher
layer to generate abstract feature maps as the lower-level
attention features. In this way, the discriminability of the
network is enhanced by generating attention by the network
itself, without introducing additional learnable layers. Sup-
pose a set of stacked layers of {L1 . . . Ln}, where L1 rep-
resents the lower layer, Ln represents the upper layer, and
E ∈ R×1×H×W is the input feature of Ln,To avoid overfitting,
we use the Softmax function to batch normalization E , The
normalization function is defined as:

ξ (E) =

i|iCm,n = eE
C
m,n∑

m′,n′ ·e
EC
m′,n′

 (7)

where m, n represent the spatial position, and C represents
the channel index of the feature map.

In a CSARM module, we used the identity mapping
designed in the residual block. The input feature is x and the
feature map F(x) is obtained through residual mapping. For
channels and spatial modules, it was pointed out in [40] that
sequential permutation can provide better results than par-
allelism. Therefore, we also adopted the method of channel
permutation followed by spatial attention, as shown in Fig.3.
F(x) obtains the feature maps H [F(x)] through the channel
and spatial attention modules. We use s to normalize the
feature maps H [F(x)], and then obtain the attention feature
map through the element-wise production as:

A = ξ (H [F(x)]) · x (8)

In order to further obtain the characteristics of global
dependency, the output results of the three modules are added
and fused. The final output y of CSARM block is the sum
of the elements of the identity map, the residual feature map
and the attention feature map, and its calculation formula
expressed is as follows:

y = x + F(x)+ α · A (9)
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where α is a learnable weighting factor, indicating the rela-
tionship between the attention feature map and the other two
maps.

B. CSARM-CNN
In this paper, the proposed CSARM-CNN model is shown
in Fig.1, including the encoder path (left), decoder path
(right). The skip connections transfer the corresponding fea-
ture map from encoder path and concatenate them to up-
sampled decoder feature maps. Table1 shows the architecture
of the CSARM-CNNmodel. The model uses CSARM blocks
to extract image features. Each CSARM block is stacked by
a fixed-mode 1× 1, 3× 3, 1× 1 convolutional layer, channel
attention module, and spatial attention module.

1) THE ENCODER
The encoder path uses CSARM blocks to extract feature
information, and uses a 3×3 convolution with a step size of 2
to replace the pooling operation in downsampling. To avoid
overfitting, the batch normalization layer is used to normalize
the feature map of each layer after the convolution opera-
tion of each layer, and then it is activated using the Leaky
Relu activation function. In the encoder path, we build a
multi-scale input layer. Multi-scale image technology, also
known as Multi-Resolution Analysis (MRA), refers to the
use of multi-scale representation of images and processing
at different scales. But the multi-scale input method we use
is different from the traditional method of using multi-scale
image input and then fusing the results. We establish multi-
scale input in the encoding path of the image for the down-
sampling process, and then input the image on the featuremap
in a multi-scale manner, and encode the multi-scale context
information. As shown in Fig.1. Given an original image with
an input size of 256×256, three different sizes of 128×128,
64 × 64, and 32 × 32 images were obtained after three
down-sampling processes, and combined with the original
image to construct an image pyramid input and achievemulti-
level reception field fusion. Adding multi-scale input to the
coding layer can ensure the transmission of the original image
features, improve the quality of the segmentation, and at the
same time, increase the network width of the decoder path to
avoid a large increase in parameters [31].

2) THE DECODER
The decoder path is the exact opposite of the encoder path.
As shown in Fig.1, in the process of up-sampling, we first
used the 3 × 3 deconvolution layer with a step size of 2,
batch standardization and a CSARM block output decoder
feature map for each layer. After that, the output feature
maps of each layer of CSARM blocks are extracted, and the
feature maps are expanded to the size of the original input
image using bilinear interpolation, and then input them into
the classifier for classification. The classifier consists of a
3 × 3 convolution with a step size of 2 and then a softmax
function. Due to the skin lesion segmentation task, the two-
channel probability map of lesion and background is output.

Therefore, the designed classifier is to convert each layer of
multi-channel feature maps into two-channel feature maps.
Finally, the probability maps obtained by different classifiers
are fused into the final classification result to complete multi-
scale feature fusion.

