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ABSTRACT After-sale service is an integrable part of marketing activities. The after-sale service experience
of a consumer can be measured by the dynamic maintenance (DM) strategy used by the merchant, i.e., the
instantaneous fractions of the maintenance cost paid by the merchant in the total maintenance cost at all
time. This paper aims to develop an optimal DM strategy for a word-of-mouth (WOM) marketing campaign.
First, we propose an individual-based WOM propagation model in which the effect of the DM strategy is
accounted for. Second, we convert the original problem into an optimal control problem, where the objective
functional stands for the expected marketing profit, each optimal control stands for an optimal DM strategy.
Third, we derive the optimality system for the optimal control problem. By solving the optimality system,
we get a potential optimal control. Next, through comparative experiments we conclude that the DM strategy
associated with the potential optimal control outperforms most DM strategies in terms of the expected
marketing profit. Therefore, we recommend this potential DM strategy. Finally, we examine the effect of
some factors on the expected marketing profit for the potential DM strategy. Our findings help to enhance
the marketing profit of a WOM marketing campaign.

INDEX TERMS WOM marketing, marketing profit, dynamic maintenance strategy, WOM propagation
model, optimal control model.

I. INTRODUCTION
Consumers tend to share their feelings about a prod-
uct or service with their friends, forming a word-of-mouth
(WOM) about the product or service [1]. With the popu-
larity of online social networks (OSNs), nowadays WOMs
can propagate much more rapidly than ever before [2], [3].
This phenomenon has been utilized by merchants to pro-
mote the sale of their products or services, forming
what is called word-of-mouth (WOM) marketing or viral
marketing [4].

After-sale service is an integrable part of marketing activ-
ities [5]–[9]. The after-sale service experience of each buyer
about a product forms a part of the WOM of the product.
In order to maximize the marketing profit by means of
WOM propagation, the merchant has to improve the after-
sale service experiences of buyers of his products [10]–[12].
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This experience can be measured by the dynamic
maintenance (DM) strategy used by the merchant, i.e., the
instantaneous fractions of the maintenance cost paid by the
merchant in the total maintenance cost at all time. Therefore,
the merchant faces the following problem:
Dynamic maintenance (DM) problem: Seek a DM strategy

so that the resulting marketing profit is maximized.
To our knowledge, to date this problem has not been

addressed in a systematic manner. This paper is devoted to the
study of this problem. Our main contributions are sketched
below.
• We propose an individual-based WOM propagation
model in which the effect of the DM strategy is
accounted for. Thereby, we estimate the expected mar-
keting profit for a DM strategy. On this basis, we reduce
the DM problem to an optimal control problem
(i.e., the DM model), where the objective functional
stands for the expected marketing profit, each optimal
control stands for an optimal DM strategy.
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• We derive the optimality system for the DM model.
By solving the optimality system, we get a potential
optimal control for the DM model. Through compara-
tive experiments we find that the potential optimal DM
strategy associated with the potential optimal control
outperformsmost DM strategies in terms of the expected
marketing profit. Therefore, we recommend this DM
strategy. Finally, we examine the effect of some factors
on the expected marketing profit for the potential opti-
mal DM strategy.

Our findings help to enhance the marketing profit of a
WOM marketing campaign. The subsequent materials are
organized in this way: Section 2 reviews the related work.
Section 3 models the DM problem as an optimal control
problem. Section 4 derives the optimality system for the opti-
mal control problem. In Section 5, the potential optimal DM
strategy obtained by solving the optimality system is justified
through comparative experiments. Section 6 examines the
influence of some factors on the expectedmarketing profit for
the potential optimal DM strategy. Finally, Section 7 closes
this work.

II. RELATED WORK
In this section, we review the related work, with the goal of
highlighting the novelty of this work.

A. WOM PROPAGATION MODEL
The key to addressing the DM problem is to estimate the
expected marketing profit in the presence of WOM prop-
agation. For this purpose, we have to introduce a WOM
propagation model in which the effect of the DM strategy is
accounted for. The existingWOMpropagation models can be
classified into three categories: population-based, network-
based, and individual-based.

