
Received June 18, 2020, accepted July 2, 2020, date of publication July 6, 2020, date of current version July 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007536

Security and Performance in IoT: A Balancing Act
LUKE E. KANE 1, JIAMING JAMES CHEN2, REBECCA THOMAS2,
VICKY LIU2, AND MATTHEW MCKAGUE2
1Cyber Security Cooperative Research Centre, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
2Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia

Corresponding author: Luke Kane (le.kane@qut.edu.au)

This work was supported in part by the Cyber Security Research Centre Ltd., funded by the Australian Government’s Cooperative
Research Centres Program.

ABSTRACT With predictions suggesting there will be 18 billion Internet of Things (IoT) devices live by
2022, performance of these low powered devices, as well as security is of utmost importance. Managing
security and performance is a balancing act. Achieving this balance will always continue to be a challenge.
This research presents two main contributions to this area. The first contribution is a framework to measure
cryptographic performance of IoT devices. The areas of measurement are power consumption, time cost,
energy cost, random access memory (RAM) usage and flash usage. The second contribution is an insightful
comparison of the performance of the ATmega328, STM32F103C8T6 and ESP8266 low powered microcon-
troller devices. Experiments were conducted on these devices running various cryptographic operations. The
measured operations are from three encryption algorithms: Advanced Encryption Standard (AES), ChaCha
and Acorn. The proposed methods from this research are real-world in nature rather than simulated, and
can be used by others wishing to conduct their own IoT performance testing. The results show that the
ATmega328 has the lowest overall power consumption. The ESP8266 was generally the fastest performing
device. ChaCha outperformed AES in both time cost and energy cost. Both algorithms outperformed Acorn
in these metrics. The STM32F103C8T6 device displayed the best overall energy cost, while still performing
well in terms of time. The results from the experiments conducted in this study can be used by network
designers, developers and others to make appropriate decisions in IoT deployments with regards to balancing
performance and security.

INDEX TERMS AES, Acorn, ChaCha, ciphers, cryptography, the Internet of Things (IoT), lightweight
encryption, power consumption.

I. INTRODUCTION
The Internet of Things (IoT) is growing at an incredible rate.
In 2011, the number of Internet connected devices exceeded
the entire world’s population [1]. According to Ericsson,
by 2022 there will be approximately 29 billion Internet
enabled devices with approximately 18 billion of these being
IoT devices [2]. IoT and related communications technolo-
gies underpin the development and implementation of smart
cities, with IoT already being used in numerous applications
including wireless sensor networks (WSN), smart homes and
in critical infrastructure such as power and water [3]. With
such wide adoption and integration into society, it is impor-
tant that these devices can operate in a secure manner. IoT
devices are often low powered devices with limited resources

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Esposito .

available [4], which means providing a sufficient standard of
security needs to be balanced with the physical constraints
of the device such as being battery powered, having low
processing power and/or limited memory capacity. This bal-
ance of security versus performance forms the motivation of
this research. Our contribution is a proposed methodology to
measure the performance of common IoT devices performing
cryptographic operations in the key areas of power consump-
tion, energy cost and time cost. In addition to these main
performance areas, a methodology to measure random access
memory (RAM) and flash memory utilisation is also pre-
sented. The research aims were to firstly use an experimental
approach rather than a simulated approach when designing
our proposed methodology and secondly through the test-
ing of cryptographic operations on common IoT devices,
present and discuss recommendations on appropriate device
and algorithm combinations for various scenarios.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121969

https://orcid.org/0000-0002-3851-1987
https://orcid.org/0000-0002-0085-0748

L. Kane et al.: Security and Performance in IoT

The scope of this study is the measurement of performance
of cryptographic algorithms running on commonly available
microcontrollers that are typical in IoT deployments. Trans-
mission from device to device was excluded from the scope.
Only operations running locally on the devices were mea-
sured. The tested operations include encryption, decryption
and set key of ChaCha, Acorn and Advanced Encryption
Standard (AES) Electronic Code-Book (ECB), Cipher Block
Chaining (CBC), Cipher Feedback (CFB), Output Feedback
(OFB) and Counter (CTR) modes. All algorithms selected
were operated with 128-bit encryption. AESwas selected due
to its widespread use [5]. The ChaCha algorithmwas selected
due to its promising performance results when compared with
AES [6]. Acorn is a newer cipher and was selected due to
being designed to operate on resource-constrained devices
[7]. The microcontrollers selected for the experiments were
the ATmega328 [8], the STM32F103C8T6 [9], [10] and the
ESP8266 WIFI Witty Cloud Development Board [11]–[13].
These microcontrollers were selected due to their low cost,
their accessibility, their common place usage in IoT deploy-
ments and the fact they represent three distinct architectures
being AVR, ARM and Tensilica.

This research first presents a literature review which dis-
cusses some relevant background information on the AES,
Acorn and ChaCha ciphers and a thorough review of rele-
vant previous work. The microcontrollers and other resources
used in the experiments are then covered. The proposed
performance analysis framework is then presented and the
methodology is explained in detail. Finally, the conclusion
is presented with a summary and possible future work sug-
gestions.

II. BACKGROUND
A. AES
The AES symmetric encryption algorithm was developed by
two Belgian cryptographers - Daemen and Rijmen [5]. It was
created in response to a request made by the United States
NIST (National Institute of Standards and Technology) for a
new encryption algorithm to replace the then standard Data
Encryption Standard (DES) encryption algorithm, which by
then was known to be vulnerable to brute force attacks [5].
In 2001, AES was published as the FIPS (Federal Infor-
mation Processing Standards Publication) 197 standard [14]
and subsequently was approved for use by the US federal
government for protection of sensitive electronic data. Since
then, its use has been widespread. AES is flexible enough to
be used in applications with high security requirements such
as e-commerce, as well as applications with fast processing
requirements, such as those involving image or video process-
ing [15].

The AES encryption algorithm is an iterative algorithm
which processes data in blocks of 128 bits [5]. It conducts
a set number of operations on each data block for a fixed
number of iterations that is determined by the chosen key size.
As shown in Table 1, AES supports key sizes of 128, 192 and

256 bits, and based on the key size chosen, it conducts 10,
12, or 14 operations respectively [5]. Given AES’s popularity
and widespread use, it was selected as one of the algorithms
to be measured in this study.

TABLE 1. Number of rounds for each encryption algorithm [5].

1) MODES OF OPERATION
Cipher block modes of operations are used to dictate how to
apply an encryption or decryption algorithm to a large number
of data blocks [16]. As per NIST publication [16], there are
over a dozen block cipher modes in AES. As mentioned in
Section I, the scope of this study is limited to ECB, CBC,
CFB, OFB and CTR modes. A brief comparison of these
modes is provided in Table 2.

2) ECB MODE
ECBmode has the simplest implementation of the fivemodes
of operations discussed in this study. For each encryption
process as shown in Formula (1) [16], the encryption algo-
rithm in ECB mode receives a key K and a plain-text block
Pt as input and produces a cipher-text blockCt as output [16].
The decryption process as demonstrated in Formula (2) [16]
occurs similarly, with the decryption algorithm receiving a
key K and a cipher-text block Ct as input and produces a
plain-text block Pt as output [16].

Ct = E(K .Pt), t = 1N (1)

Pt = D(K .Ct), t = 1N (2)

One of the primary drawbacks of ECB mode is that for a
given key, a plain-text block will always encrypt to the same
cipher-text [16]. This makes it vulnerable to known plain-text
attacks like the code-book attack, where an attacker could
keep track of plain-text blocks and corresponding cipher-text
blocks and then use this information to their advantage to
modify cipher-text blocks in transmission. It is recommended
to use ECB mode only for short messages like an AES key,
as it may be insecure to use with lengthy messages [5],
[16]. One advantage of ECB mode is that since each data
block is operated on independently, and the blocks do not
influence each other, multiple data blocks can be processed
at the same time. With parallel encryption and decryption,
the overall processing times can be reduced. Furthermore,
with ECB mode, an error in a cipher-text block will result
in a deciphering error in the corresponding plain-text block
only.