In this process, in order to alleviate the problem of gradient
disappearance and enhance the training of the early layer,
the decoder path receives the output loss from the back-
propagation of the output layer and updates the parameters.
We use the cross-entropy loss function to calculate the output
loss for each layer of output images. For the sample (x, y),
x = {xi, i = 1, . . . ,N } represents the training data and y =
{yi, i = 1, . . . ,N } is the corresponding ground truth.Among
them yi = {0, 1}, the probability that the i-th sample is
predicted as 1 is yp.N represents the total number of samples.
M represents the number of multi-scale output layers. At this
time M = 5, the corresponding loss weight of each multi-
output layer is expressed as ai = {yi, i = 1, . . . ,M}, And
ai = {0.1, 0.1, 0.1, 0.1, 0.6}. For each output image, the loss
L. For each output image, the loss L is defined as (10):

Llog(Y ,P) = −
ai
N

∑
x

[
yi. log

(
yp
)
+ (1− yi) · log

(
1−yp

)]
(10)

We overlay the L(N ) of each output layer. The final output
loss function L is:

L =
N ·I∑
i=0

L(i)(Y ,P) (11)

IV. EXPERIMENTS
A. EXPERIMENTAL SETUPS
1) DATASET
We used two public dermoscopy datasets to evaluate the
proposed segmentation network, the ISIC-2017 challenge
dataset [43] and the PH2 dataset [44]. The ISIC-2017 chal-
lenge dataset is provided by the International Skin Image
Collaboration (ISIC) archive. The challenge dataset contains
8-bit RGB dermoscopy images with image sizes ranging from
540 × 722 to 4499 × 6748 pixels. It provides 2,000 training
images and separate datasets of 150 and 600 images for vali-
dation and testing, respectively. All these dermoscopy images
were marked as Benign Nevus, Melanoma or Seborrheic
Keratosis, respectively. The PH2 dataset was collected by the
dermatology department of the Pedro Hispano Hospital and
the research team of the University of Porto in Tĺęcnico Lis-
boa, Matosinhos, Portugal. It contains 200 images, of which
160 are Nevus (ie ordinary Nevus and atypical Nevus), and
the rest Forty images are melanoma.These images are 8-bit
RGB images with a fixed size of 768 × 560 pixels, and are
acquired using 20x magnification under the same conditions.
Table 2 summarizes the distribution of the two datasets.
Besides, both datasets provide original images paired with
lesion segmentation boundaries, which were annotated by a
professional dermatologist.
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TABLE 1. CSARM_CNN model architecture and implementation details.

TABLE 2. Distribution of the ISIC Challenge 2017 [42] and PH2 datasets [43].

2) PREPROCESSING
In deep learning methods, training usually requires a large
amount of data. Therefore, we apply a data augmentation
process to expand the training dataset. First, the 2000 training
data on the ISIC-2017 dataset was combined with 150 val-
idation data to generate 2150 training datasets. Secondly,
a pre-processing program is provided to augment and facil-
itate the learning of our proposed segmentation method from
the training dataset. In the ISIC-2017 dataset, the 2150 der-
moscopy images were generated by the combination all exist
in RGB form. In order to understand the different color
space characteristics, we also added three channels of hue
saturation value (HSV). 2,150 dermoscopy images in HSV
format were generated, and the resulting HSV images are
shown in Fig. 4(b). Samples were randomly generated by
horizontal flipping, vertical flipping and horizontal vertical
flipping, so that the training data set has 17,200 dermoscopy
images. The generated samples are shown in Fig. 4(c), and the
upper right of each sample is horizontal flipping, the lower
left is vertical flipping, and the lower right is horizontal and
vertical flipping. Since the size of the original image ranges
from 540 × 722 to 4499 × 6748 pixels, in order to facilitate
the training of the segmentation network, as shown in the
upper right corner of Fig. 4(c), we adjusted the width of the
image to 256px according to the aspect ratio of the original
image. The image is filled with black edges up and down,
and the height is increased to 256px to form a training image.
Figure 4 shows examples of dermoscopy images from the
ISIC 2017 Challenge dataset, ground truth, and pre-processed
images. The first two columns are Melanoma, the middle two
columns are Seborrheic Keratosis, and the last two columns
are Nevus.