A population-based WOM propagation model classifies
OSN individuals based on their states [13]–[16]. For instance,
[16] introduced a population-based positive/negative WOM
mixed propagation model. Unfortunately, such WOM propa-
gation models only apply to homogeneous OSNs. A network-
based WOM propagation model classifies OSN individuals
based on their states and their influences in OSNs [17], [18].
Unfortunately, such WOM propagation models are only
applicable to some special OSNs such as scale-free networks.

An individual-based WOM propagation model classifies
each OSN individual into a few classes based on his state
[19]–[22]. Inspired by [16], [20] suggested an individual-
based positive/negative WOM mixed propagation model.
Reference [21] proposed an individual-based WOM prop-
agation model with static influence-based discount pricing
mechanism. Later, [19] generalized this model by consid-
ering dynamic influence-based discount pricing mechanism.
Recently, [22] advised an individual-based WOM propa-
gation model with dynamic competitive mechanism. Such
WOM propagation models enjoy the striking advantage that
they apply to all OSNs. Unfortunately, neither of these WOM

propagationmodels takes into account the effect of the quality
of after-sale service on WOM.

In the present paper, we introduce a novel individual-
based WOM propagation model in which the effect of the
DM strategy is accounted for. On this basis, we estimate the
expected marketing profit for a DM strategy.

B. OPTIMAL CONTROL APPROACH TO WOM MARKETING
Optimal control theory, which is the theory of finding a
control scheme of a dynamic system so as to achieve a
specific optimality criterion [23], has been widely applied
to marketing researches such as advertising [24], [25] and
influential maximization [26]–[28].

Recently, optimal control theory has been applied to
the maximization of marketing profit by means of WOM
propagation. For instance, [19] studied the marketing profit
maximization problem in the framework of influence-based
discount pricing, [20] dealt with the problem in the presence
of both positive and negative WOMs, and [22] addressed
this problem in the context of competitive marketing. To our
knowledge, the marketing profit maximization problem in the
presence of after-sale service has not been addressed through
optimal control approach.

The present paper is devoted to the marketing profit max-
imization by taking into account the effect of after-sale
service. Based on our proposed WOM propagation model,
we model and study the DM problem through optimal control
approach. Our results contribute to enhancing the marketing
profit for a WOM marketing campaign.

III. THE MODELING OF THE DM PROBLEM
This section is devoted to the modeling of the DM problem.
First, we introduce a set of terms and notations that will be
used later. Then, we describe a WOM propagation model.
Finally, we reduce the DM problem to an optimal control
problem.

A. BASIC TERMS AND NOTATIONS
Suppose a merchant intends to promote the sale of a given
product in the predetermined time horizon [0,T ] by means
of WOM propagation. Let V = {v1, v2, . . . , vN } denote the
associated target market, i.e., the set of buyers and potential
buyers of the product. Let G = (V ,E) denote the WOM
propagation network for the target market V , i.e., {vi, vj} ∈
E stands for that the individuals vi and vj are friends in a
certain online social network. Let A =

(
aij
)
N×N denote

the adjacency matrix for G, i.e., aij = 1 or 0 according as
(vi, vj) ∈ E or not.
The merchant needs to provide all buyers of the product

with after-sale service. The quality of the after-sale service
enjoyed by a buyer at a given time can be measured by the
instantaneous fraction of the maintenance cost paid by the
merchant in the total maintenance cost at that time; the higher
the fraction is, the higher the quality of service will be. Let
θ (t) denote the instantaneous fraction of the maintenance cost
paid by the merchant in the total maintenance cost at time t .
We refer to the function θ defined by θ (t) (t ∈ [0,T ]) as
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a dynamic maintenance (DM) strategy. For ease in implemen-
tation, let

2 = {θ ∈ L[0,T ] : θ (t) ∈ [0, 1], t ∈ [0,T ]}, (1)

be the set of admissible DM strategies, where L[0,T ] denote
the set of Lebesgue integrable functions defined on the
interval [0,T ] (see [29]).

B. A WOM PROPAGATION MODEL
At any time in the time horizon [0,T ], an individual in the
target market may have bought the product or not (waiting).
Further, a buyer of the product may have given a score for
the quality of the after-sale service (active) or not (silent).
Obviously, the average score given by an active buyer at time
t is increasing with θ (t). Let Xi(t) = 0, 1, and 2 denote
that the individual vi is waiting, silent, and active at time t ,
respectively. Then the vector X(t) = (X1(t), · · · ,XN (t))
stands for the state of the target market at time t .