121970 VOLUME 8, 2020

L. Kane et al.: Security and Performance in IoT

TABLE 2. Comparison between different modes of operations [16].

3) CBC MODE
In CBC mode, for the encryption process demonstrated by
Formula (3) [16], the plain-text block Pt is first XORed
with the previous cipher-text block Ct−1. The output is then
encrypted using a key K to produce the cipher-text block Ct .
For the first encryption, C0 is the initialisation vector (IV),
which is a randomly chosen number that is sent along with
the cipher-text blocks [16]. The decryption process is shown
in Formula (4) [16].

Ct = E(Pt ⊕ Ct−1,K), t = 1N and C0 = IV (3)

Pt = D(Ct ,K)⊕ Ct−1, t = 1N and C0 = IV (4)

The addition of an IV and the involvement of the previ-
ous cipher-text block in the encryption process ensures that
attackers cannot create a code-book, because for a given key,
a plain-text block does not always encrypt to the same cipher-
text block [16]. One of the applications of CBC mode is to
provide integrity assurance. This is achieved by using the
last block of a file to create a message authentication code
(MAC), which is referred to as CBC-MAC [17]. The CBC-
MAC is used for integrity checking and is sent along with the
encrypted file to the receiver.

4) CFB MODE
Unlike the previous cipher block modes, the plain-text block
is not directly fed as input to the encryption algorithm in
CFB mode. Instead, to produce the cipher-text block Ct ,
the previous cipher-text block Ct−1 is encrypted using key
K, and the output of this is XORed with the plain-text block
Pt . For the first encryption process as shown in Formula (5),
the IV is used instead of the previous cipher-text block Ct−1
[16]. The decryption process is demonstrated in Formula (6).

Ct = E(Ct−1,K)⊕ Pt , t = 1N (5)

Pt = E(Ct−1,K)⊕ Ct , t = 1N (6)

In CFB mode, the encryption algorithm itself can be used
for the decryption process, in contrast to ECB and CBC

modes, where a separate decryption operation is required
[16]. Since the operation is the same, the resulting encryption
and decryption times would be similar. A key advantage of
CFB mode is its ability to self-synchronise. For instance, if a
cipher-text block Ct is lost in transmission, when the receiver
decrypts the next cipher-text block Ct+1, it would decrypt as
E(Ct ,K) ⊕ Ct+1, resulting in an incorrect plain-text block
Pt . For the next cipher-text block Ct+2 however, the receiver
would decrypt it as E(Ct+1,K)⊕Ct+2, which would result in
the correct plain-text block Pt+2 and the cipher would once
again be back in sync [16].

5) OFB MODE
Like CFB mode, the plain-text block is not directly fed as
an input to the encryption algorithm in OFB mode. Instead,
to produce the cipher-text block Ct , the output of the encryp-
tion of Ot using key K is XORed with the plain-text block
Pt , where Ot is the output of the previous encryption process
[16].

For the encryption of the first plain-text block P1,O0 refers
to the IV, which is chosen at random. Thus, OFB mode is in
effect a synchronous stream cipher, where Ot is a keystream
that is XORed with plain-text Pt to produce cipher-text Ct
during encryption, and XORed with cipher-text Ct during
decryption, to produce plain-text Pt . Encryption and decryp-
tion are demonstrated by Formulas (7) and (8) respectively
[16].

Ot = E(Ot−1,K)

Ct = Ot ⊕ Pt , t = 1N (7)

Ot = E(Ot−1,K)

Pt = Ot ⊕ Ct , t = 1N (8)

Like CFB mode, OFB mode also does not require a sepa-
rate decryption algorithm to decrypt cipher-text. Instead the
encryption algorithm itself can be used. Since the operations
are the same, the encryption and decryption times are also
likely to be similar.

VOLUME 8, 2020 121971

L. Kane et al.: Security and Performance in IoT

The output of the encryption process in OFB mode can
be used to produce key streams. Furthermore, unlike in CFB
mode, the output of the encryption process depends only on
the IV and key and is independent of the plain-text blocks
being encrypted [16]. This introduces an added advantage,
where certain operations in OFB mode can be pre-computed
even before receiving the cipher-text or plain-text. [16].

6) CTR MODE
Like OFBmode, CTRmode is in effect a synchronous stream
cipher which involves a generated keystream, a cipher-text
and a plain-text. In CTR mode, the keystreamOt is generated
by encrypting a concatenation of a nonce N and a counter
value t that is incremented for each subsequent encryption.
The nonce N used would be a randomly chosen number [16].
For both the encryption and decryption process, which can

be seen in Formulas (9) and (10) respectively [16], the same
counter value must be used. As best practice, it is recom-
mended to ensure different nonce values are used for different
plain-text messages to ensure the confidentiality of the plain-
text is upheld [16].

Ot = E(Tt ,K) where Tt = N ||t

Ct = Ot ⊕ Pt (9)

Ot = E(Tt ,K), where Tt = N ||t

Pt = Ot ⊕ Ct (10)

Counter mode has several advantages. Firstly, its abil-
ity to encrypt or decrypt different blocks simultaneously.
This is because the encryption and decryption process
of a block does not depend on any input from previous
encryption or decryption stages [16]. Secondly, in CTR
mode the output of the encryption or decryption process
can be pre-computed even before the receiver receives
the plain-text or cipher-text blocks [16]. Thirdly, in CTR
mode a random plain-text or cipher-text block can be
encrypted or decryptedwithout having to process prior blocks
first [16]. Finally, unlike in ECB and CBCmodes, CTRmode
does not require a separate decryption algorithm to decrypt.
Like OFB and CFB modes, the encryption algorithm itself
can be used for decryption which would in turn lead to similar
decryption and encryption processing times.

B. ChaCha
In 2005, ChaCha20 was introduced by Bernstein [6] as a
candidate for the eSTREAM project. ChaCha20 is a stream
cipher that is based on the Salsa cipher, which accord-
ing to Bernstein has been consistently faster than AES
[6]. ChaCha8, ChaCha12 and ChaCha20 have 8, 12 and
20 rounds, and each of them are based on the Salsa8,
Salsa12 and Salsa20 respectively. The changes incorporated
into ChaCha (compared to Salsa) can be attributed to its
improved diffusion per round, which in turn contributes to its
stronger resistance to cryptanalysis compared to Salsa, whilst
still preserving the time it takes per round [6].

The 256-bit stream cipher’s function accepts a 256-bit
key, a 64-bit block counter and a 64-bit nonce as inputs.
Each round of the cipher consists of 16 XORs, 16 addi-
tions and 16 constant-distance 32-bit word rotations. The
cipher’s round function is split into two functions that alter-
nate between even rounds for column-round functions and
odd rounds for row-round functions. The row-round function
rotates the rows of the state matrix right and then rotates the
columns upwards [18]. The number of rotations performed
would depend on the column and row position. The consoli-
dation of row and column round functions is called the double
round function [18].

Depending on what is being prioritised, maximum secu-
rity, maximum speed or a balance between the security and
speed, one can choose between ChaCha20, ChaCha8 and
ChaCha12 accordingly [6]. Some of ChaCha’s most notable
applications include OpenSSL and NSS. Google adopted
ChaCha20 in March 2013 to enable symmetric encryption in
OpenSSL and NSS [19]. Given its significant applications,
ChaCha is one of the ciphers chosen for analysis in this study.

