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ABSTRACT In this paper, we propose a novel method for transforming data into a low-dimensional
space optimized for one-class classification. The proposed method iteratively transforms data into a new
subspace optimized for ellipsoidal encapsulation of target class data. We provide both linear and non-linear
formulations for the proposed method. The method takes into account the covariance of the data in the
subspace; hence, it yields a more generalized solution as compared to the data description in the subspace by
hyperspherical encapsulation of target class data. We propose different regularization terms expressing the
class variance in the projected space. We compare the results with classic and recently proposed one-class
classification methods and achieve competing results and show clear improvement compared to the other
support vector based methods. The proposed method is also noticed to converge much faster than recently
proposed Subspace Support Vector Data Description.

INDEX TERMS Anomaly detection, ellipsoidal data description, machine learning, one-class classification,

subspace learning.

I. INTRODUCTION

The ability of machines to make a concise description
of information requires learning from previous experience.
Researchers have been trying to develop techniques for
accurately modeling data using supervised and unsupervised
learning techniques for many decades. In unsupervised learn-
ing techniques, patterns are found without any knowledge of
class labels [1]. In supervised learning, labeled training data
are used to train models for classifying future instances into
different categories [2]. A typical multi-class classification
task can be decomposed into several binary classification
tasks, where the aim is to decide to which of the two con-
sidered classes samples belong to [3]. In binary classification,
the data from both classes are used to train a model. One-class
classification is conceptually close to binary classification,
but the models for classifying future instances are trained
using data only from one particular target class [4], [5].
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In practice, one-class classification is used when data from
one of the classes is scarce.

In one-class classification, the class of interest to be mod-
eled is called target or positive class, while samples from the
other unknown class(es) are referred to as outliers or nega-
tive samples. Numerous attempts have been made to solve
one-class classification tasks [6]. The three main approaches
for solving one-class classification tasks are density based,
reconstruction based, and border based methods [7]. In the
density based approach, the description of the target class
is based on its density [8], which is usually estimated by
using popular density estimation methods such as Parzen den-
sity, Gaussian model, or mixture of Gaussians [9]. In recon-
struction based approach, some assumptions about the data
generating process are made. The underlying function which
represents the target class is obtained by fitting a curve over
the data by using prior information, such as data cluster-
ing characteristics. Self-organizing maps (SOM) [10] and
least-squares quantization [11] are classic examples of recon-
struction methods. In border based approaches, a model is
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created by defining a closed boundary around the target
class without estimating its density. One-class Support Vector
Machine (OC-SVM) [12] and Support Vector Data Descrip-
tion (SVDD) [13] are among the popular boundary tech-
niques for one-class classification. In OC-SVM, a hyperplane
separating the target class is constructed so that the distance
of the hyperplane from the origin is maximized. In SVDD,
a hypersphere is formed around the target class data by min-
imizing the volume of hypersphere in a given feature space.
Recently, there has been a rising trend to propose approaches
based on regression and neural-networks as well [5], [14].

SVDD has been justified over time as a powerful data
description method and it has been used in many different
application domains for solving one-class classification prob-
lems. For example, in [15], SVDD is found to be an excellent
choice for solving the problem of identification of freshness
of eggs using near infrared spectroscopy (NIR) with an imbal-
anced number of training samples. In [16], a terrain clas-
sification method for ensuring navigation safety of mobile
service robots based on SVDD is proposed. To enhance the
performance of SVDD, numerous extensions and hybridiza-
tion techniques have been proposed [8], [17]-[21]. The main
extensions of SVDD can be categorized into four main cate-
gories. In the first category of extensions, the techniques are
focused on manipulating the structure of data, such as asso-
ciating a confidence coefficient with all training instances
which deals with the uncertainty of data [22]. In the second
category, the performance is enhanced by proposing new
non-linear methods and reducing the complexity of algo-
rithms [23], [24]. Techniques for handling non-stationary data
in the context of one-class classification falls in the third
category of extensions [25]. In the fourth category, different
changes are proposed in the shape of the boundary encapsu-
lating the target data [26].

A popular alternative to the spherical SVDD is Ellip-
soidal SVDD (E-SVDD) [26], [27]. E-SVDD forms a unique
hyperellipsoid with a minimum volume covering most of the
target data. An ellipsoid, unlike a hypersphere, takes into
account the difference in variance for each dimension as well
as covariance between them. A hypersphere, characterized
only by a radius and a center will result in superfluous
regions which do not contain any target objects in the input
space [28]. Ellipsoids with a minimum volume containing the
target data have applications spanning over many different
fields. For example, in [29], it is used to detect intrusion in
computer networks and, in [30], it is used to estimate the
distance between a robot and its surrounding environment
for obstacle collision avoidance. An ellipsoid is preferred for
heterogeneous data in the input space because its shape is less
conservative than a sphere. However, there are some difficul-
ties in kernelizing the algorithms. The kernel trick cannot be
applied directly to E-SVDD because its formulation includes
outer products rather than inner products [31].