Let us introduce a pair of assumptions as follows.

(A1) A silent buyer becomes active at an average rate of
α > 0.

(A2) Affected by an active neighboring buyer, a waiting indi-
vidual becomes a (silent) buyer at time t at an average
rate of βθ (t), where β is a positive constant.

It follows from these assumptions that the state of the
individual vi varies according to Fig. 1.

FIGURE 1. State transition diagram of the individual vi at time t .

Let Wi(t), Si(t), and Ai(t) denote the probability of the
individual vi being waiting, silent, and active at time t , respec-
tively. Since Wi(t) = 1 − Si(t) − Ai(t), the vector E(t) =
(S(t),A(t)) = (S1(t), · · · , SN (t),A1(t), · · · ,AN (t)) stands
for the expected state of the target market at time t . We have
the following result.
Theorem 1: The evolution of the expected state of the tar-

get market over time obeys the ordinary differential system
(2), as shown at the bottom of the page.

Proof: Let χS denote the characteristic function for the
set S. The waiting individual vi becomes a silent buyer at time
t at an average rate of βθ (t)

∑N
j=1 aijχ{Xj(t)=2}, and the silent

buyer vi becomes active at time t at an average rate of α.

Let E[·] denote the expectancy of a random variable. Then

dSi(t)
dt
=E[βθ (t)

N∑
j=1

aijχ{Xj(t)=2}]× [1− Si(t)− Ai(t)]

−αSi(t)

= βθ (t) [1−Si(t)−Ai(t)]
N∑
j=1

aijAj(t)− αSi(t). (3)

Similarly, we can prove dAi(t)
dt = αSi(t). �

This system as an individual-based WOM propagation
model characterizes the effect of the DM strategy on the
evolution of the expected state of the target market over time.
This model can be recast in matrix notation as

dE(t)
dt
= f (E(t), θ(t)), 0 ≤ t ≤ T ,

E(0) = E0.
(4)

C. THE OPTIMAL CONTROL MODELING OF
THE DM PROBLEM
Let c1 denote the unit price of the product, c2 the average cost
per unit time for maintaining each item of the product.
Theorem 2: The expected net profit gained by the mer-

chant in the time horizon [0,T ] is

P(θ ) = c1β
∫ T

0
θ (t)

N∑
i=1

[1− Si(t)− Ai(t)]
N∑
j=1

aijAj(t)dt

− c2

∫ T

0
θ (t)

N∑
i=1

[Si(t)+ Ai(t)] dt. (5)

Proof: It follows from Theorem 1 that the individual
vi buys the product in the time horizon [0,T ] with a proba-
bility of β

∫ T
0 θ (t)[1− Si(t)− Ai(t)]

∑N
j=1 aijAj(t)dt . So, the

expected gross profit gained by the merchant from selling an
item of the product to the individual vi is c1β

∫ T
0 θ (t)[1 −

Si(t) − Ai(t)]
∑N

j=1 aijAj(t)dt . Hence, the expected gross
profit gained by the merchant in the time horizon [0,T ] is

c1β
∫ T
0 θ (t)

∑N
i=1[1 − Si(t) − Ai(t)]

∑N
j=1 aijAj(t)dt . On the

other hand, the expected cost paid by the merchant
for maintaining the item bought by the individual vi is
c2
∫ T
0 θ (t)[Si(t)+ Ai(t)]dt . Hence, the expected maintenance

cost paid by the merchant in the time horizon [0,T ] is

c2
∫ T
0 θ (t)

∑N
i=1[Si(t)+ Ai(t)]dt . The claim follows. �

Therefore, we model the DM problem as the optimal con-
trol problem (6), as shown at the bottom of the next page.

We refer to the optimal control problem (6) as the DM
model. This model is characterized by the 7-tuple

M = (G,T , α, β, c1, c2,E0). (7)


dSi(t)
dt
= βθ (t)[1− Si(t)− Ai(t)]

∑N

j=1
aijAj(t)− αSi(t), 0 ≤ t ≤ T , 1 ≤ i ≤ N ,

dAi(t)
dt
= αSi(t), 0 ≤ t ≤ T , 1 ≤ i ≤ N ,

E(0) = E0

(2)
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IV. A METHOD FOR SOLVING THE DM MODEL
In the previous section, we reduced the DM problem to the
DM model. In this section, we derive a method for solving
this model.