C. ACORN
Acorn is an authenticated cipher, which means its single
algorithmic construct provides three primary cryptographic
services - integrity, confidentiality and authentication [7].
Though these services can be collectively provided through
schemes that combine encryption algorithms (stream or block
ciphers) with message authentication schemes (keyed hash
functions), having a dedicated authenticated encryption
design usually has the advantage of improved efficiency and
performance, particularly in devices with limited resources
such as IoT devices [7]. Acorn has this advantage and has
a fast software implementation, as 32 of its steps can be
simultaneously computed [7], [20].

The Acorn-128 authenticated cipher requires a 128-bit key
and a 128-bit IV. It takes up to 1792 steps for its initialisation
process. The plain-text and associated data lengths in this
authenticated cipher should be amaximum of 264 bits and the
authentication tag should be a maximum of 128 bits. Associ-
ated data refers to unencrypted data that is authenticated [7].

Acorn involves the concatenation of six linear-feedback
shift registers and has three primary functions. The first func-
tion generates a key stream bit from the state. The second
function generates the overall feedback bit. The final function
updates the state. Finally, the cipher generates a tag, after all
the plain-text bits are processed. The decryption process for
the cipher is similar [7], [20].

In 2013, the Competition for Authenticated Encryption:
Security, Applicability, and Robustness (CAESAR) was
started with the intent of providing a platform for developing
authenticated ciphers with improved capabilities compared to
the standard authenticated cipher AES-GCM. One of the use
cases specified by the CAESAR committee during the evalu-
ation of the round 3 candidates was lightweight applications.
This meant the authenticated ciphers had to exhibit improved
performance on resource-constrained devices while being

121972 VOLUME 8, 2020

L. Kane et al.: Security and Performance in IoT

able to exhibit resistance to side channel attacks. This kind
of attack is often used to target cryptographic implementa-
tions on resource-constrained IoT devices deployed in remote
locations with little to no physical protection [21]. Thus,
in addition to being efficient, authenticated ciphers are also
expected to be resistant to such attacks.

In order to incorporate variety in the ciphers tested,
the decision was made to include Acorn, an authenticated
cipher that uses stream encryption. Furthermore, with Acorn
being one of the finalists of the previously discussed pres-
tigious CAESAR competition 2018, it was deemed worthy
and relevant for comparison with the other more established
algorithms tested in this study, such as AES. Finally, Acorn is
a relatively new authenticated cipher, and thus there was not
any prominent applications for it at the time of this study.

D. PREVIOUS WORK
A comparison of the most relevant previous work, highlight-
ing the innovation of this work, can be seen in Table 3.
Most existing research on power and energy consumption
measurements of low-resource devices are based on Wire-
less Sensor Network (WSN) nodes, which are low-powered
devices that can communicate wirelessly [22]. One such
work includes Dezfouli et al. [23] who proposed Energy
Measurement Platform for Wireless IoT (EMPIOT), a power
measurement platform for IoT devices. Using EMPIOT, they
measured the energy and power consumption of five IoT
devices with 4 varying types of workloads. EMPIOT consists
of two primary components - a base board that runs a data col-
lection and controlling software, and a shield board with an
energy monitoring chip (INA219) that handles both voltage
and current measurements. However, the power measuring
platform has a limitation, where it is incapable of capturing
low current transitions between 1µA, 10µA and 100µA low
powered states.

Other studies employ specialised equipment and soft-
ware to enable power and energy consumption measure-
ments of low-powered devices. Huth et al. [24] in their
research, measure and compare the energy consumption of
two key agreements scheme implementations, Elliptic Curve
Diffie-Hellman (ECDH) and Channel Based Key Agreement
(CBKA), on a 32-bit ARM Cortex M3-based IoT platform.
To measure the energy consumption, they make use of the
EFM32GG-STK3700 Giant Gecko, a starter kit from Silicon
Labs.

Zhang et al. [25], in their research, test for memory
requirements, execution times and energy consumption of
the MICAz sensor node, whilst considering only different
implementations of AES. Tomeasure the power consumption
and execution time, they make use of the Agilent 14565B and
66321D equipment. To measure the RAM and ROM usage
of the AES implementations, they use functions provided by
the operating system. Pereira et al. [26], in their research, test
the performance of symmetric ciphers, HMACs (hash-based
message authentication code), authenticated encryption with
associated data (AEAD) and hashing algorithms on the Intel

Edison - a low-powered 32-bit IoT platform, with a 32-bit
Intel Quark microcontroller. They test for performance in
terms of execution times and energy consumption. To do this,
they extract the energy consumption and run time values from
the output file of the LabView software setup and obtain
current consumption values using the Agilent 33401A digital
multimeter. The multimeter communicates with the LabView
software on the computer. These studies employ specialised
equipment and software to measure energy consumption and
execution times. In themethod adopted by this research, com-
monly available non-specialised equipment is used, such as
an oscilloscope to enable measurements of power and energy
consumption. By comparison, the methods used to gather the
performance data in this research are more accessible to those
that do not have such a specialised test bed available.

There are other works that make use of an oscilloscope
to enable measurements of execution time, current flow,
power consumption and energy cost. Tung et al. [27] in their
research measure only the current consumption of the Intel
Edison module in three different operation modes - active,
idle and sleep. To do this, they make use of an AC/DC current
measurement system to measure the current waveforms of
the different operation states. They use an oscilloscope to
measure the up time of the Intel Edison module in sniff/sleep
mode. In Ledwaba et al. [28] the performance of four ARM
architecture chips are considered against the algorithms AES-
128 in CTR mode, SHA-256 and Elliptical Curve Digital
Signature Algorithm (ECDSA). This study has expanded on
Ledwaba et al. [28] by introducing more algorithms and
a wider array of microcontroller devices representative of
different architectures.

Guimaraes et al. [29] used an oscilloscope to obtain
time intervals. In their research, they calculate the energy
consumption of various encryption algorithms on the
MICA2 wireless sensor, which uses an ATmega128L micro-
controller. They attributed the main factor for difference in
energy consumption to be processing times. Thus, to measure
the time intervals, theymake use of an oscilloscope connected
to a pin on the ATmega128. Other studies [32]–[34], use the
oscilloscope to measure energy consumption of two com-
mercial WSN nodes implementing cryptographic algorithms.
They make use of the PicoScope 3206 oscilloscope and
2 resistors of 0.1� and 10�. To eliminate noise, they make
use of an instrumentation amplifier. However, of the four
cryptographic algorithms they tested, SHA-1, RC5, DES-
CBC and AES, two are no longer in use, that is SHA-1 and
DES and as such their relevance today could be questioned.

Of the research works reviewed, some [30], [31] use a
similar test bench to this research. The current sensing resis-
tors used in the research by Lee et al. [30] and Panait and
Dragomir [31], differ from the one employed in this research
being (1�). Lee et al. [30] and Panait and Dragomir [31]
make use of 10.1� and 4.99� resistors respectively. In addi-
tion to this, Panait and Dragomir [31] test the energy con-
sumption of only AES implementations in different modes
of operations. This work has a broader scope, as it measures

VOLUME 8, 2020 121973

L. Kane et al.: Security and Performance in IoT

TABLE 3. Summary of the most relevant previous work to highlight the differences and innovation of this study.

power consumption, time cost, energy cost, RAM, and flash
memory usage of symmetric encryption algorithms, namely
AES in ECB, CBC, CFB, OFB and CTR modes of opera-
tion, ChaCha8, ChaCha12, ChaCha20 and Acorn. This study
examines more up to date algorithms and devices when com-
pared to Lee et al. [30]. Themethod in this work has also been

adopted into a framework for other researchers, IoT network
designers and others to follow and implement for their own
testing purposes. This contrasts with Lee et al. [30] where the
methodology is not as well defined and reproducible.