FIGURE 4. Preprocessing visualization results on the ISIC 2017 dataset.
(a) The original image (b) Image generated after HSV image preprocessing
(c) The image generated after the original image is preprocessed (d) the
ground truth (e) the ground truth processed image.

3) EVALUATION METRICS
In order to quantitatively evaluate the segmentation capability
of the proposed CSARM-CNN network, we used the fol-
lowing skin lesion segmentation evaluation indicators. Sen-
sitivity (SEN) is defined in eq.(12), which represents the
proportion of skin lesion pixels that are correctly segmented.
And high sensitivity (close to 1.0) indicates that the seg-
mentation effect is good. Specificity (SPE) (as in eq.(13))
indicates the proportion of non-lesioned skin pixels which are
not correctly segmented. High specificity indicates the ability
of this method to segment non-lesionable pixels. Jaccard
index (JAC) and Dice coefficient (DIC) are used to measure
the similarity between the segmented lesion and the annotated
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ground truth, as in eq.(15) and (16) respectively. Accuracy
(ACC) (as in eq.(14)) is also provided to show overall pixel-
level segmentation performance. The Matthew correlation
coefficient (MCC) is used to measure the correlation between
annotated and segmented skin lesion pixels, as in eq.(17). All
of these indicators are calculated based on the elements of the
confusion matrix.

Sensitivity =
TP

TP+ FN
(12)

Specificity =
TN

FP+ TN
(13)

Accuracy =
TP+ TN

TP+ FN + TN + FP
(14)

JAC =
TP

TP+ FN + FP
(15)

DIC =
2× TP

2× TP+ FP+ FN
(16)

MCC =
TP · TN − FP · FN

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

.

(17)

Among them, TP indicates that the skin lesion pixels are
correctly segmented, and FN indicates that the skin lesion
pixels are incorrectly segmented. In contrast, if the segmen-
tation of non-lesioned pixels is correctly classified as non-
lesioned, it is considered as TN. Otherwise, they are FP.

4) IMPLEMENTATION DETAILS
The hardware equipment used in this experiment is Intel Xeon
(R) CPU E5-2620 v3 2.40GHz, NVIDIA Tesla K80 (12G).
All training and testing are performed in the same hardware
environment. The operating system used in the experiment
is Ubuntu 16.04, using Python 3.6 as the programming lan-
guage, and using Facebook’s open-source Pytorch 1.0.0 deep
learning framework for algorithm design and coding. The net-
work uses the Stochastic gradient descent method of Nesterov
momentum for end-to-end training. The momentum parame-
ter is set to 0.9, the weight attenuation coefficient is 5e-4, and
themini-batch size is 8. Themulti-output loss function is used
to calculate the loss value. The backpropagation algorithm is
used to propagate the loss layer by layer and update the net-
work parameters, and the Softmax function is used for final
classification.We train for 200 epochs, the initial learning rate
is set to 0.1, and the learning rate is reduced by 5 times in turn
after 80, 120, and 160 epochs.

B. ABLATION EXPERIMENT
1) NETWORK ABLATION EXPERIMENT
The proposed CSARM-CNN model shows excellent per-
formance in skin lesion segmentation. We believe that the
improvement in performance is mainly due to the use of
the CSARM attention module, which allows DCNN to focus
more on the semantically meaningful part of the lesion,
thereby enhancing the ability of the network to learn dis-
criminative representation. To validate this, we performed an

ablation experiment on the proposed model using 600 der-
moscopy image tests on the ISIC-2017 dataset. We treat
the model after removing the CSARM block as the base-
line model, and compare it with the proposed segmenta-
tion performance of CSARM-CNN and the baseline model.
At the same time, in order to verify the generality of the
CSARM block, the three networks U-Net, FCN and Seg-
Net are used as backbone networks. For ease of descrip-
tion, in this paper, we replace a convolutional module in
each layer of the network with a CSARM block and the
network is called its new attention network, which is respec-
tively named as ‘‘U-Net+CSARM’’, ‘‘FCN+CSARM’’ and
‘‘SegNet+CSARM’’. Table 3 and 4 summarize the segmenta-
tion performance comparison of the three infrastructures with
their new attention network and the proposed CSARM-CNN
with the baseline model. The experimental results show that
for different network architectures, the six evaluation metrics
of the new attention network are much higher than those of
the backbone network model. Therefore, it is proved that
the CSARM block can effectively improve the performance
of the model. At the same time, the CSARM block can
be applied to different network architectures and has good
robustness.