In this paper, we propose a novel subspace learning algo-
rithm for ellipsoidal one-class classification. The proposed
method takes into account the covariance of data in the
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subspace so that the boundary created around the target class
is a better fit. The proposed method finds a projection along
with a data description iteratively by minimizing the vol-
ume of the hyperellipsoid. We propose different variants of
the proposed method by proposing different settings of the
regularization term, which takes into account the concentra-
tion matrix. We also annexed the regularization term with
different settings without taking into account the concentra-
tion matrix and report the results. The proposed method is
called Ellipsoidal Subspace Support Vector Data Description
(ES-SVDD), since it is analogous to Subspace Support Vector
Data Description (S-SVDD) [32] but offers more flexibility
by using hyperellipsoid instead of hypersphere. Our results
show that using hyperellipsoid for data description in the
subspace converges faster and produces better results than
the data description in a subspace using hypersphere. Fur-
ther, we see that hyperellipsoid in the subspace optimised
for one-class classification provides provides a better data
description as compared to the hyperellipsoid in the origi-
nal feature space. We also propose a non-linear version of
the algorithm by exploiting the non-linear projection trick
(NPT) [33].

The rest of the paper is organized as follows. In Section II,
we present an overview of related works. In Section III,
a detailed derivation of the newly proposed method is pre-
sented. In Section IV, we provide and discuss the experi-
mental protocol along with the obtained results and, finally,
conclusions are drawn in Section V.

Il. BACKGROUND AND RELATED WORK

One-class classification has been studied extensively in
recent years and the approaches predominantly focus on
data description in a given feature space [7], [13], [22].
On the other hand, feature selection and subspace learning
have been an active research area in machine learning, pri-
marily for challenges with data available for all categor-
ies [34], [35]. The aim is to avoid the curse of dimensionality
in the original feature space by modeling the given data in a
lower dimensional space.

In feature selection methods, a subset of representative
features is selected by following some criterion [36]-[38].
The two main approaches for feature selection are the filter
approach and the wrappers approach. In the filter approaches,
the main focus is on the intrinsic characteristics of the data
and they do not take into account any classification algorithm.
On the other hand, the wrappers approaches are dependent
only on a specific classification algorithm [39].

In subspace learning, the features are transformed from
original feature space to a lower-dimensional subspace [40].
Most of the existing subspace learning methods, particularly
for anomaly detection, follow three general steps [41], [42]:
First, the features are selected randomly by applying random
projections to the attributes. Second, classical algorithms are
applied locally in each subspace and scores (e.g., voting) are
computed. Finally, all the scores are aggregated to compute a
global score for classification.
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The focus of our paper is to find an optimized subspace
for one-class classification. We review the classical one-class
classification method, SVDD, in Section II-A and also pro-
vide an overview of S-SVDD and graph embedded one-class
classifiers in Sections II-B and II-C, respectively.

A. SUPPORT VECTOR DATA DESCRIPTION
Let us denote the data points to be enclosed inside a closed
boundary by a matrix X = [x1,X2,...Xy],X; € RP, where
N is total number of instances and D is dimensionality of data
in the original feature space. All the data samples represented
by X belong to the same class.

SVDD finds a spherical boundary around the data by min-
imizing the volume of a hypersphere enclosing all the target
class data:

min F(R, a) = R
st |lx; —all3 <R%, Vie{l,...,N}, 1)

where R is the radius of hypersphere and a € RP is the center
of the hypersphere in the given feature space. Slack variables
&, i =1,...,N are introduced for allowing the possibility
of data points being outliers, hence the optimization problem
changes to
N
min F(R,a)=R*+C Y &
i=1
st x —all3 < R + &,
£§>0, Vie{l,...,N}, 2)

where C > 01is a hyperparameter which controls the trade-off
between the volume of the sphere and the amount of data
outside the sphere. The Lagrangian dual of (2) reduces to

N N N
T T
L= E oiX; X; — E E oioX; X, (3)
i=1 i

subject to 0 < o; < C. Maximizing (3) gives a set of o;
for corresponding data points. The samples with o; > 0 are
the support vectors defining the data description [13]. The
samples corresponding to 0 < «; < C lie on the boundary of
the hypersphere and those with «; = C are outliers.

