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ABSTRACT Most cyber-attacks and data breaches in cloud infrastructure are due to human errors and
misconfiguration vulnerabilities. Cloud customer-centric tools are imperative for mitigating these issues,
however existing cloud security models are largely unable to tackle these security challenges. Therefore,
novel security mechanisms are imperative, we propose Risk-driven Fault Injection (RDFI) techniques to
address these challenges. RDFI applies the principles of chaos engineering to cloud security and leverages
feedback loops to execute, monitor, analyze and plan security fault injection campaigns, based on a
knowledge-base. The knowledge-base consists of fault models designed from secure baselines, cloud security
best practices and observations derived during iterative fault injection campaigns. These observations are
helpful for identifying vulnerabilities while verifying the correctness of security attributes (integrity, con-
fidentiality and availability). Furthermore, RDFI proactively supports risk analysis and security hardening
efforts by sharing security information with security mechanisms. We have designed and implemented the
RDFI strategies including various chaos engineering algorithms as a software tool: CloudStrike. Several
evaluations have been conducted with CloudStrike against infrastructure deployed on two major public
cloud infrastructure: Amazon Web Services and Google Cloud Platform. The time performance linearly
increases, proportional to increasing attack rates. Also, the analysis of vulnerabilities detected via security
fault injection has been used to harden the security of cloud resources to demonstrate the effectiveness of
the security information provided by CloudStrike. Therefore, we opine that our approaches are suitable for
overcoming contemporary cloud security issues.

INDEX TERMS Cloud security, security chaos engineering, resilient architectures, security risk assessment.

I. INTRODUCTION
Cyber-attacks against Infrastructure as a Service (IaaS) cloud
platforms have increased in recent years, mostly exploiting
configuration vulnerabilities. These types of vulnerabilities
include misconfigured Access Control Policies (ACP), over-
privileged users and lack of audit logging. Consequently,
the Cloud Security Alliance (CSA) Top Cloud Computing
Threats 2019 report [1] identified data breaches due to mis-
configuration and inadequate change control as the top 2,
most severe cloud security threats. Similarly, the Ponemon
Institute’s Data Breach Report 2019, disclosed that 49 % of
breaches are caused by system glitches and human errors [2].
The key takeaway from these reports and similar research
is that cloud customers are the weakest link in the cloud
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ecosystem [3]. Furthermore, while CSPs fulfill their respon-
sibilities as specified in the Shared Security Responsibility
Model (SSRM), most cloud customers are yet to imple-
ment the requirements of the SSRM. There are several rea-
sons for this including lack of efficient, customer-centric
tools [4], wide cloud skills gap [1], [5] and increasing com-
plexity of cloud services. Some of these challenges can
be resolved by evolving proactive customer-centric security
mechanisms [1].

We tackle the above-mentioned security challenges with a
novel concept - Risk Driven Fault Injection (RDFI), a unique
application of chaos engineering [16], [17] to cyber- secu-
rity. RDFI extends the principles of chaos engineering1 to
cloud security to gain security benefits, additional to the
already established resiliency benefits. The state-of-the-art

1https://principlesofchaos.org/
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TABLE 1. Chaos engineering frameworks.

chaos engineering techniques inject faults into software
systems to detect availability issues e.g latency. Subsequently,
these issues are resolved to improve system resilience thereby
enabling confidence in the system’s capability to withstand
turbulence [17]. In general, implemented resiliency patterns
e.g. timeouts, retries, and fallbacks are important for chaos
engineering experiments, given the provision of clear feed-
back information about system behavior [18], [19]. These
feedback are indicative of faults, thereby providing opportu-
nities for mitigation. However, these resiliency strategies are
not designed to improve security, rather, they are designed to
tackle availability challenges.

Since faults and failures could also impact security,
it makes sense to derive similar resiliency strategies for secu-
rity. Table 1 is a summary of some notable chaos engineer-
ing tools, we can notice the diversity of applications i.e.
across several abstraction layers, but most tools focus on
solving issues related to non-security availability challenges.
Hence, we aim at devising ways for transferring the gains
of resiliency patterns to security. Conversely, we propose
the notion of RDFI, for injecting security faults, that detect
security vulnerabilities i.e. failures that impact confidential-
ity, availability and integrity. Similar to the feedback loops
employed for non-security faults, we propose an adaptation of
theMonitor Analyze Plan Execute over-a-sharedKnowledge-
base (MAPE-K) feedback loop [20], which has been pop-
ularly employed in complex, autonomous computing. Our
adaptation provides an effective model for automating the
process of acquiring and transferring security information
gained via security fault injection to security mechanisms
e.g. firewalls, for remediation. These faults are codified as
hypotheses to verify the correctness of security tools, controls
and attributes. For example, a hypothesis might be: is the
principle of least privilege well configured for Amazon Web
Services (AWS) S3 bucket XYZ?