Wander et al. [35] presents a comparison of the
energy consumption of two public-key algorithms and of

121974 VOLUME 8, 2020

L. Kane et al.: Security and Performance in IoT

implementations of mutual authentication and key exchanges
between two nodes. They do this by estimating the energy
consumption based on the current drawn from the power sup-
ply. In contrast, this study examines more relevant algorithms
using amore sophisticated and accurate test bench to measure
the actual energy usage when compared toWander et al. [35].

In Tsai et al. [36] the authors propose an AES-128 encryp-
tion scheme for LoRaWAN networks that they assert to be
more energy efficient than the current AES-128 implemen-
tation that is built into the protocol. This study examines
the energy usage over a period of one day in a comparative
manner. The study is limited to only AES-128 and the energy
consumption is based on the ARM architecture only. This
study has built upon the work of Tsai et al. [36] to create
a more broadly applicable performance analysis method and
framework that is protocol agnostic.

Other research [37]–[39], present mathematical models
and energy maps created using statistical models to calculate
energy consumption of cryptographic algorithm implemen-
tations in low-powered devices. This research takes a more
practical based approach and does not use models and simu-
lations. It is the intent that the research presented provides a
more real-world performance analysis of both the devices and
the ciphers tested. Similarly, in Morin et al. [40] theoretical
modelling and analysis is conducted to determine the energy
usage of communication technologies such as LoRa, Sigfox,
and others in various transmission states. While the work
does examine IoT power consumption, it does not focus on
performance of different devices, nor does it focus on secu-
rity. By contrast, in this study, devices in transmission states
are not considered and results are based on experimentation
rather than theoretical modelling.

III. EXPERIMENTAL ENVIRONMENT SETUP AND METHOD
This section details the required resources to reproduce the
experiment results as well as the methodology adopted for
the experiments. It first covers the microcontrollers that were
tested and their specific performance specifications. The
required resources that are needed are then detailed. A per-
formance analysis framework is then presented, followed by
the method that was adopted for the experiments, which is
based upon the proposed performance analysis framework.

A. MICROCONTROLLERS
Three different microcontroller devices were selected to be
used for the experiments. In choosing which devices to test,
it was important that different architectures were selected for
comparison as well as different bit widths. These were the
ESP8266 ESP12–F WiFi Witty Cloud Development Board,
STM32F103C8T6 and ATmega328P.

The Arduino range of microcontrollers is extensive. The
ATmega328 was chosen over the other devices in the Arduino
family such as the Arduino Uno or Mega, due to it being
cheaper. The ATmega328 is also suitable to use in IoT
networks and WSN due to its small footprint and lack of
unnecessary chips and devices. The STM32F103C8T6 was

FIGURE 1. ATmega328, ESP8266 and STM32F103C8T6 Microcontroller
devices from left to right. Capacitors and resistors have been soldered to
the devices.

chosen specifically as compared to other devices in the
STM32 range, it is minimalist and does not have unnecessary
extras included. The ESP8266 device was chosen as it is
widely used in industry IoT implementations. In the case of
the ESP8266 it has extra devices such as a photo resistor and
red green blue (RGB) light emitting diode (LED). These extra
components were removed to minimise wasted energy usage.
Current sensing resistors and capacitors have been soldered
onto the devices for the experiments. All three devices that
were selected for testing can be seen in Fig. 1. These devices
were selected for testing as they are popular devices used
in IoT applications. All selected devices are cost effective,
widely available and were accessible at the time of the exper-
iments. For the key technical specifications of each device,
refer to Table 4.

TABLE 4. Microcontroller technical specifications.

B. REQUIRED RESOURCES
The resources required to conduct the experiments are
detailed below:

1) As discussed previously, the three microcontroller
devices that were tested were the ESP8266, the
STM32F103C8T6 and the ATmega328. External uni-
versal serial bus (USB) programmers were used even
when on-boardUSBports were available. This decision
was made to avoid uploading unnecessary boot-loader

VOLUME 8, 2020 121975

L. Kane et al.: Security and Performance in IoT

FIGURE 2. Proposed three-layer, six-phase performance analysis framework.

code to the devices that would consume extra space in
the flash memory.

2) A Personal Computer (PC) was required for prepara-
tion and uploading of the code to the devices. Sev-
eral installed resources were required. The Arduino
integrated development environment (IDE) was used

to produce the code for the experiments and to
upload the code to the devices. TheATmega328 already
had the appropriate libraries to support it included with
the IDE. The STM32 libraries were enabled through
the board manager in the IDE. The ESP8266 libraries
had to be obtained from an external source [41].

121976 VOLUME 8, 2020

L. Kane et al.: Security and Performance in IoT

The Arduino Cryptography Library [42] was installed
to provide all the encryption algorithms to be tested.

3) An external power source to power the devices. For this
study an Agilent U8031A Direct Current (DC) power
supply was used. This device was selected to ensure a
more stable source of power was supplied in contrast
to a battery. This power supply is a linear supply, and
as such there is less noise present when compared to a
switching power supply.

4) A resistor to be used for current sensing. A commonly
available 1 Ohm (�) resistor was used. The resistance
was measured using a Digital Multimeter to ensure
the advertised resistance value was accurate within an
acceptable tolerance. The resistor was soldered onto
each microcontroller device to minimise any additional
sources of noise being added to the circuit.

5) Capacitors were used to stabilise the voltage output
from the power supply.

6) A Digital Oscilloscope was required to obtain the
experiment data for analysis. For the experiments
detailed in this study, an Agilent DSO-X 2024A Dig-
ital Oscilloscope was used. This oscilloscope has four
channels, three of which were utilised for the experi-
ments. The reason anOscilloscopewas usedwas so that
all data relating to the experiments could be captured
at the one time using the multiple channels. It was also
used as it is a commonly available piece of equipment
that is not specialised for IoT device testing.

C. PERFORMANCE ANALYSIS FRAMEWORK
The PerformanceAnalysis Framework proposed by this study
can be seen in Fig. 2. The framework is a three-layer top-
down design incorporating six distinct phases designed to
provide clarity, direction and structure. The beneficiaries of
this framework may include researchers, IoT network and
device designers and others seeking to measure resource cost
in IoT security applications.

The first layer at the top as defined in the framework is the
Planning layer. This layer consists of two phases which cover
the preparation and configuration of the main components
that form the performance analysis experiments. The second
layermoving down is theDeployment layer. In this layer there
are two phases that are concerned with performing the actual
experiments. The third and final layer of the framework is
the Analytics layer. This layer contains two phases which
are focused on consolidation, analysis, and validation of the
experiment results.

1) PHASE 1: SELECTION AND PREPARATION
The Selection & Preparation phase takes two inputs - the
microcontroller units (MCUs) required for performance test-
ing and the software libraries to support this testing. Libraries
that may be required in this phase include device spe-
cific and cryptographic. The MCUs may require preparation
that include removing extraneous components that consume
unnecessary power, such as voltage regulators, LEDs and

sensors. Components that may need to be soldered onto the
MCUs at this stage include capacitors and current sensing
resistors.

2) PHASE 2: TEST BENCH CONFIGURATION
The Test Bench Configuration phase requires the configura-
tion of both the hardware and software components of the
measurement experiments. Measurement equipment such as
an oscilloscope, digital multimeter, power supply and appro-
priate cables need to be setup. It is important for the accuracy
and validity of the tests that any measurement equipment
is calibrated according to the manufacturer’s instructions.
In this phase, the code that will execute the tests on theMCUs
needs to be developed.

3) PHASE 3: CONFIGURE TEST INSTANCE
The Configure Test Instance phase is recurring and needs to
be repeated for each combination of device, algorithm and
operation that will be tested. The input voltage needs to be
set appropriately for each MCU. Appropriate precision needs
to be selected on the measurement equipment. Necessary
modifications to the testing code for each instance as well
as uploading the code to the MCU needs to occur in this
phase. Finally, the device needs to be connected to the testing
equipment ready for the Data Collection phase.