The results of the experiments on U-Net, FCN and
SegNet in this paper are slightly lower than those of
Al-Masni et al. [48] and Goyal et al. [49], whose exper-
imental results refer to Tables 9 and 10 for details.
The reason for the difference may be that our training
parameters are different from their settings, as follows:
(1) Al-Masni M A et al. used the pre-training weights trained
on the VGG-16 network layer of the large public ImageNet
dataset as the initial weights of FCN and SegNet, and then
retrained and fine-tuned on the ISIC2017 dataset, and we
reproduced U-Net, FCN and SegNet only set random ini-
tial weights; (2) Al-Masni M A and others were batch set
to 20, trained with NVIDIA GeForce GTX 1080 (16G)
GPU, and implemented with Theano and Keras deep learn-
ing libraries and AdamOptimizer optimization algorithm in
Python 2.7.14. However, we set the batch to 8, trained on
NVIDIA Tesla K80 (12G)GPU, adopted Python3.6 as the
programming language, designed and coded the algorithm
using Pytorch 1.0.0 deep learning framework, and conducted
end-to-end training using Nesterov momentum Stochastic
gradient descent method.

In order to show the segmentation effect of the lesion
more clearly, we compared the true segmentation profiles of
Benign, Melanoma and Seborrheic Keratotic lesions in the
ISIC-2017 test data set. As shown in Fig.5, the segmenta-
tion results of the three networks verified by the ablation
experiment and its new attention network, CSARM-CNN and
baseline model are visualized. As for Fig.5(f), we enlarged
the lesion area on the image, in order to visually show the
comparison between the segmentation results of the four
models of CSARM module and the ground truth. In Fig.5,
the first two lines are Melanoma lesions, the middle two lines
are Seborrheic Keratotic lesions, and the last two lines are
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FIGURE 5. Visualization results of an ablation experiment. (a) The original image (b)The ground truth (c1) U-Net
(c2) U-Net+CSARM (d1) FCN (d2) FCN+CSARM (e1) SegNet (e2) SegNet+CSARM (f1) baseline model (f2)
CSARM-CNN model (g) Comparison of segmentation results of ground truth (red) and U-Net+CSARM (green),
FCN+CSARM (yellow), SegNet+CSARM(black) and ours (blue). All images are pre-processed.

Nevus. It can be clearly seen in the figure that compared with
the three backbone networks and baseline models, its new
attention network and our model have a clearer boundary, and
can identify the lesion area in the dermoscopy image. There-
fore, adding the CSARM block we proposed to the network
can greatly improve the performance of lesion segmentation.

2) ATTENTION MODULE ABLATION EXPERIMENT
The CSARM block is the main part that improves the seg-
mentation performance. To illustrate the difference between
the CSARM block and other attention methods, we designed
a set of ablation experiments based on different attention
modules. Using the baseline network as a quantitative model,
we respectively selected two typical attention modules that
can be embedded in other models and compared them with
our CSARM attention module. Among them, the first is the
Squeeze-and-Excitation attention module of SE-Net that is
often used in classification tasks, which we call SE Block.
It uses the interdependence between convolutional feature
channels in the network to improve the network’s presenta-
tion ability. Another Attention module is the Feature Pyramid
Attention (FPA) module applied in the PAN of segmentation
task, which uses the attention mechanism to introduce the
global context information as the prior knowledge into the
channel selection. Meanwhile, through the spatial pyramid
attention structure, the multi-scale information is fused to
produce better pixel-level attention.