B. SUBSPACE SUPPORT VECTOR DATA DESCRIPTION
In S-SVDD [32], a projection matrix Q is determined to map
data from the original space R? to a new optimized lower
dimensional space RY, d < D, so that the data are more
suitable for one-class classification:
N
min F(R,a) =R*+C Y &
i=1
s.t|Qx; —all; < R + &,
£ >0, Vie{l,...,N}, @

where a € R? is the center of the hypersphere in lower
d-dimensional space. The method iteratively solves the
SVDD in the current subspace to obtain the data description
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parameters «;, i = 1,...,N, and then updates the sub-
space projection by optimizing an augmented version of the
Lagrangian:

N N N
L= axIQTQx — ) Y ax] QTQxe; + Y, (5)
i=1

i=1 j=1

where 1 is a regularization term expressing the class vari-
ance in the low dimensional space and f is a regularization
parameter controlling the importance of the v, where

¥ = Tr(QXAATXTQ), (6

where Tr(.) is the trace operator and A € RY is a vector
controlling the contribution of each training sample. Q is
updated by using the gradient of (5), i.e.,

Q <~ Q—-nAL, )

where 1 is the learning rate. A non-linear version of S-SVDD
employing the kernel trick is also proposed in [32].

C. GRAPH EMBEDDED ONE-CLASS CLASSIFIERS

Graph embedded one-class classifiers constitute extensions
of the OC-SVM and SVDD by incorporating generic graph
structures in their optimization process. The generic graph
structures express geometric data relationships of the target
class in the data. For example, Graph Embedded SVDD
(GE-SVDD) [17] optimization problem is formulated as

N
min F(R,a)=R*+C Y &
i=1
st (¢(x;) —a)TS™! (p(x;) —a) < R* +&,
§>0, Vie{l,...,N}, (8)

where ¢(.) is any non-linear function used for mapping the
training samples from the input feature space to the kernel
space. The matrix S contains the geometric data relationships.
For example, in PCA, the scatter of training data can be
expressed as

1 1
S = —c1>(1 - —11T)q>T — OLOT, ©)

N N
where 1 € RV is a vector containing all values as ones,
I € RY*N jg an identity matrix, and & is a matrix that

contains the training data representations in kernel space.
The Lagrangian of GE-SVDD is

N
L= aip(x)TS™ p(x;)

i=1
N N
=Y (xS p(xey.  (10)
i=1 j=1

It has been shown in [17] that the optimization problem
in (10) is equivalent to the problem of SVDD in a transformed
feature space.
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lll. ELLIPSOID SUBSPACE SUPPORT VECTOR
DATA DESCRIPTION
Our aim is to find a projection matrix Q € R¥*P to be
used for transforming the data to an optimized subspace
suitable for one-class classification. In the following analysis,
we assume that the data has been centered by setting X <«
X — u, where p is the mean of the given training data. The
mapping from the original feature space with dimensionality
D to a subspace with dimensionality d < D is carried
out. The mapping is done to transform the data so that it is
more suitable to be encapsulated inside an ellipsoid with a
minimum volume.

The optimization problem is formulated as

N
min F(R,a)=R*+C ) &
i=1
st (Qx; —a)TE™'(Qx; —a) < RZ + &,
£>0, Vie{l,...,N}, (11)

where a is the center of the hyperellipsoid and E = QXXTQT
is the covariance matrix of the data in d-dimensional space.
The inverse of covariance matrix E, also known as the con-
centration or precision matrix is symmetric and positive def-
inite E~! € RY*?, By defining a new vector u = E_%a, 11
can be written as
N
min FR,w)=R*+C Y &
i=1
st ET2Qx, —uf} <R + &,
&>0, Vie{l,...,N}. (12)

The data in the subspace is represented by
yi=Qx;, i=1,...,N. (13)

The constraints in (12) can be incorporated into its corre-
sponding objective function by using Lagrange multipliers:

L=R2+Ci§i—i0€i(132+§i

i=1 i=1
_1 T _1 T _1 T N
—(Ey)TE 2y + 2uTE 2y, —uTu) - ) & (14)
i=1

with Lagrange multipliers ¢; > 0 and y; > 0.
By setting partial derivatives with respect to R, u and &; to
zero, we get

N
aL
ﬁ=O:>zl:ai=1 (15)
=
N
oL _1
£=O$u=;aiE 2Qx; (16)
1=
oL 0=C £ =0 (17)
oL _ i E =0
3§,~ 1 1
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By substituting (15)-(17) into (14) we get
N N

N
L= oxQTE"'Qx;—Y > ax]QTE"'Qxja;. (18)

i=1 i=1 j=1

We can use SVDD to solve (18) for getting «; values. The
concentration matrix E~! is equivalent to

E~' = (QXXTQ")™ . (19)

By putting (19) in (18) we get

N
L= ax]QTQXXTQT) 'Qx;

i=1

N N
=3 exTQTQXXTQN) 'Qx;.  (20)
i=1 j=1
We add an extra term Y to (20) as a regularization term
expressing the class variance in the projected space, also
taking into account the concentration matrix. Hence, (20) now
becomes

N
L= ax]QTQXXTQT) 'Qx;

i=1

N N
> ax]QTQXXTQN) ' Qx; + Y, (21)

i=1 j=1

where f controls the importance of regularization term and is
used as a hyperparameter. Y is defined as follows:

Y = TE 2QXAATXTQTE ), (22)

where A can take three different forms. In the first form, all
elements in A take the value of 1 and, hence, all the samples
are used to describe the covariance of the class. In the second
form, A is replaced by o, which means that the samples
belonging to the boundary and outside the boundary are used
to describe the covariance of the class. In the third form, the X;
values are replaced by «; values of the samples belonging to
the boundary and zero for other instances. The first, second
and third forms of the regularization terms are expressed
as Y1, T, and Y3 hereinafter.