According to optimal control theory, the Hamiltonian for
the DM model is as shown in Eq. (8), as shown at the bottom
of the page, where (λ,µ) = (λ1, · · · , λN , µ1, · · · , µN ) is the
associated adjoint. We have the following result.
Theorem 3: Suppose θ is an optimal control for the DM

model (7), E is the solution to the corresponding model (2).
Then there exists an adjoint (λ,µ) such that the system (9),
as shown at the bottom of the page, holds. Moreover, let

g(E(t),λ(t),µ(t))

= c1β
N∑
i=1

[1− Si(t)− Ai(t)]
N∑
j=1

aijAj(t)

− c2
N∑
i=1

[Si(t)+ Ai(t)]

+β

N∑
i=1

λi(t)[1− Si(t)− Ai(t)]
N∑
j=1

aijAj(t). (10)

Then

θ (t) ∈ arg max
θ̃∈[0,1]

g(E(t),λ(t),µ(t))θ̃ , 0 ≤ t ≤ T . (11)

As a result, θ (t) = 0 or 1 according as g(E(t),λ(t),
µ(t)) < 0 or > 0.

Proof: According to Pontryagin Maximum Principle,
there exits (λ,µ) such that

dλi(t)
dt
= −

∂H (E(t), θ(t),λ(t),µ(t))
∂Si

,

dµi(t)
dt
= −

∂H (E(t), θ(t),λ(t),µ(t))
∂Ai

,

0 ≤ t ≤ T , 1 ≤ i ≤ N .

(12)

The first 2N equations in the system (9) follow by direct
calculations. Since the terminal cost is unspecified and the
final state is free, we have λ(T ) = µ(T ) = 0. Based on
Pontryagin Maximum Principle, we have

θ (t) ∈ argmax
θ̃∈2

H (E(t), θ̃ (t),λ(t),µ(t)), 0≤ t≤T . (13)

Eqs. (11) follow by direct calculations. �
By optimal control theory, Eqs. (2), Eqs. (9), and Eqs. (11)

constitute the optimality system for the DM model. By solv-
ing the optimality system, we get a control for the DMmodel.
Since this control is not necessarily optimal, we refer to it as
the potential optimal control for the DM model.

V. EXAMPLES OF THE POTENTIAL OPTIMAL CONTROL
In the previous section, we introduced the notion of potential
optimal control for the DM model. In this section, we give a
few examples of the potential optimal control.

A. EXPERIMENT DESIGN
First, below we describe an algorithm (i.e., the POC algo-
rithm) for computing the potential optimal control for the DM
model (see [30]). Here, POC is the acronym of the phrase
‘‘potential optimal control’’, || · ||1 stands for the 1-norm
of a function. In all the following experiments, we set
ε = 10−6,K = 104.

Second, we describe an algorithm (i.e., the RC algorithm)
for randomly and uniformly generating a control for the DM
model as follows. Here, RC is the acronym of the phrase
‘‘random control’’. In all the following experiments, we set
n = 1000.
Next, let us describe three WOM propagation net-

works. First, since many real-world networks are scale-free
(i.e., with a power-law degree distribution) [31], we use
Pajek (a well-known social network analysis software) [32]

max
θ∈2

P(θ ) = c1β
∫ T

0
θ (t)

N∑
i=1

[1− Si(t)− Ai(t)]
N∑
j=1

aijAj(t)dt − c2

∫ T

0
θ (t)

N∑
i=1

[Si(t)+ Ai(t)] dt

subject to


dE(t)
dt
= f (E(t), θ(t)), 0 ≤ t ≤ T ,

E(0) = E0

(6)

H (E, θ, λ, µ) = c1βθ
N∑
i=1

(1− Si − Ai)
N∑
j=1

aijAj − c2θ
N∑
i=1

(Si + Ai)

+

N∑
i=1

λi

βθ (1− Si − Ai) N∑
j=1

aijAj − αSi

+ α N∑
i=1

µiSi (8)



dλi(t)
dt
= c1βθ (t)

∑N

j=1
aijAj(t)+ c2θ (t)+

[
βθ (t)