In Table 5 and 6, we compared the segmentation perfor-
mance of three skin lesions based on the Baseline model of
SE Block and FPA with the CSARM-CNN model. Although
the two attention modules have improved the performance
of the model to a certain extent, from the six evaluation

indicators, the overall segmentation result of CSARM-CNN
is much higher than the results of the two attention modules
embedded in the Baseline network. SE Block contains two
operations. Squeeze and Excitation. The Squeeze operation
first uses global average pooling to obtain channel-level
global features. Then perform Excitation operation on the
global features. Two Fully Connected layers form a Bottle-
neck structure to model the correlation between channels,
and output the same number of weights as the input features.
However, this method only focuses on which layers on the
channel level will have stronger feedback capabilities. It does
not reflect the region of interest in the spatial dimension, and
the global context information is not fully utilized. The FPA
module adopts the idea of PSPnet’s global-pooling. The result
of pooling is added to the result of the attention convolution,
and the global context information is introduced into the
channel selection as a priori knowledge. However, the use of
corresponding channel attention vectors in such a structure is
not enough to effectively extract features of multiple scales
and lack pixel-level information. These two attention models
construct the correlation between channels to the fusion of
feature channels and ignore more spatial feature information.

However, for the skin lesion image, the gray scale changes
little, and the boundary is relatively blurred. And through
the stepwise pooling, the spatial resolution of the features
continues to decrease, and the spatial position information
is continuously lost. Ignoring the spatial feature information
can easily lead to blurring of the edge of model segmentation
results. Therefore, features with rich spatial location infor-
mation are particularly important for restoring feature spa-
tial resolution. The CSARM block we proposed jointly uses
residual learning and channel and spatial attention learning
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TABLE 3. On the ISIC2017 dataset. Comparison of sensitivity, specificity and accuracy performance of the three infrastructure networks and their new
attention networks with the CSARM-CNN model and the baseline model.

TABLE 4. On the ISIC2017 dataset. Comparison of Dice coefficient, Jaccard index, Matthew correlation coefficient performance of the three infrastructure
networks and their new attention networks with the CSARM-CNN model and the baseline model.

mechanisms to improve its ability to discern representations.
The attention learning mechanism uses feature maps learned
by high layers to generate low-level attention maps, which
effectively improves segmentation performance while avoid-
ing the computational burden caused by toomany parameters.

Fig. 6 shows six examples of dermoscopy images and
corresponding segmentation masks to the different attention
modules. The first two columns are Melanoma, the mid-
dle two columns are Seborrheic Keratosis,and the last two
columns are Nevus. It can be clearly seen from the seg-
mentation results in Fig.6 that our method has clearer seg-
mentation boundary information, making the network more
focused on the skin lesion area. In order to more intuitively
show the segmentation results between attention modules and
the comparison with the ground truth, we superimposed all
segmentation results on the example dermoscopy images and
enlarged the lesion areas. Obviously, compared with the other
two modules, the blue line representing CSARM-CNN is
closer to the red line representing the ground truth, proving
that on the baseline model, CSARM Block has better feature
presentation ability than SE Block and FPA.

3) STRUCTURAL ABLATION EXPERIMENT
Woo et al. [41] believed that SENet only focused on which
layers at the channel level would have stronger feedback
capability, but failed to reflect the region of interest in the
spatial dimension. Therefore, the designed CBAM applies
attention to both the channel and spatial dimensions, and
obtains more spatial feature information than SE Block,
which can effectively improve the representation of themodel
without significantly increasing the model parameters and
computation (It can also be proved by the experimental results

FIGURE 6. Visualization results of the attention module comparison.
(a) Original image of skin lesions (b) The ground truth corresponding to
the lesion (c) Lesion segmentation results of SE Block+Baseline
(d) Lesion segmentation results of FPA+Baseline (e) Lesion segmentation
results of CSARM-CNN model (f) Comparison of segmentation results of
the ground truth (red) and SEnet+Baseline (green), FPA+Baseline (black)
and ours (blue). All images are pre-processed.

of the two models in Table.5-8). However, CBAM still has
the problem that it cannot obtain effective global context
information.

In order to solve the problems existing in CBAM module
and fuse the context information more effectively, we have
improved on the basis of CBAM module. We use CBAM
Block as part of the internal structure of the CSARMmodel to
extract attention features on spatial and channels. In order to
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TABLE 5. On the ISIC2017 dataset. Comparison of Sensitivity, Specificity, and Accuracy performance between different attention modules and CSARM
blocks using baseline as the infrastructure.