In our experiments, we also consider the regularization
term expressing the class variance in the projected space
without taking into account the concentration matrix. This
is achieved by replacing the covariance matrix E with the
identity matrix I in (22). By doing so, the regularization term
T becomes equivalent to i as described in (6). Analogous
to regularization term Y, v can also take different forms by
changing A and similarly hereinafter we refer to all those
cases by ¥, ¥ and ¥3. The methods used with ¢ and Y are
denoted by ES-SVDD4,,, and ES-SVDDY,, (m = 1,2, 3),
respectively. We refer to the case, where no regularization
term is used in ES-SVDD, as ES-SVDD¢ Y.

Equation (21) can be further simplified and written as

L =Tr(QXXTQT)'QX(A — «a™HXTQT) + Y, (23)
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where A is a diagonal matrix having «; values in its diagonal
and « is a vector of «;’s. We use gradient of (23) to update the
projection matrix. The gradient can be solved using identity
126 in [43]:

AL = 2E7'QX(A — aaT)XT
—2E7'QX(A — aaMHXTQTE'QXXT + BATY, (24)

where

AY = 2E"1QXAATXT
—2E7IQXAATXTQTE'QXXT. (25)

When v is used as a regularization term, we use Ay instead
of AY in (24):

Ay = 2QXAATXT. (26)

We obtain an optimised data projection matrix along with
optimised data description in a two-step iterative process.
In the first step, the «; values are computed by maximiz-
ing (18). In the second step, Q is updated through the gradient
descent after computing the gradient by using (23). In order to
obtain an orthogonal projection, we impose the orthogonality
constraint QQT = I. We orthogonalize and normalize Q
during the two-step iterative process. Algorithm 1 presents
the whole algorithm.

Algorithm 1 Linear ES-SVDD Optimization

Input : X, 8,1n,d, C, kpax

Output: Q, R, «

Random initialization of Q;

Initialize k = 1;

while k < k. do
Compute concentration matrix E~! using (19) ;
Solve o, i =1, ..., N with SVDD using (18);
Calculate AL using (24);
Update Q < Q — nAL;
Orthogonalize Q using QR decomposition;
Row normalize Q using /> norm;
k< k+1

end

// Data description in the optimized subspace
Compute concentration matrix E~! using (19)
Calculate «j, i =1, ..., N with SVDD using (18) ;

A. NON-LINEAR ELLIPSOIDAL SUBSPACE SUPPORT
VECTOR DATA DESCRIPTION

The non-linear ellipsoidal subspace SVDD is not trivial,
because the kernel trick cannot be applied directly due to the
outer products involved in its derivation. To avoid this prob-
lem, we follow the NPT based solution described below [33].
We first compute a noncentered kernel matrix K = ®T®
using the radial basis function kernel as

—IIxi — %3
Kjj = exp (sz : 27)
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where o is a hyperparameter scaling the distance between Xx;
and x;. The kernel matrix is centered as

K ={I-DKI-J), (28)
where J € RV*V is a matrix defined as
J= : 117 (29)
=y
The centered kernel matrix is decomposed by using eigende-
composition:
K = UAUT, (30)
where A contains the non-negative eigenvalues of the cen-
tered kernel matrix in its diagonal and the columns of U

contain the corresponding eigenvectors. Finally, the data in
the reduced dimensional kernel space is obtained as

® = (A2)'UK, 31)

where + sign in the superscript denotes the pseudo-inverse.
After applying NPT, we continue by considering ® as

our input data. This allows as to use the linear E-SVDD

formulation to obtain a non-linear transformation.

B. TEST PHASE
During the test phase of the linear case, a test instance X, is
first mapped to the optimized lower d-dimensional space as

¥ = QX (32)

The decision to classify the instance as target or outlier is
taken on the basis of its distance from the center of data
description in the d-dimensional space. The distance is cal-
culated as follows:

by, _ il = by}
IE"2y, —ull; = (E 2y, )TE 2y,
2E 2y )Tu+uTu, (33)

where u can be solved with (16). If ||E’%y>k — u||% < R2,
the test instance is classified as positive, as it will fall inside
the boundary of the data description. The test instance is
classified as negative if ||E_%y* — u||% > RZ. The threshold
R? for taking the decision is calculated as follows:

R? = (E_%s)TE_%s —2u's+uTu, (34)

where s is any support vector with 0 < o; < C.
During the test phase for non-linear ES-SVDD, we use
NPT by first computing the kernel vector as

ki = PTH(xs). (35)
The kernel vector is then centered as
K. = (- Dk, — K1 (36)
The centered kernel vector is then mapped to
¢ = (@) 'k, (37)

We now consider ¢, as the test input x, and follow all the
steps described for the linear test.
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TABLE 1. Datasets used in the experiments.