∑N

j=1
aijAj(t)+ α

]
λi(t)− αµi(t),

dµi(t)
dt
= c1βθ (t)

∑N

j=1
aij
[
2Aj(t)+ Sj(t)− 1

]
+ c2θ (t)+

[
βθ (t)

∑N

j=1
aijAj(t)

]
λi(t)

−βθ (t)
∑N

j=1
aij
[
1− Sj(t)− Aj(t)

]
λj(t),

0 ≤ t ≤ T , 1 ≤ i ≤ N , λ(T ) = µ(T ) = 0

(9)
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Algorithm 1 POC
Input: a DM model M = (G,T , α, β, c1, c2,E0),

convergence error ε, maximum number K of iterations.
Output: the potential optimal con-

trol θ .
1: k ← 0; θ (0)(t)← 0, t ∈ [0,T ];
2: repeat
3: k ← k + 1;
4: forward compute E using Eqs. (2) with θ = θ (k−1);

E(k)
← E;

5: backward compute λ and µ using Eqs. (9) with θ =
θ (k−1) and E = E(k); λ(k)← λ; µ(k)

← µ;
6: compute θ using Eqs. (11) with E = E(k), λ = λ(k),

and µ = µ(k); θ (k)← θ ;
7: until ‖θ (k) − θ (k−1)‖1 < ε or k ≥ K ;
8: return θ (k).

Algorithm 2 RC
Input: a DM model M = (G,T , α, β, c1, c2,E0),, positive
integer n.
Output: a control θ .
1: t0← 0;
2: for k = 1 to n do
3: tk := tk−1 + T

n ;
4: end for
5: for k = 0 to n− 1 do
6: randomly and uniformly generate a number η ∈ [0, 1];

7: θ (t)← η, tk ≤ t < tk+1;
8: end for
9: θ (T )← θ (t (n−1));
10: return θ .

FIGURE 2. Three WOM propagation networks: (a) a scale-free
network GSF , (b) a small-world network GSW , (c) an email network GEM .

to generate a scale-free network with 100 nodes, denoted
GSF and plotted in Fig. 2(a). Second, since many real-world
networks are small-world (i.e., with a relatively small diame-
ter) [31], we use Pajek to generate a small-world networkwith
100 nodes, denoted GSW and exhibited in Fig. 2(b). Finally,
consider a realistic email network [33], denotedGEM and dis-
played in Fig. 2(c). Finally, in all the following experiments,
let S0 = (0.1, · · · , 0.1), A0 = (0, · · · , 0), E0 = (S0,A0).

B. EXPERIMENTS
Experiment 1: Consider the DM model M1 =

(GSF , 10, 0.2, 0.1, 800, 1, E0). By executing the

FIGURE 3. The results in Experiment 1: (a) the optential optimal
control θ∗, (b) P(θ), θ ∈

{
θ∗
}⋃{

θ1, · · · , θ100
}
.

FIGURE 4. The results in Experiment 2: (a) the optential optimal
control θ∗, (b) P(θ), θ ∈

{
θ∗
}⋃{

θ1, · · · , θ100
}
.

POC algorithm onM1, we get the potential optimal control
for M1, denoted θ∗ and plotted in Fig. 3(a). By repeatedly
executing the RC algorithm on M1, we get 100 controls,
denoted θ1 through θ100. Fig. 3(b) exhibits P(θ ), θ ∈
{θ∗}

⋃
{θ1, · · · , θ100}. It is seen thatP(θ∗) > P(θk ) for all k.

Experiment 2: Consider the DM model M2 =

(GSW , 10, 0.1, 0.2, 700, 1,E0). By running the POC algo-
rithm on M2, we get the potential optimal control for
M2, denoted θ∗ and plotted in Fig. 4(a). By repeatedly
executing the RC algorithm on M1, we get 100 controls,
denoted θ1 through θ100. Fig. 4(b) displays P(θ ), θ ∈
{θ∗}

⋃
{θ1, · · · , θ100}. It is seen thatP(θ∗) > P(θk ) for all k.