4) PHASE 4: DATA COLLECTION
In the Data Collection phase, the tests can be executed with
theMCU connected to the measurement equipment. Once the
data is captured, it must be extracted from the measurement
equipment. This extraction process can vary depending on the
equipment used and the functionality it provides. Once the
data collection phase has concluded, Phase 3 can commence
for the next combination of MCU, encryption algorithm and
operation to be tested. When all combinations of algorithm,
operation and MCU have been completed, phase 5 can then
commence.

5) PHASE 5: ANALYSIS
In the Analysis phase, the data must be consolidated so it
can be processed and analysed efficiently and accurately.
Automation should be employed using scripting to remove
extraneous and unnecessary data. An example of extraneous
data would be the resource usage between operation cycles.
Once the final data set is available, calculations can be made
using appropriate formulae. By the conclusion of the analysis
phase, the output produced will be the final results for the
desired performance metrics.

6) PHASE 6: VALIDATION
In the Validation phase, a selection of the results should be
retested with an alternative method where possible. This is
done to demonstrate correctness of the testing methodology
adopted. A broad selection of results across different com-
binations should be measured. This phase does not require
all results to be retested, just a small sample to demonstrate

VOLUME 8, 2020 121977

L. Kane et al.: Security and Performance in IoT

correctness. Once correctness has been proven, this phase
may no longer be necessary in all circumstances.

7) ADVANTAGES AND DISADVANTAGES OF THE PROPOSED
FRAMEWORK
The proposed framework has both advantages and disad-
vantages that should be highlighted. The framework pro-
vides direction and guidance for researchers, designers and
others interested in measuring performance and security of
IoT devices. The framework itself is test bench, device and
algorithm agnostic and as such has broad application and
flexibility. The disadvantage of the approach taken by this
framework is the scalability of layer 2. If there is a very large
combination of devices, algorithms, and operations to test,
the repetition between phase 3 and phase 4 could become
tedious.

D. METHODOLOGY
This section discusses the methods used to conduct the power
consumption, energy cost and time cost measurements of
the various ciphers and operations on each of the three cho-
sen devices. The methods used to conduct the experiments
covered in this research are sound and use some techniques
similar to previous work [30], [31]. A sample of the results
were validated using a Keithley DMM6500 Digital Multime-
ter where consistent results in current were observed.

For the tests of the various AES modes and the Acorn
algorithm, 16 bytes of data were hard-coded into each of
the algorithms to be used to test the encryption, decryption
and set key operations. In the case of the ChaCha algorithm,
whilst the same basic operations were tested, the hard-coded
data was 64 bytes in size. When the results for ChaCha were
presented, the results were divided by 4 so that the results
were comparable to the other ciphers.

For each operation on each device, code was uploaded to
the device from the PC using the Arduino IDE. This code
has the respective operation running in a loop. The device
was then disconnected from the PC, and then connected to
the oscilloscope and the power supply. To avoid introducing
any further noise into the results, the current sensing resistors
were soldered onto the devices and the use of any breadboards
were avoided. The oscilloscope was used to capture the cur-
rent and voltage of the load precisely as well as the time of
each cycle. A circuit diagramwas designed as shown in Fig. 3.
The load and 1� resistor are in series. The three channels (V1,
V2 and V3) from the oscilloscope are across the resistor (V1),
the load and the resistor (V2), as well as a designated pin of
the load (V3) which is used to determine the start and stop
times of each operation cycle.

Between each test iteration, the pin located at (V3) was set
to high at the beginning of the operation and then returned to
low at the conclusion of the operation. The time in-between
these two events forms one cycle of the operation. Each cycle
was clearly visible on the oscilloscope. For example, the gold
line (V3) in the lower part of Fig. 4 shows the end of one cycle
and the commencement of the next cycle. The bidirectional

FIGURE 3. Diagram of circuit used for the experiments.

arrows in upper part of the image highlights the boundaries of
three of the repeated operation cycles. In this study, the por-
tions of V1 in blue and V2 in pink that occurred within the
boundaries of the each of the operation cycles are considered
for the purposes of the time cost, power consumption and
energy cost calculations.

FIGURE 4. Screenshot of the oscilloscope measurement.

To extract the energy cost (in Joules) of each of the individ-
ual operations, the power consumption (in watts) first needs
to be calculated. This can be achieved using Formula (11)
which was derived from the power law.

PLoad =
V1
R
× (V2 − V1) (11)

where V1
R is the current of the circuit andV2−V1 is the voltage

of the load. Once the power consumption is obtained using
Formula (11), the energy cost (Joules) of each iteration can

121978 VOLUME 8, 2020

L. Kane et al.: Security and Performance in IoT

then be calculated using Formula (12) which has been derived
from Formula (11).

ELoad =
n∑
i=1

Pi × ti (12)

where Pi is obtained from Formula (11), and t1 is the time
interval between the samples taken. In order to obtain the
average energy cost of encryption methods on various loads,
the sum of the energy cost was divided by the number of
iterations (m). This is shown in Formula (13).

EavgLoad =

∑m
j=1

∑n
i=1 Pi × ti
m

(13)

Once the data was analysed, it was noted there was a spike in
power usage at the beginning of each cycle. This was due to
pin being used to detect the cycle boundaries being set to high.
This can be seen in Fig. 5. Some noise is also present and can
be seen in the figure, as well as the regular oscillation of the
CPU clock. Bypass capacitors were used to limit the effect
of the spike and reduce overall noise. Bypass capacitors are
commonly used to improve the stability of CPUs.

FIGURE 5. A Spike in measurements. The CPU clock frequency is also
clearly visible.

E. MEMORY ANALYSIS METHOD
On resource-constrained IoT devices, memory utilisation is
an important factor to consider. Misuse or attempted overuse
of available resources can result in unexpected and unde-
sirable behaviour. Determining the space used in the flash
memory by the code is a relatively simple process. This
information can be obtained from the compiler when the code
is uploaded to the device. An example of this output can be
seen in Fig. 6.

Determining the amount of RAM used during code execu-
tion is a more challenging task. The approach this study has
taken is to obtain the minimum and maximum free memory
available during the code execution. The first measurement
is taken prior to the encryption algorithm running. This ini-
tial value will represent the largest amount of free memory.
A measurement is taken after each instruction throughout
the encryption algorithm execution. The MemoryFree library

FIGURE 6. Example of total flash memory usage displayed from the
compiler when uploading code for the ESP8266 device in AES CBC mode.

[43] is used to obtain the measurements. The measurements
were then output to the console, and the results were analysed.
The peak memory usage is calculated using Formula (14).

UsageMemory = MaxFreeMemory −MinFreeMemory (14)

IV. RESULTS
This section examines the results of the experiments con-
ducted on the three microcontrollers. The results are bro-
ken up into three sections. Each tested operation of all the
algorithms are presented. First the power consumption is
presented measured in watts per second, followed by time
cost in seconds of each operation. From these two results,
the total energy cost was calculated and is presented in this
section.

A. POWER CONSUMPTION
Power consumption is the amount of energy consumed
defined in watts, calculated as per Formula (11). The power
consumption of each operation for each of the tested devices
can be seen in Table 5 and Fig. 7. The ATmega328 device
exhibits the lowest power consumption across all tested algo-
rithms and operations, with the ESP8266 device exhibiting
the worst performance in this metric.

Each device demonstrated relatively consistent power con-
sumption across the board on the tested algorithms and opera-
tions. The results show that when the STM32F103C8T6 exe-
cuted both the ChaCha and Acorn algorithms, a slight
increase in power consumption can be seen when compared
with AES.