Abbreviation Dataset Name (Target Class) Total Samples Target Samples D
S-K Seeds (Kama) 210 70 7
S-R Seeds (Rosa) 210 70 7
S-C Seeds (Canadian) 210 70 7
QB-B Qualitative bankruptcy (bankruptcy) 250 107 6
QB-N Qualitative bankruptcy (non-bankruptcy) 250 143 6
SH-H Somerville happiness (happy) 143 77 6
SH-U Somerville happiness (un-happy) 143 66 6
1-S Iris (Setosa) 150 50 4
I-vC Iris (Versicolor) 150 50 4
I-v Iris (Virginica) 150 50 4
IS-B Ionosphere (bad) 351 126 34
IS-G Ionosphere (good) 351 225 34
SR-R Sonar (rock) 208 97 60
SR-M Sonar (mines) 208 111 60

IV. EXPERIMENTS

A. DATASETS AND EXPERIMENTAL SETUP

We evaluated the proposed and competing methods over
different datasets downloaded from UCI machine learn-
ing repository [44]. Since one-class classification methods
inherently are suited for binary (target and outliers) imbal-
anced classification problems, we converted the datasets to
one-class datasets by considering a single class in a dataset
at a time as the target class and all other classes as outliers.
Naturally, only the target class samples were used for training
the models, while all the classes were considered in the vali-
dation and test phases. The total number of samples, number
of target class samples, and number of dimensions in the
original feature space are given in Table 1.

In each dataset, 70% of the data was used for training
and the remaining 30% for testing. The train and test sets
were selected randomly by keeping the proportions of classes
similar to the full dataset. Each experiment was repeated
five times using different random train/test splits, while the
same five splittings were used for all the considered methods.
We report the average test performance over the five split-
tings. During training, a 5-fold cross-validation technique
was used to select the best hyperparameters with the best
evaluation score. We used only the training sets for selecting
the hyperparameters. We used Geometric mean (Gmean) as
the evaluation metric for all the methods. Gmean is defined
as

Gmean = \/tpr X tnr, (38)

where fpr is true positive rate (also known as sensitivity) and
tnr is true negative rate (also known as specificity). For the
proposed ES-SVDD method, we chose the hyperparameters
from the following values

e B€{1074,1073,1072,1071, 10°, 10, 10%, 103, 10%},

e C €{0.01,0.05,0.1,0.2,0.3, 0.4, 0.5, 0.6},

e 0 €{1073,1072, 107", 10°, 10!, 102, 103},

e de{l,2,3,4,5, 10,20, 50, 100},

e n€{107,1074,1073, 1072, 1071}

For all the competing methods, the hyperparameters corre-
sponding to ES-SVDD hyperparameters were selected from
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the above values. For other hyperparameters, the same ranges
were used as provided in the corresponding work or stated
otherwise. We used the target class samples of the full training
set with the optimal hyperparameters for the final training and
then tested with the test set.

We compared the proposed ES-SVDD with other sup-
port vector (SV)-based and non-SV-based methods. The
SV-based one-class classification methods essentially create
a model by defining a boundary. The SV-based methods
used for comparison were S-SVDD [32], OC-SVM [12],
SVDD [13], and E-SVDD. The non-SV-based methods used
for comparison were density-based, reconstruction-based,
and regression-based one-class classification approaches.
The density-based methods used for comparison were
Parzen density-based data description [7] and Gaussian
density-based data description [7]. As reconstruction-based
methods, we used SOM data description [7] and K-means
data description [7]. The regression-based method used for
comparison was Graph Embedded One-Class Extreme Learn-
ing Machines (GE-OC-ELM) which exploits geometric class
information [5].

We used maximum likelihood estimation for finding the
optimum smoothing parameter in the Parzen density-based
data description. The grid-size in SOM was fixed to 5+/N;,
where N; is the size of training data for a given dataset [45].
We chose the number of clusters (N.) for K-means from
N, = {1, 2,3} and report the best outcome. For non-linear
methods, we employed NPT for ES-SVDD and S-SVDD,
kernel whitening for Gaussian data description [46], and the
kernel trick for other methods. Since the closest counterpart
of the proposed method is S-SVDD and different regulariza-
tion terms for S-SVDD were proposed [32], we report the
results with all the previously proposed variants of S-SVDD.
We used LIBSVM [47] toolbox implementation for OC-SVM
and SVDD and DD-toolbox [48] for SOM, K-means data
description, Parzen density, and Gaussian density-based data
description. The implementation of GE-OC-ELM is publicly
available.! The proposed ES-SVDD, along with S-SVDD

1 https://sites.google.com/view/iosifidis/codes-and-datasets
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TABLE 2. Gmean results for linear methods over different datasets.