RDFI is implemented in CloudStrike [15], a cloud secu-
rity system that implements chaos engineering principles.
We extended our initial work in [15], by implementing
security fault models drawn from secure baselines, industry
standard best practices e.g. the Centre for Internet Secu-
rity (CIS) benchmarks for Cloud Service Provider (CSP)
[21], [22] and the CSA cloud penetration testing play-
book [23]. These guidelines provide guidance for cloud secu-
rity, which we leveraged to construct test suites for injecting
security faults. Additionally, in order to achieve non-random,
sequential exploration of the fault space, (attack surface)
cloud attack graphswere employed. To the best of our knowl-
edge, there is no other work that injects security faults using
similar techniques.

Contributions: In an earlier work-in-progress paper [15],
we proposed basic concepts for applying the princi-
ples of chaos engineering to cloud security. In this
article, we have extended the work in the following
ways:
• We establish the relationship between chaos engi-
neering and related concepts: dependability, security
and resiliency thereby demonstrating that security can
be practically expressed as an attribute of resiliency
(Section II-B).

• We propose the notion of RDFI, which applies security
risk paradigms e.g. attack graphs and vulnerability scor-
ing, to chaos engineering (Section III).

• We propose the RDFI Feedback Loop (adapted from
the MAPE-K model [20]), as a model for automating
the transfer of security information gained via Security
Chaos Engineering (SCE) to cyber-security controls and
mechanisms (Section III-A).

• Several security fault models that aid in detecting secu-
rity vulnerabilities in cloud infrastructure are proposed
(Section III-C).
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• We implemented our concepts as a software tool: Cloud-
Strike (Section IV), and conducted extensive experi-
ments using realistic, state-of-the-art attacks against two
major CSPs: AWS and Google Cloud Platform (GCP)
(Section V).

The rest of this paper is structured as follows, in the next
section, we introduce a running example to consolidate our
concepts, and thereafter establish the relationship between
chaos engineering, dependability, security and resiliency.
In Section III, we present the RDFI feedback loop, RDFI,
our fault models and how the principles of chaos engineer-
ing are applied in RDFI. The design and implementation of
CloudStrike is highlighted in Section IV, while results of our
evaluation are in Section V. Related works are presented in
Section VI, while interesting next steps are highlighted in
Section VII. The paper is concluded in Section VIII.

II. SECURITY CHAOS ENGINEERING
This Section discusses important concepts around SCE: the
application of chaos engineering concepts to cyber-security.
According to Rinehart [24], SCE is identification of security
control failures through proactive experimentation to build
confidence in the system’s ability to defend against malicious
conditions in production.Therefore, a running example based
on a real data breach incident is first introduced, then the rela-
tionship between chaos engineering, dependability, security
and resiliency is highlighted. Finally, our methodology for
ensuring safe experiments in presented.

FIGURE 1. Running example- an illustration of the capital one data
breach.

A. RUNNING EXAMPLE - THE CAPITAL ONE DATA BREACH
To provide a concrete illustration of contemporary cloud
security issues, we would use the Capital One data
breach [25], as a running example. This data breach occurred
due to several attacks against Capital One’s AWS infras-
tructure, Figure 1 is a summary of the attack scenario. The
initial entry point (EP01) was a misconfigured reverse proxy,
that the attacker identified and leveraged to gain access to
an Elastic Computing Cloud (EC2) VM (Step 1), where the
reverse proxy server was hosted. Having gained an initial
foothold, the attacker executed a Server Side Request Forgery
(SSRF) attack against the metadata server (Step 2), to obtain
valid and extensive permissions. The metadata server in turn

requests for permissions from the AWS Identity and Access
Management (IAM), as defined in the profile access control
policy (Step 3). These permissions are quite broad, granting
access to the entire AWS Simple Storage Service (S3) i.e.
the VM (including any user inheriting the permissions scoped
within the VM) canmake root-level requests against all assets
within the AWS S3. Therefore the attacker inherits these priv-
ileges (Step 4) (EP02), by virtue of taking control of the VM.
Thereafter, the attacker retrieves several critical information
from the S3 bucket (Step 5) e.g. customers’ email addresses,
social security numbers and credit card information (EP03).
In the above scenario, we notice several security issues:
(a)misconfigured reverse proxy (EP01), (b) over-privileged
profile policy, that does not satisfy the principle of least
privilege (EP02) (c) massive ex-filtration of sensitive data
from the S3 bucket without triggering alarms (EP03). These
security issues are due to misconfigured cloud assets and
ought to be prevented by implementing security controls.

B. CHAOS ENGINEERING
Chaos engineering [16], [18] has emerged as a discipline to
enable resiliency in the cloud. According to Basiri et.al [16],
chaos engineering is the discipline of experimenting on a dis-
tributed system in order to build confidence in its capability
to withstand turbulent conditions in production. At the core
of chaos engineering is the idea of conducting experiments
to either affirm or disprove hypotheses. Here, a hypothesis
refers to an expected or assumed behavior of a system, under
specific scenarios. During chaos engineering experiments,
hypotheses are tested by injecting turbulence e.g. faults,
under real situations, while observing system behavior. The
observed behavior is new knowledge, as it affords insights to
how the system will fail or withstand (confirm or disprove
the defined hypotheses). However, the state-of-the-art chaos
engineering techniques focus on availability experiments,
where hypotheses are framed around availability attributes
e.g. latency. We believe that security-focused hypothesis
are also possible, and would be very beneficial to security
professionals. Furthermore, resiliency is not only crucial to
availability, but also security(confidentiality and integrity).
Therefore, the next subsections lay the foundation for making
these connections.