TABLE 6. On the ISIC2017 dataset. Comparison of Dice coefficient, Jaccard index, Matthew correlation coefficient performance between different
attention modules and CSARM blocks using baseline as the infrastructure.

obtain global context information without introducing addi-
tional learnable layers, the lower layers of the network use
the feature information generated by higher layers, and use
the context information of the network itself to generate
attention to enhance the feature representation. Use residual
learning to further obtain external context information, and
effectively model the global context through additive fusion.
To verify the improvement of CSARM on the performance of
CBAM, we designed a set of structural ablation experiments
based on the baseline on the ISIC 2017 dataset, as shown
in Table7 and 8. The experimental results show that among
the three types of skin diseases, the CSARM model has
lower sensitivity (SEN) than the CBAM module except for
Nevus and overall, and all other evaluationMetrics are higher
than CBAM. In order to compare the performance of the
two models more intuitively, we visualize the structural abla-
tion results, as shown in Fig.7, The first two columns are
Melanoma,the middle two columns are Seborrheic Keratosis,
and the last two columns are Nevus. Meanwhile, in Fig.7(e),
we enlarged the lesion area on the image and placed the
segmentation results of the two models and the ground truth
on the same lesion image for comparison.It can be clearly
seen from the segmentation results that the CSARM model
can segment the lesion edge more clearly than the model
using CBAM block, and better integrate characteristics of the
global dependency, making the segmentation results closer to
the ground truth.

To further powerfully prove the improved segmentation
performance of the model, we perform statistical hypothesis
testing on the segmentation performance of the proposed
CSARM and CBAM. P-value is an important basis for testing
decision. we propose a hypothesis: The performance of the
CSARM model is better than the CBAM model. We con-
ducted a P-value analysis of the three lesions -Melanoma,
Seborrheic Keratosis, Nevus and overall on Dice and ACC.
The results are shown in Table 9. In the table, except for
the overall ACC, the P value of the CSARM model is less
than 0.05, indicating that the CSARM model has statistical

FIGURE 7. Visualization results of structural ablation. (a) Original image
of skin lesions (b) The ground truth corresponding to the lesion (c) Lesion
segmentation results of CBAM+Baseline (d) Lesion segmentation results
of CSARM-CNN model (d) Comparison of segmentation results of the
ground truth (red) and CBAM+Baseline(purple), ours(blue). All images
are pre-processed.

significance. That is, CSARM model outperforms CBAM
model in dermoscopy image segmentation, and has better
performance than the CBAM model.

C. COMPARATIVE EXPERIMENT
1) COMPARISON WITH PRIOR ART BY LESION TYPE
This section further evaluates the proposed model for three
types of skin lesions in different categories. Tables 10 and 11
summarize the comparison of our proposed CSARM-CNN
method to the six best methods tested on the ISIC-
2017 dataset. The results of U-Net, FCN, DeepLabv3+, Seg-
Net, Mask-RCNN and FrCN in Table 10 and Table 11 are all
from Al-Masni et al. [48], and Goyal et al. [49]. Compared
with other algorithms, in this challenge, the CSARM-CNN
model obtained the highest scores of 99.40% and 95.85% in
specificity and accuracy respectively, which indicates that it
can segment more skin lesion pixels correctly. Even though
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TABLE 7. On the ISIC2017 dataset. Use baseline as the infrastructure. Comparison of Sensitivity, Specificity, and Accuracy performance between CBAM
block and CSARM block.

TABLE 8. On the ISIC2017 dataset. Use baseline as the infrastructure. Comparison of Jaccard index, Dice coefficient, Matthew correlation coefficient
performance between CBAM block and CSARM block.

TABLE 9. On the ISIC2017 dataset. Comparison of Pvalue analysis results based on Dice and Acc.

TABLE 10. On the ISIC2017 dataset. Comparison of Sensitivity, Specificity, and Accuracy performance between CSARM-CNN model and the six best
methods.

TABLE 11. On the ISIC2017 dataset. Comparison of Dice coefficient, Jaccard index, Matthew correlation coefficient performance between CSARM-CNN
model and the six best methods.

the training images are uneven for different lesion categories,
the high-quality segmentation results obtained for all cate-
gories still prove the success of our proposed lesion segmen-
tation network.