B. TIME COST
The time cost is the total amount of time it takes for any
given operation to run from start to finish. The time cost
results of each operation for each of the tested devices can be
seen in Table 6 and Fig. 8. Overall, the ATmega328 exhibits
the worst performance in terms of time cost across all tested
algorithms and operations. The ESP8266 performs the best in
most operations, exhibiting the fastest performance in 17 out
of the total 27 tested operations. The STM32F103C8T6 also

VOLUME 8, 2020 121979

L. Kane et al.: Security and Performance in IoT

performed well and was the fastest in the remaining 10 oper-
ations.

TABLE 5. Power consumption results (mW).

TABLE 6. Time cost results (µS).

The time cost of the AES algorithm operating in
ECB, CBC, CFB, OFB and CTR modes are very simi-
lar. For example, the time costs of AES encryption in any
mode on the ATmega328 is around 0.5 milliseconds. The

STM32F103C8T6 is shown to perform most AES operations
quicker than the other devices.

The results show that the ChaCha algorithms and theAcorn
algorithms exhibit similar time costs in the encryption and
decryption operations, with both algorithms performing sub-
stantially faster than AES.

C. ENERGY COST
Energy cost is the amount of energy used expressed in
joules and calculated as per Formula (12). The total energy
cost of each operation for each of the devices can be seen
in Table 7 and Fig. 9. The ESP8266 exhibits the highest
energy cost overall, with the highest energy cost in 14 oper-
ations. The ATmega328 is also expensive in terms of energy
cost, using the most energy in the remaining 13 operations.
The STM32F103C8T6 is the most energy efficient device in
all tested algorithms and operations.

TABLE 7. Energy cost results (µJ).

D. MEMORY UTILISATION
This section discusses the flash memory for all three of the
tested devices, and the RAM utilisation of the algorithms
on the ATmega328 and STM32F103C8T6. At the time of
the RAM testing, a suitable compatible library to conduct
accurate testing on the ESP8266 device was not able to be
sourced.

Memory utilisation is an important metric for resource-
constrained devices. Understanding the memory usage of
each algorithm can help developers to choose the most suit-
able algorithm for a given application and to also avoid any
potential programming issues.

121980 VOLUME 8, 2020

L. Kane et al.: Security and Performance in IoT

FIGURE 7. Power consumption comparison of results. Refer to Table 5 for all values.

FIGURE 8. Time cost comparison of results. Refer to Table 6 for all values. Values that continue beyond the
graph boundary are marked.

VOLUME 8, 2020 121981

L. Kane et al.: Security and Performance in IoT

FIGURE 9. Energy cost comparison of results. Refer to Table 7 for all values. Values that continue beyond
the graph boundary are marked.

FIGURE 10. Peak RAM utilisation of each cipher.

121982 VOLUME 8, 2020

L. Kane et al.: Security and Performance in IoT

FIGURE 11. Flash memory utilisation of each cipher.

TABLE 8. Peak RAM utilisation (Bytes).

TABLE 9. Flash memory utilisation (Bytes).

Fig. 10 shows that on different devices (8-bit and 32-
bit), the same algorithm can take varying amounts of mem-
ory. For example, the peak RAM usage for AES on the
ATmega328 is around 90 Bytes, but it takes from 120 to
170 Bytes on the STM32F103C8T6. The peak RAM usage
for ChaCha on the ATmega328 is very similar to the usage
on the STM32F103C8T6. Refer to Table 8 for the full table
of results.

Fig. 11 shows the STM32F103C8T6 has the highest util-
isation of flash memory for all the tested algorithms, while
the ESP8266 consistently displays the lowest usage. Refer to
Table 9 for the full table of results.

V. DISCUSSION
Although the ATmega328 consumes less power in watts
(refer to Fig. 7), it takes more time (see Fig. 8) and thus a

greater amount of energy is consumed (see Fig. 9) to execute
the algorithms on this device. The most appropriate use case
for the ATmega328 would be if there is a limitation on the
input power available.

The STM32F103C8T6 has a slightly lower efficiency in
terms of time cost when compared with the ESP8266. If the
use case requires a focus on raw speed, the ESP8266 would
be the most suitable device to implement although the
overall difference in speed when compared with the
STM32F103C8T6 is negligible across most operations. The
STM32F103C8T6 offers lower power consumption and
thus an overall lower energy cost than the ESP8266. The
STM32F103C8T6 appears to strike a better balance in terms
of power consumption and speed and as such would be the
most suitable device to implement in a wider variety of use
cases when compared against the other two devices. A com-
parison matrix was created to show the performance in terms
of best, worst and average in all the key performance areas.
This can be seen in Fig. 12.

FIGURE 12. Key performance areas matrix.

Using the data obtained from the experiments, a com-
parison of the time cost and energy cost of encrypting and
decrypting 1 Kilobyte (KB) of data has been prepared. This
has been calculated by using the average results for each
ciphers’ set key, encrypt and decrypt operation for both time
cost and energy cost. The results of the time cost can be
seen in Table 10 and Fig. 13. The energy cost can be seen
in Table 11 and Fig. 14. These comparisons were calcu-
lated using Formula (15). As demonstrated by the formula,
the encryption and decryption values are added together, and
then multiplied by 64. This has been done as the input data
input into the algorithms was 16KB. The cost of the set key
is then finally added.

Cost = SetKey+ (Encryption+ Decryption)× 64 (15)

The set key function of both AES and ChaCha have both a
lower time and energy cost than the encryption and decryp-
tion functions. In contrast, the Acorn set IV function costs
ten times more energy than its encryption and decryption
functions. In scenarios that require frequent keymodification,
Acorn could be potentially unsuitable. If this is the case,
ChaCha20 would be more suitable due to the set key and set
IV operations performing the best in terms of both energy
cost and time cost when compared to all other algorithms.
The Acorn encryption and decryption functions are similar
to ChaCha20 in terms of lower cost than the equivalent AES
functions.

VOLUME 8, 2020 121983

L. Kane et al.: Security and Performance in IoT

FIGURE 13. Time cost comparison of encryption and decryption for 1KB
of data.

FIGURE 14. Energy cost comparison of encryption and decryption for 1KB
of data.

As well as having a high energy and time cost for decryp-
tion, AES ECB mode is not recommended to be used as it
is not secure, particularly in the case when dealing with a
long message [44]. The AES CBC mode decryption oper-
ation shares the same higher energy and time cost as ECB
mode. This may make it unsuitable for use in microcontroller
devices if they are performing a large amount of decryption

operations. If the decryption is being performed on a server,
this may not be a concern.

In a use case involving encrypted one-way communication
between a server and an IoT device, there may be situa-
tions where an algorithm that has different total energy cost
between the encryption and decryption method is selected.
An example of this would be AES ECB and CBCmodes. The
encryption operation is less expensive than the decryption
operation. If it is necessary to use one of these ciphers,
a suggested way to optimise energy usage on the IoT device is
for down-link messages to have the server use the decryption
operation to encrypt the message sent. The IoT device would
then use the encryption operation to decode the message.
An IoT device sending a message up-link would use the
encryption operation to encrypt the message, and the server
would use the decrypt operation. This has the added benefit
of requiring only the one operation to be stored on the IoT
device, and thus could save flash storage space.

TABLE 10. Time cost results - Encrypt/Decrypt 1KB (µS).

TABLE 11. Energy cost results - Encrypt/Decrypt 1KB (µJ).

In real-world situations, consideration must be given to the
secure transmission of data. With the limited packet sizes
common to Low Power Wide Area Network (LPWAN) tech-
nologies, encrypting data could cause an unsustainable over-
head when compared to the maximum transmission payload
allowed. Some technologies have a very limited size available
for payload. An example of this is SigFox which can only
transmit a maximum payload of 16 bytes [45].