Dataset S-K S-R S-C Av. QB-B QB-N Av. SH-H SH-U Av.
ES-SVDD ¢ Ygo 0.83 091 0.77 0.84 0.84 0.26 0.55 0.41 0.51 0.46
ES-SVDD 1 0.83 0.89 0.89 0.87 0.76 0.46 0.61 0.47 0.47 0.47
ES-SVDD 2 0.82 0.89 0.87 0.86 0.85 0.18 0.51 0.53 0.51 0.52
ES-SVDD 3 0.79 0.90 0.87 0.86 0.90 0.23 0.57 0.46 0.35 0.40
ES-SVDD T 0.82 0.92 0.90 0.88 0.85 0.32 0.58 0.46 0.52 0.49
ES-SVDD Yo 0.84 0.91 0.91 0.89 0.81 0.30 0.56 0.55 0.53 0.54
ES-SVDD T3 0.85 0.88 0.88 0.87 0.87 0.33 0.60 0.49 0.47 0.48
S-SVDD g 0.79 0.86 0.81 0.82 0.72 0.50 0.61 0.49 0.48 0.48
S-SVDD 1 0.72 0.76 0.77 0.75 0.85 0.34 0.59 0.46 0.46 0.46
S-SVDD 12 0.81 0.82 0.77 0.80 0.75 0.40 0.58 0.47 0.48 0.48
S-SVDD 13 0.80 0.93 0.75 0.83 0.72 0.41 0.57 0.49 0.46 0.48
SVDD 0.82 0.92 0.86 0.87 0.83 0.04 0.43 0.54 0.48 0.51
E-SVDD 0.80 0.87 0.86 0.84 0.96 0.20 0.58 0.54 0.41 0.48
OC-SVM 0.43 0.46 0.58 0.49 0.46 0.55 0.51 0.45 0.42 0.44
Non-support-vector-based methods

K-means 0.86 0.94 0.91 0.90 0.71 0.41 0.56 0.56 0.39 0.47
Parzen 0.49 0.33 0.58 0.47 0.98 0.60 0.79 0.58 0.43 0.50
Dataset I-S 1I-vC IV Av. IS-B IS-G Av. SR-R SR-M Av.
ES-SVDD ¢ Yg 0.64 0.75 0.70 0.70 0.16 0.89 0.52 0.50 0.64 0.57
ES-SVDD 1 0.92 0.86 0.77 0.85 0.52 0.85 0.69 0.50 0.56 0.53
ES-SVDD 2 0.87 0.82 0.79 0.83 0.31 0.87 0.59 0.48 0.67 0.58
ES-SVDD 13 0.93 0.87 0.71 0.84 0.35 0.89 0.62 0.48 0.65 0.57
ES-SVDD T 0.85 0.84 0.86 0.85 0.26 0.87 0.57 0.47 0.67 0.57
ES-SVDD T3 0.96 0.83 0.74 0.84 0.31 0.89 0.60 0.47 0.65 0.56
ES-SVDD T3 0.80 0.85 0.79 0.81 0.35 0.90 0.62 0.49 0.65 0.57
S-SVDD g 0.87 0.75 0.64 0.76 0.16 0.75 0.46 0.37 0.37 0.37
S-SVDD 1 0.88 0.81 0.75 0.81 0.50 0.71 0.61 0.44 0.36 0.40
S-SVDD 12 0.87 0.84 0.58 0.76 0.43 0.72 0.58 0.46 0.40 0.43
S-SVDD 13 0.81 0.68 0.63 0.71 0.27 0.66 0.46 0.46 0.41 0.43
SVDD 0.94 0.90 0.89 0.91 0.04 0.73 0.39 0.50 0.52 0.51
E-SVDD 0.89 0.88 0.86 0.88 0.33 0.00 0.17 0.00 0.00 0.00
OC-SVM 0.50 0.52 0.39 0.47 0.47 0.45 0.46 0.44 0.52 0.48
Non-support-vector-based methods

K-means 0.94 0.92 0.89 0.91 0.37 0.88 0.63 0.49 0.68 0.58
Parzen 0.85 0.68 0.79 0.77 0.32 0.25 0.28 0.00 0.00 0.00

and E-SVDD, was implemented by the authors using Matlab
by leveraging LIBSVM.

B. EXPERIMENTAL RESULTS AND DISCUSSION

In Tables 2 and 3, we report the average test results for
each dataset for the linear and non-linear cases, respectively.
In each experiment, a single class was selected as the tar-
get class and the rest of the data as outliers (see Table 1).
We also report the average performance of the proposed and
competing methods in the average (Av.) column by averaging
the results for a given dataset. For example, the performance
over S-K, S-R, and S-C is averaged and provided in the Av.
column as the overall performance for Seeds dataset. In this
way, we can get an idea of the overall performance for each
algorithm over the full dataset. For ES-SVDD and S-SVDD,
we report the test results after 10 training iterations.