Experiment 3: Consider the DM model M3 =

(GEM , 10, 0.1, 0.1, 750, 1,E0). By performing the POC
algorithm on M3, we get the potential optimal control for
M3, denoted θ∗ and plotted in Fig. 5(a). By repeatedly
executing the RC algorithm on M3, we get 100 controls,
denoted θ1 through θ100. Fig. 5(b) demonstrates P(θ ), θ ∈
{θ∗}

⋃
{θ1, · · · , θ100}. It is seen thatP(θ∗) > P(θk ) for all k.

FIGURE 5. The results in Experiment 3: (a) the optential optimal
control θ∗, (b) P(θ), θ ∈

{
θ∗
}⋃{

θ1, · · · , θ100
}
.

We conclude from the above three experiments and
1,000 similar experiments that the DM strategy associ-
ated with the potential optimal control outperforms most
DM strategies in terms of the expected marketing profit.
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FIGURE 6. (a) P(θT
1 ) versus T , (b) P(θT

2 ) versus T , (c) P(θT
3 ) versus T in

Experiment 4.

FIGURE 7. (a) P(θα1 ) versus α, (b) P(θα2 ) versus α, (c) P(θα3 ) versus α in
Experiment 5.

Therefore, we recommend this DM strategy. For convenience,
we refer to the DM strategy associated with the potential
optimal control as the potential DM strategy.

VI. FURTHER DISCUSSIONS
In this section we examine the influence of some factors on
the expected marketing profit for the potential optimal DM
strategy through computer experiments. First, we examine the
influence of the maintenance period T .
Experiment 4: Consider three sets of DM models as

follows.
(a) Let MT

1 = (GSF ,T , 0.2, 0.1, 800, 1,E0), T ∈ T =
{1, 2, · · · , 10}. By running the POC algorithm on these
models, we get a set of potential optimal controls,
denoted θT1 , T ∈ T . Fig. 6(a) shows P(θT1 ) versus T .
It is seen that P(θT1 ) is increasing with T .

(b) Let MT
2 = (GSW ,T , 0.1, 0.2, 700, 1,E0), T ∈ T =

{1, 2, · · · , 10}. By executing the POC algorithm on
these models, we get their respective potential optimal
controls, denoted θT2 , T ∈ T . Fig. 6(b) shows P(θT2 )
versus T . It is seen that P(θT2 ) is increasing with T .

(c) Let MT
3 = (GSF ,T , 0.1, 0.1, 750, 1,E0), T ∈ T =

{1, 2, · · · , 10}. By performing the POC algorithm on
these models, we get a set of potential optimal controls,
denoted θT3 , T ∈ T . Fig. 6(c) shows P(θT3 ) versus T .
It is seen that P(θT3 ) is increasing with T .

Based on these experiments and 1,000 similar experi-
ments, we conclude that the expected marketing profit for
the potential optimal DM strategy is increasing with the
maintenance period. This conclusion demonstrates that the
merchant should properly extend the maintenance period.

Second, we look into the influence of the comment rate α.
Experiment 5: Consider three sets of DM models as

follows.
(a) Let Mα

1 = (GSF , 10, α, 0.14, 1000, 1,E0), α ∈ A =
{0.1, 0.2, · · · , 1.0}. By executing the POC algorithm

FIGURE 8. (a) P(θβ1 ) versus β, (b) P(θβ2 ) versus β, (c) P(θβ3 ) versus β in
Experiment 6.

on these models, we get a set of potential optimal
controls, denoted θα1 , α ∈ A. Fig. 7(a) shows P(θα1 )
versus α. It is seen that P(θα1 ) is increasing with α.

(b) Let Mα
2 = (GSW , 10, α, 0.12, 1000, 1,E0), α ∈ A =

{0.1, 0.2, · · · , 1.0}. By running the POC algorithm on
these models, we get a set of potential optimal controls,
denoted θα2 , α ∈ A. Fig. 7(b) showsP(θα2 ) versus α. It is
seen that P(θα2 ) is increasing with α.

(c) Let Mα
3 = (GEM , 10, α, 0.1, 1000, 1,E0), α ∈ A =

{0.1, 0.2, · · · , 1.0}. By performing the POC algorithm
on these models, we get a set of potential optimal
controls, denoted θα3 , α ∈ A. Fig. 7(c) shows P(θα3 )
versus α. It is seen that P(θα3 ) is first increasing then
decreasing with α.

Based on these experiments and 1,000 similar experiments,
we conclude that the expected marketing profit for the poten-
tial optimal DM strategy is first increasing then decreasing
with the comment rate.