Due to library compatibility issues faced, the ESP8266 was
exempted from RAM usage testing and as such the
ATmega328 and STM32F103C8T6 were compared.
ATmega328 has 2KB SRAM, and STM32F103C8T6 has
20KB RAM memory, which means these three algo-
rithms take approximately 4% on the ATmega328, and less
than 1% on the STM32F103C8T6, leaving an abundance

121984 VOLUME 8, 2020

L. Kane et al.: Security and Performance in IoT

of space to utilise for other uses. This may make the
STM32F103C8T6 device a more appropriate choice depend-
ing on the specific use case.

Microcontrollers, like any other electrical equipment, all
have different input voltage requirements as seen in Table 4.
In the case of the ESP8266, throughout the testing, it was only
stable when the input voltage was increased to 3.9V which is
beyond its maximum voltage of 3.6V. This behaviour could
be attributed to the drop in the voltage across the current
sensing resistor.

VI. CONCLUSION
This research presented a framework to analyse various
performance metrics of microcontroller devices that are com-
monly used in IoT deployments. To demonstrate this frame-
work, a review was conducted of the performance of the
AES, ChaCha and Acorn ciphers running on three differ-
ent microcontroller devices, being the STM32F103C8T6,
the ATmega328 and the ESP8266 Wi-Fi Witty Cloud Devel-
opment Board. The devices were tested performing encryp-
tion, decryption and set key operations. Measurements were
taken in the key areas of power consumption, time cost and
energy cost. The results were presented in a comparative
manner in each of these categories. The peak RAM usage and
flash usage was also measured and presented. These results
were then discussed, and observations and recommendations
were made.

Overall the STM32F103C8T6 device seemed to strike the
better balance between performance and speed and would be
a suitable choice for many IoT deployments. The Acorn and
ChaCha algorithms perform substantially faster thanAES and
use less energy and should also be considered for lightweight
encryption uses. The extremely high cost of the Acorn set IV
operation may make it unsuitable for use in many situations.
Taking this into account, the ChaCha algorithm would be the
best choice for most use cases.

The future work that will be conducted is to expand the
testing to include a wider variety of ciphers, implementations
and device combinations to form a comprehensive compar-
ison guide that could assist designers in the selection of
appropriate devices for future IoT deployments. An accurate
method will be devised to measure the flash usage of the
ESP8266 device. Power consumption testing using authen-
tication tags will also be explored.

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things

(IoT): A vision, architectural elements, and future directions,’’ Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[2] Ericsson. Internet of Things Forecast. Accessed: Feb. 28, 2020. [Online].
Available: https://www.ericsson.com/en/mobility-report/internet-of-
things-forecast

[3] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,
M. Shafie-Khah, and P. Siano, ‘‘IoT-based smart cities: A survey,’’ in Proc.
IEEE 16th Int. Conf. Environ. Electr. Eng. (EEEIC), Jun. 2016, pp. 1–6.

[4] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh, ‘‘IoT security: Ongoing challenges and research opportunities,’’
in Proc. IEEE 7th Int. Conf. Service-Oriented Comput. Appl., Nov. 2014,
pp. 230–234.

[5] J. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced
Encryption Standard. Berlin, Germany: Springer, 2013.

[6] D. J. Bernstein, ‘‘ChaCha, a variant of Salsa20,’’ in Proc. Workshop Rec.
SASC, vol. 8, 2008, pp. 3–5.

[7] H.Wu, ‘‘ACORN: A lightweight authenticated cipher (V3),’’ in Proc. Can-
didate CAESAR Competition, 2016. Accessed: Aug. 16, 2019. [Online].
Available: https://competitions.cr.yp.to/round3/acornv3.pdf

[8] Atmel. ATmega328P Datasheet. Accessed: Sep. 9, 2019. [Online].
Available: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

[9] STMicroelectronics. STM32F103x8/STM32F103xB Datasheet—
Production Data. Accessed: Sep. 9, 2019. [Online]. Available: https://
www.st.com/resource/en/datasheet/stm32f103c8.pdf

[10] Arduino for STM32. STM32duino wiki: Blue Pill. Accessed: Sep. 9,
2019. [Online]. Available: https://wiki.stm32duino.com/index.php?
title=Blue_Pill

[11] Shenzhen Ai-Thinker Technology. ESP-12F Datasheet. Accessed:
Sep. 9, 2019. [Online]. Available: https://wiki.ai-thinker.com/_media/
esp8266/a014ps01.pdf

[12] ESP8266 Community Forum. ESP8266 Wiki. Accessed: Sep. 9, 2019.
[Online]. Available: https://github.com/esp8266/esp8266-wiki/wiki

[13] Espressif Systems. ESP8266EX Datasheet. Accessed: Sep. 9, 2019.
[Online]. Available: https://www.espressif.com/sites/default/files/
documentation/0a-esp8266ex_datasheet_en.pdf

[14] National Institute of Standards and Technology, ‘‘Federal information pro-
cessing standards publication 197,’’ in Proc. FIPS PUB, 2001, pp. 46–53.

[15] M. A. Kumar and S. Karthikeyan, ‘‘Investigating the efficiency of blowfish
and Rejindael (AES) algorithms,’’ Int. J. Comput. Netw. Inf. Secur., vol. 4,
no. 2, p. 22, 2012.

[16] W. Stallings, ‘‘NIST block cipher modes of operation for confidentiality,’’
Cryptologia, vol. 34, no. 2, pp. 163–175, Mar. 2010.

[17] ISO/IEC 9797-1:2011 Information Technology—Security Techniques—
Message Authentication Codes (MACs)—Part 1: Mechanisms Using a
Block Cipher, Standard ISO/IEC 9797-1, International Organization for
Standardization, 2011.

[18] M. Goll and S. Gueron, ‘‘Vectorization on ChaCha stream cipher,’’ in Proc.
11th Int. Conf. Inf. Technol., New Generat., Apr. 2014, pp. 612–615.

[19] E. Bursztein. Google Online Security Blog: Speeding Up and
Strengthening. [Online]. Available: https://security.googleblog.com/2014/
04/speeding-up-and-strengthening-https.html

[20] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, ‘‘A sur-
vey of lightweight stream ciphers for embedded systems,’’ Secur. Commun.
Netw., vol. 9, no. 10, pp. 1226–1246, Jul. 2016.

[21] W. Diehl, F. Farahmand, A. Abdulgadir, J.-P. Kaps, and K. Gaj, ‘‘Face-off
between the CAESAR lightweight finalists: ACORN vs. Ascon,’’ in Proc.
Int. Conf. Field-Programmable Technol. (ICFPT), Naha, Japan, Dec. 2018,
pp. 330–333.

[22] Y. W. Law, J. Doumen, and P. Hartel, ‘‘Survey and benchmark of block
ciphers for wireless sensor networks,’’ ACM Trans. Sensor Netw., vol. 2,
no. 1, pp. 65–93, Feb. 2006.

[23] B. Dezfouli, I. Amirtharaj, and C.-C.-C. Li, ‘‘EMPIOT: An energy mea-
surement platform for wireless IoT devices,’’ J. Netw. Comput. Appl.,
vol. 121, pp. 135–148, Nov. 2018.

[24] C. Huth, R. Guillaume, P. Duplys, K. Velmurugan, and T. Güneysu,
‘‘On the energy cost of channel based key agreement,’’ in Proc. 6th Int.
Workshop Trustworthy Embedded Devices, 2016, pp. 31–41.

[25] F. Zhang, R. Dojen, and T. Coffey, ‘‘Comparative performance and energy
consumption analysis of different aes implementations on a wireless sensor
network node,’’ Int. J. Sensor Netw., vol. 10, no. 4, pp. 192–201, 2011.

[26] G. C. C. F. Pereira, R. C. A. Alves, F. L. D. Silva, R. M. Azevedo,
B. C. Albertini, and C. B. Margi, ‘‘Performance evaluation of crypto-
graphic algorithms over IoT platforms and operating systems,’’ Secur.
Commun. Netw., vol. 2017, pp. 1–16, Aug. 2017.