When compared to SV-based methods, our proposed meth-
ods achieved the best average results on all but Iris dataset in
the linear case and on half of the datasets in the non-linear
case. We note that the average results for the non-linear
methods are generally better than those of the linear ones for
the majority of the datasets. Overall, the proposed (linear and
non-linear) methods achieved the best average results in 4
out of 6 datasets among the SV-based methods. In general,
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the best performing methods vary for different datasets, but
we can see that there is no case, where the proposed method
would fail completely, unlike most of the competing methods.
In the linear case, other SV-based competing methods outper-
formed ES-SVDD only with Iris dataset, which has the lowest
original dimensionality and also a low number of samples.
Also in the non-linear case, other SV-based methods outper-
formed ES-SVDD most clearly on the 2 smallest datasets.
Thus, it seems that the proposed method is more beneficial
when the data dimensionality is higher.

When compared with also non-SV-based methods, we see
that the proposed method gave the best average performance
on 3 out of 6 datasets in the linear case. In the non-linear
case, the ranking of the methods varies more and only
GE-SVM achieved the best average results on more than
one (2) datasets. The proposed method outperformed the
other methods on Ionosphere dataset, which is the largest
considered dataset. Furthermore, the stable performance of
the proposed method makes it a viable solution also in the
non-linear case.

Comparing regularization terms for linear ES-SVDD,
we notice that ES-SVDD performed better in majority of
cases with regularization term Y, which uses samples belong-
ing to the boundary and outside the boundary to describe the
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TABLE 3. Gmean results for non-linear methods over different datasets.

Dataset S-K S-R S-C Av. QB-B QB-N Av. SH-H SH-U Av.
ES-SVDD Yo 0.78 0.88 0.93 0.87 0.83 0.61 0.72 0.52 0.42 0.47
ES-SVDD 1 0.80 0.88 0.88 0.85 0.80 0.34 0.57 0.51 0.42 0.47
ES-SVDD 15 0.80 0.90 0.93 0.87 0.90 0.35 0.62 0.52 0.33 0.42
ES-SVDD 13 0.82 0.86 0.72 0.80 0.89 0.64 0.76 0.52 0.45 0.49
ES-SVDD T 0.85 0.92 091 0.89 0.87 0.47 0.67 0.47 0.38 0.43
ES-SVDD T 0.82 0.88 0.89 0.86 0.84 0.68 0.76 0.52 0.34 0.43
ES-SVDD T3 0.85 0.88 0.91 0.88 0.87 0.54 0.71 0.52 0.45 0.49
S-SVDD g 0.74 0.74 0.83 0.77 0.23 0.49 0.36 0.45 0.29 0.37
S-SVDD 1 0.71 0.78 0.81 0.77 0.11 0.08 0.09 0.39 0.32 0.35
S-SVDD 12 0.72 0.85 0.83 0.80 0.36 0.37 0.37 0.47 0.32 0.40
S-SVDD 13 0.60 0.76 0.76 0.71 0.36 0.40 0.38 0.46 0.29 0.37
SVDD 0.86 0.91 0.88 0.88 0.88 0.55 0.71 0.54 0.48 0.51
E-SVDD 0.84 0.85 0.85 0.85 0.96 0.51 0.74 0.55 0.42 0.48
GE-SVDD 0.84 0.90 0.76 0.83 0.94 0.17 0.55 0.54 0.47 0.50
OC-SVM 0.79 0.60 0.63 0.67 0.67 0.52 0.59 0.57 0.48 0.52
GE-SVM 0.83 0.88 0.89 0.87 0.88 0.58 0.73 0.57 0.42 0.50
Non-support-vector-based methods