Next, let us investigate the influence of the WOM
strength β.
Experiment 6: Consider three sets of DM models as

follows.
(a) Let Mβ

1 = (GSF , 10, 0.03, β, 1000, 1,E0), β ∈ B =
{0.1, 0.2, · · · , 1.0}. By running the POC algorithm on
these models, we get a set of potential optimal controls,
denoted θβ1 , β ∈ B. Fig. 8(a) showsP(θβ1 ) versus β. It is
seen that P(θβ1 ) is increasing with β.

(b) Let Mβ

2 = (GSW , 10, 0.03, β, 1000, 1,E0), β ∈ B =
{0.1, 0.2, · · · , 1.0}. By performing the POC algorithm
on these models, we get a set of potential optimal
controls, denoted θβ2 , β ∈ B. Fig. 8(b) shows P(θβ2 )
versus β. It is seen that P(θβ2 ) is increasing with β.

(c) Let Mβ

3 = (GSW , 10, 0.01, β, 1000, 1,E0), β ∈ B =
{0.1, 0.2, · · · , 1.0}. By executing the POC algorithm
on these models, we get a set of potential optimal
controls, denoted θβ3 , β ∈ B. Fig. 8(b) shows P(θβ3 )
versus β. It is seen that P(θβ3 ) is increasing with β.

Based on these experiments and 1,000 similar experi-
ments, we conclude that the expected marketing profit for the
potential optimal DM strategy is increasing with the WOM
strength.

Finally, let us inspect the influence of the ratio of c1 to c2.
Experiment 7: Consider three sets of DM models as

follows.
(a) Let Mc

1 = (GSF , 10, 0.1, 0.1, c, 1,E0), c ∈

C = {1000, 1100, · · · , 2000}. By running the POC
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FIGURE 9. (a) P(θc
1 ) versus c , (b) P(θc

2 ) versus c , (c) P(θc
3 ) versus c in

Experiment 7.

algorithm on these models, we get a set of potential
optimal controls, denoted θc1 , c ∈ C. Fig. 9(a) shows
P(θc1 ) versus c. It is seen thatP(θc1 ) is increasing with c.

(b) Let Mc
2 = (GSW , 10, 0.2, 0.1, c, 1,E0), c ∈ C =

{1000, 1100, · · · , 2000}. By performing the POC algo-
rithm on these models, we get a set of potential optimal
controls, denoted θc2 , c ∈ C. Fig. 9(b) shows P(θc2 )
versus c. It is seen that P(θc2 ) is increasing with c.

(c) Let Mc
3 = (GEM , 10, 0.1, 0.1, c, 1,E0), c ∈ C =

{1000, 1100, · · · , 2000}. By executing the POC algo-
rithm on these models, we get a set of potential optimal
controls, denoted θc3 , c ∈ C. Fig. 9(c) shows P(θc3 )
versus c. It is seen that P(θc3 ) is increasing with c.

Based on these experiments and 1,000 similar experiments,
we conclude that the expected marketing profit for the poten-
tial optimal DM strategy is increasing with the ratio of the
unit price of the product and the maintenance cost per unit
time of the product. This conclusion shows that the merchant
should properly enhance the unit price of the product.

VII. CONCLUSIONS AND REMARKS
This paper has addressed the problem of maximizing the mar-
keting profit for aWOMmarketing campaign by dynamically
adjusting the after-sale maintenance strategy. First, we have
reduced the problem to an optimal control problem. Second,
we have derived a potential optimal maintenance strategy
by solving the optimality system for the optimal control
problem. Finally, we have justified our maintenance strategy
through comparative experiments. Therefore, we have recom-
mended the derived maintenance strategy.

There are many related issues that are yet to be resolved.
First, the combined effect of the maintenance strategy and
the discount pricing strategy on WOM marketing should
be examined [19], [21]. Second, this work may be adapted
to competitive WOM marketing campaigns [22], [34]–[37].
Next, in the presence of competing rivals, it is appropriate to
deal with the marketing profit maximization problem in the
framework of game theory [22], [37], [38]. Finally, the used
methodology may be applied to some other areas such as
rumor control [39]–[42] and defense of advanced persistent
threat [43]–[47].
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