[27] D. M. Tung, N. Van Toan, and J.-G. Lee, ‘‘Exploring the current consump-
tion of an Intel edison module for IoT applications,’’ in Proc. IEEE Int.
Instrum. Meas. Technol. Conf. (I2MTC), May 2017, pp. 1–6.

[28] L. P. I. Ledwaba, G. P. Hancke, H. S. Venter, and S. J. Isaac, ‘‘Performance
costs of software cryptography in securing new-generation Internet of
energy endpoint devices,’’ IEEE Access, vol. 6, pp. 9303–9323, 2018.

[29] G. Guimaraes, E. Souto, D. Sadok, and J. Kelner, ‘‘Evaluation of secu-
rity mechanisms in wireless sensor networks,’’ in Proc. Syst. Commun.
(ICW05, ICHSN05, ICMCS05, SENET05), 2005, pp. 428–433.

[30] J. Lee, K. Kapitanova, and S. H. Son, ‘‘The price of security in wireless sen-
sor networks,’’ Comput. Netw., vol. 54, no. 17, pp. 2967–2978, Dec. 2010.

VOLUME 8, 2020 121985

L. Kane et al.: Security and Performance in IoT

[31] C. Panait and D. Dragomir, ‘‘Measuring the performance and energy
consumption of AES in wireless sensor networks,’’ in Proc. Federated
Conf. Comput. Sci. Inf. Syst. (FedCSIS), Oct. 2015, pp. 1261–1266.

[32] C.-C. Chang, D. J. Nagel, and S. Muftic, ‘‘Balancing security and energy
consumption in wireless sensor networks,’’ in Proc. Int. Conf. Mobile Ad-
Hoc Sensor Netw. Berlin, Germany: Springer, 2007, pp. 469–480.

[33] C.-C. Chang, S. Muftic, and D. J. Nagel, ‘‘Measurement of energy costs
of security in wireless sensor nodes,’’ in Proc. 16th Int. Conf. Comput.
Commun. Netw., Aug. 2007, pp. 95–102.

[34] C.-C. Chang, D. J. Nagel, and S. Muftic, ‘‘Assessment of energy consump-
tion in wireless sensor networks: A case study for security algorithms,’’ in
Proc. IEEE Int. Conf. Mobile Adhoc Sensor Syst., Oct. 2007, pp. 1–6.

[35] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, ‘‘Energy
analysis of public-key cryptography forwireless sensor networks,’’ inProc.
3rd IEEE Int. Conf. Pervas. Comput. Commun., Mar. 2005, pp. 324–328.

[36] K.-L. Tsai, Y.-L. Huang, F.-Y. Leu, I. You, Y.-L. Huang, and C.-H. Tsai,
‘‘AES-128 based secure low power communication for LoRaWAN IoT
environments,’’ IEEE Access, vol. 6, pp. 45325–45334, 2018.

[37] Q. A. Al-Haija, H. Enshasy, and A. Smadi, ‘‘Estimating energy consump-
tion of Diffie Hellman encrypted key exchange (DH-EKE) for wireless
sensor network,’’ in Proc. IEEE Int. Conf. Intell. Techn. Control, Optim.
Signal Process. (INCOS), Mar. 2017, pp. 1–6.

[38] L. C. Zhong, J. M. Rabaey, and A. Wolisz, ‘‘An integrated data-link energy
model for wireless sensor networks,’’ in Proc. IEEE Int. Conf. Commun.,
vol. 7, Jun. 2004, pp. 3777–3783.

[39] R. A. F. Mini, M. D. Val Machado, A. A. F. Loureiro, and B. Nath,
‘‘Prediction-based energy map for wireless sensor networks,’’ Ad Hoc
Netw., vol. 3, no. 2, pp. 235–253, Mar. 2005.

[40] E. Morin, M. Maman, R. Guizzetti, and A. Duda, ‘‘Comparison of the
device lifetime in wireless networks for the Internet of Things,’’ IEEE
Access, vol. 5, pp. 7097–7114, 2017.

[41] ESP8266 Community Forum. Arduino Core for ESP8266 WiFi Chip.
Accessed: Mar. 7, 2020. [Online]. Available: https://github.com/
esp8266/Arduino

[42] R. Weatherley. Arduino Cryptography Library. Accessed: Mar. 7, 2020.
[Online]. Available: https://github.com/rweather/arduinolibs

[43] Arduino. Arduino Playground—AvailableMemory. Accessed: Mar. 7,
2020. [Online]. Available: https://playground.arduino.cc/Code/Available
Memory/

[44] D. Jayasinghe, R. Ragel, J. A. Ambrose, A. Ignjatovic, and
S. Parameswaran, ‘‘Advanced modes in AES: Are they safe from
power analysis based side channel attacks?’’ in Proc. IEEE 32nd Int. Conf.
Comput. Design (ICCD), Oct. 2014, pp. 173–180.

[45] Sigfox. Qualification | Sigfox Build. Accessed: Mar. 20, 2020. [Online].
Available: https://build.sigfox.com/study

LUKE E. KANE received the B.Info.Tech. degree
(Hons.) in computer science from the Queensland
University of Technology (QUT), Brisbane, QLD,
Australia, in 2019, where he is currently pursuing
the Ph.D. degree in the Internet of Things (IoT)
performance and security. He was an Associate
Lecturer in network security. He is with QUT as
a Sessional Academic and Teaching the bachelor’s
students in networking and system administration.
His research interest includes implementation and

design of the secure IoT architectures to support critical infrastructure.

JIAMING JAMES CHEN received the bachelor’s
degree (Hons.) in information technology from
the Queensland University of Technology (QUT),
Australia, where he is currently pursuing the Ph.D.
degree in the Internet of Things (IoT) and cyber-
security. He is actively involved in a government-
funded industry project which is related to the
design and manufacture of a monitoring system
using the IoT/ global navigation satellite system
(GNSS) sensors. This automates monitoring of

civil structures to reduce risks and costs in the construction and maintenance
of infrastructure assets. He is also developing a network monitoring system
to be used with high-volume/velocity/variety network traffic in recognised
national critical infrastructure, for an electricity transmission system operator
in Australia. His research interests include designing and developing the
secure IoT architectures for smart cities/industries.

REBECCA THOMAS received the Master of
Information Technology degree in security from
the Queensland University of Technology (QUT),
Brisbane, QLD, Australia, in 2019. She was with
QUT as a Sessional Academic, for a period of
eight months, teaching the bachelor’s students
in I.T. networks and network security. She is
currently a Graduate Security Specialist with a
leading Telecommunication company, Australia.
She received the International Merit Scholarship
from QUT.

VICKY LIU received the Ph.D. degree in informa-
tion security from the Queensland University of
Technology, Australia, in 2011. She is currently
a Lecturer with the Science and Engineering Fac-
ulty, Queensland University of Technology. Her
Ph.D. Dissertation proposed information system
architecture to facilitate the enforcement of pri-
vacy and security. She is actively involved in a
number of government-funded research projects
in addressing solutions for designing appropriate

the IoT architectures and balancing performance and security for the IoT
ecosystems. Her research interests include network and security, in particular
focusing on the Internet of Things (IoT) technologies and security aspects.

MATTHEW MCKAGUE received the B.Sc. degree
(Hons.) in mathematics from the University of
Regina, Regina, SK, Canada, in 2004, and the
M.Math. and Ph.D. degrees in combinatorics and
optimisation from the University of Waterloo,
Waterloo, ON, Canada, in 2005 and 2010, respec-
tively. He was a Research Fellow with the Cen-
tre for Quantum Technologies, Singapore, and a
Lecturer with the Computer Science Department,
University of Otago, Dunedin, New Zealand. He

is currently a Lecturer in cryptography with the Queensland University of
Technology, Brisbane, QLD, Australia.

121986 VOLUME 8, 2020