SOM 0.80 0.90 0.89 0.86 0.79 0.37 0.58 0.28 0.26 0.27
Gaussian 0.85 0.95 0.94 0.91 0.63 0.46 0.54 0.52 0.42 0.47
GE-OC-ELM 0.85 0.93 0.89 0.89 1.00 0.80 0.90 0.31 0.31 0.31
Dataset 1-S 1I-vC 1V Av. IS-B IS-G Av. SR-R SR-M Av.
ES-SVDD Yo 0.93 0.84 0.86 0.88 0.44 0.89 0.67 0.41 0.67 0.54
ES-SVDD 1 0.94 0.81 0.74 0.83 0.71 0.90 0.80 0.48 0.55 0.51
ES-SVDD 2 0.91 0.87 0.83 0.87 0.31 0.87 0.59 0.47 0.66 0.56
ES-SVDD 43 0.89 0.84 0.74 0.82 0.32 0.88 0.60 0.47 0.66 0.57
ES-SVDD T 0.81 0.89 0.70 0.80 0.47 0.86 0.67 0.53 0.65 0.59
ES-SVDD T 0.91 0.83 0.81 0.85 0.68 0.86 0.77 0.47 0.70 0.58
ES-SVDD T3 0.94 0.88 0.83 0.88 0.45 0.85 0.65 0.41 0.70 0.55
S-SVDD g 0.92 0.85 0.78 0.85 0.24 0.53 0.38 0.43 0.41 0.42
S-SVDD 1 0.89 0.89 0.63 0.80 0.68 0.64 0.66 0.20 0.48 0.34
S-SVDD 12 091 0.84 0.77 0.84 0.21 0.61 0.41 0.40 0.52 0.46
S-SVDD 13 0.92 0.85 0.73 0.83 0.35 0.62 0.49 0.37 0.16 0.27
SVDD 0.94 0.91 0.84 0.89 0.31 0.80 0.55 0.53 0.66 0.59
E-SVDD 0.89 0.84 0.86 0.86 0.30 0.00 0.15 0.00 0.00 0.00
GE-SVDD 0.91 0.88 0.85 0.88 0.26 0.81 0.54 0.56 0.66 0.61
OC-SVM 0.45 0.65 0.66 0.59 0.27 0.63 0.45 0.51 0.58 0.54
GE-SVM 0.92 0.90 0.86 0.89 0.39 0.91 0.65 0.54 0.67 0.61
Non-support-vector-based methods

SOM 0.91 0.84 0.88 0.88 0.06 0.87 0.47 0.46 0.32 0.39
Gaussian 0.97 0.86 0.80 0.88 0.33 0.50 0.42 0.47 0.59 0.53
GE-OC-ELM 0.99 0.89 0.78 0.88 0.48 0.81 0.65 0.38 0.55 0.47

covariance of the class. Regularization term 1, which uses
all training samples to describe the covariance of the class,
also performed well. Both of these regularization terms pro-
duced 2 out of 6 best results in the linear case. We also noticed
that ES-SVDD without any regularization term performs the
worst as compared to ES-SVDD with regularization terms.

For non-linear ES-SVDD, the regularization terms v and
Y3 resulted in the best results for most of the datasets. How-
ever, 11 is also noticed to perform worse than the others in a
few datasets. ¥1 uses all target training samples in describing
the covariance of the class without taking into account the
concentration matrix. In Y3, the A values take the values of
«; values of the boundary samples and zero for non-boundary
samples. In the non-linear case for high dimensional datasets,
we notice that using all the training data for describing the
covariance of the data in a projected space, with or without
using the concentration matrix (i.e., ¥ or Y1), yielded the
best results for ES-SVDD.

We further notice that by considering the class vari-
ance taking into account the concentration matrix in the
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regularization term, ES-SVDD performed better in most
datasets as compared to the regularization terms without
considering the concentration matrix. Overall Y, is found
to be more robust that other regularization terms. Hence,
we recommend to use samples belonging to the bound-
ary and outside the boundary to describe the covariance
of the class while taking into account the concentration
matrix.

We also show the performance of the proposed ES-SVDD
and the recently proposed S- SVDD on the test set after
every training iteration for the linear and non-linear cases.
We compare the performances of these methods with differ-
ent regularization terms Y and . The average Gmean value
is calculated for each iteration over the 5 test splits for the
different datasets, see Figures 1-6.

It can clearly be seen from the figures that for both the
linear and non-linear methods, ES-SVDD achieves its best
performance much earlier than the recently proposed coun-
terpart S-SVDD. This is not surprising, because the ellip-
soidal description can fit a larger variety of data distributions,
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while the optimal spherical description gets successful only
after the data variance for different dimensions has been
equalized. Using the ellipsoidal data description in the

proposed method makes it converge faster to an optimal
solution. We also notice that for high dimensional datasets
ES-SVDDv; and ES-SVDDTY'; are more stable as compared
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to the other proposed linear and non-linear methods. Over-
all, the trend of faster convergence and higher stability in
terms of producing consistent results for different range of
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iterations for ES-SVDD can be observed both in the linear and
non-linear methods for all regularization terms in the majority
of the cases.
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V. CONCLUSION

In this paper, a novel method, ES-SVDD, for one-class clas-
sification is proposed. The proposed method projects the data
from an input feature space to a new optimized subspace
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suitable for one-class classification. The proposed method
generalizes S-SVDD for a hypersphere by using ellipsoidal
data description. We proposed different regularization terms
along with linear and non-linear formulations of the method.
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In most cases, the proposed ES-SVDD variants outperform
the competing SV-based methods and converge faster than in
the case of data description without ellipsoidal encapsulation.

In the future, we intend to use other kernel types in
the non-linear case of ES-SVDD. We also plan to devise
a strategy for early exit in the training process to reduce
the training time. We will also experiment with finetuning
hyperparameters according to different criteria, such as area
under receiver operating characteristic curve. Additionally,
we plan to formulate and implement a neural network based
version of the proposed method and compare its performance
with deep neural networks.
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