In Fig. 8, six dermoscopy images and corresponding visu-
alization results for segmentation of three types of skin

lesions trained by CSARM-CNN are given, and their CAM
saliency maps are shown. The CAM saliency map shows that
the area of interest learned by the model, that is, the high-
lights in the CAM, has different positions and concentrations,
which shows the segmentation effect more intuitively. At the
same time, for qualitative evaluation, Figure 8(d) shows the
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TABLE 12. Performance evaluation of Sensitivity, Specificity, and Accuracy of different segmentation algorithms of the proposed CSARM-CNN model on
the PH2 dataset.

TABLE 13. Performance evaluation of Dice coefficient, Jaccard index, and Matthew correlation coefficient of different segmentation algorithms of the
proposed CSARM-CNN model on the PH2 dataset.

FIGURE 8. Visualization results for ISIC2017 dataset. (a) Original image of
skin lesions (b) The ground truth corresponding to the lesion (c) Lesion
segmentation results of CSARM-CNN model (d) Comparison of the ground
truth (red) and segmentation results of ours (blue) (e) CAM saliency map
visualization of lesion segmentation of CSARM-CNN model.

comparison between some typical segmentation results of
CSARM-CNN and the ground truth contour of benign Nevus,
Melanoma and SK lesions in ISIC-2017 test dataset. The
first two columns are Melanoma, the middle two columns are
Seborrheic Keratosis, and the last two columns are Nevus.

2) COMPARISON ON THE PH2 DATASET
To test the robustness and cross-dataset performance of
our method, we also evaluated our proposed model using
the PH2 test data set (including 200 dermoscopy images).
As shown in Tables 12 and 13, our method performs slightly
better in melanoma cases, while it shows a significant
improvement in benign cases.

The proposed CSARM-CNN achieves significantly better
specificity and accuracy than previous work, which means
that our method has higher non-lesional segmentation ability

FIGURE 9. Visualization results for PH2 dataset. (a) Original image of skin
lesions (b) The ground truth corresponding to the lesion (c) Lesion
segmentation results of CSARM-CNN model (d) Comparison of the ground
truth (red) and segmentation results of ours (blue) (e) CAM saliency maps
visualization of lesion segmentation of CSARM-CNN model.

and overall pixel-level segmentation performance compared
to other methods. In addition, the experimental results also
show that our method is equivalent to the existing technology
in Dice coefficient and Jac Index, but in the previous work,
before segmenting the lesion, in many cases, the hair removal
problem was solved by additional pretreatment steps.This
step involves applying different filters (such as a directional
Gaussian filter [45]) to the original image. In contrast, our
strategy requires no additional steps. Figure 9 visually shows
the segmentation result map (d) and CAM saliency map (e) of
our proposed CSARM-CNN compared with ground truth.
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The first two columns areMelanoma, themiddle two columns
are Seborrheic Keratosis, and the last two columns are Nevus.

V. CONCLUSION
In this paper, an end-to-end skin lesion segmentation model
CSARM-CNN is proposed. The model is based on the
CSARM block, which uses a combination of residual
learning, channel attention mechanism and spatial attention
mechanism to improve the discriminant and representational
ability of CNN. The model uses U-net as the basic structure.
An image pyramid is built in the encoder path to feed multi-
scale inputs. A local prediction map corresponding to the
multi-scale input image is generated in the decoder path.
At the same time, the multi-output cross entropy loss function
is used to promote the training of the model.To verify its
effectiveness, we evaluated the model using two publicly
available datasets (ISIC-2017 Challenge and PH2 dataset).
The results show that the proposed CSARM-CNN is superior
to some of the latest algorithms for skin lesion segmentation,
and it is verified that the CSARM block can be applied to
different network models and improve the segmentation per-
formance of the model on skin lesions. Compared with two
common attention modules (SE Block and FPA), CSARM
also has certain competitiveness in skin lesions. For future
work, we believe that combining appropriate pre-processing
and post-processing stages with the proposed model will
further improve model performance and apply the model to
other medical applications to demonstrate its versatility.
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