C. DEPENDABILITY
Dependability is a global concept that includes sev-
eral attributes: reliability, availability, integrity, availability,
maintainability and safety [26], [27]. These attributes, also
illustrated in Figure 2, are highly desirable, but could be neg-
atively impacted by the effects of failures, faults and errors.
Chaos engineering implementations e.g. Netflix Chaos Mon-
key [8] employ fault injection techniques for addressing these
threats. Consequent upon the success of the Netflix Simian
Army, several implementation of the principles of chaos
engineering have emerged. These implementations, address
resiliency issues at various abstraction layer, as shown
on Table 1. However, over 95% of these tools focus on
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FIGURE 2. The dependability tree [26] shows the relationship between
dependability and security.

availability challenges. Consequently, the remaining depend-
ability attributes (illustrated in Figure 2) are neither tested
nor guaranteed. Hence, security failures such as those caused
by malicious faults (cyber attacks) are currently not handled
by the current resiliency techniques: timeouts, retries, and
fallbacks.

D. SECURITY
Security is a summation of confidentiality, integrity and
availability, and is also categorized under dependability
[26], [28]. These attributes define the way security of any
system is perceived, hence the violation of these attributes
indicate compromise of security. Traditionally, security con-
trols are enforced to detect these security violations. How-
ever, the cloud operating model differs from on-premises
data- centers, where the afore-mentioned security controls
were designed to operate. Consequently, these traditional
security controls are largely ineffective in cloud infrastruc-
ture. We propose the use of SCE as a proactive measure
to overcome the contemporary cloud security challenges.
Therefore, CloudStrike shifts focus from focusing on injec-
tion of non-malicious faults, to malicious faults. This enables
verification of cloud security properties, e.g. configurations
of AWS S3 buckets. A typical example is provided in the
running example (Section II-A), where the attacker was able
to escalate privileges (EP02) and move laterally without trig-
gering any security alerts (EP03). Several cloud security best
practices have been proposed e.g. the principle of least priv-
ilege. Yet, there are no defined techniques for verifying cor-
rect implementation, hence the high rate of cloud breaches.
CloudStrike is designed to breach this gap via automatic and
continuous verification of cloud security properties, these
properties are defined as hypotheses for chaos engineering
experiments (Section III-D).

E. RESILIENCY
Resiliency is defined as the ability of a system to per-
sist its dependability over a period of time regardless of
changes [29], [30]. These changes are very important in the
cloud due to the heterogeneity of services, dynamic events

FIGURE 3. State transition analysis leveraged to enable safety in RDFI
using reversibility concepts.

Algorithm 1 Disable Logging in AWS S3
1: procedure Disable Logging
2: getCloudBuckets() F enumerate the buckets in the

cloud
3: selectRandomBucket ← getCloudBuckets() F select

a random bucket from the set of enumerated buckets
4: disableBucketLogging() F stop all logging activities

against the bucket
5: end procedure

and high volatility of resources. Essentially, efficient change
control is imperative for cloud security as changes could be
Indicators of Compromise [1]. Therefore, mechanisms that
are designed to check for the resiliency of cloud systems
should inject both malicious and non-malicious changes as
part of resiliency testing. This approach efficiently tackles the
cloud threat: lack of efficient change control mechanisms as
outlined in the CSA top cloud threats 2019 [1].

F. SAFETY IN FAULT INJECTION
Practicing chaos engineering in production requires a good
measure of safety. These safety measures provide options
for rolling back changes that adversely impact deployments.
We leveraged the concept of state transition analysis to
achieve safety. State transition analysis is an analytical model
for detecting and representing malicious events in computer
systems [31]. Essentially, malicious activities are modeled as
the transition of states originating from a secure state (good)
So. As illustrated in Figure 3, the states change from So to S1
and can progress until Sn. Each subsequent state represents
a compromised state due to malicious attacker action e.g.
change of an AWS access policies order to escalate privileges.
Therefore, the secure (good) state So, has to be initially
established, this is straightforward if Infrastructure as Code
(IaC) e.g. HashiCorp Terraform2 or AWS CloudFormation,3

is the orchestration strategy for the cloud environment. IaC
enables declarative, representation of infrastructure in JSON
or YAML formats. Conversely, IaC can be persisted and
retrieved to recreate resources by rolling back changes from
Sn to So. Note that So can also be constructed in the absence
of IaC by enumerating and persisting cloud resources using
cloud APIs.

III. RISK DRIVEN FAULT INJECTION
RDFI implements chaos engineering from a security risk-
driven perspective. The security attributes (confidentiality,

2https://www.terraform.io/
3https://aws.amazon.com/cloudformation/
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integrity and availability) are considered while exploring the
fault space i.e. the hypothesis are framed within this context.
Therefore, faults that impact on these attributes are orches-
trated against the target cloud infrastructure. A security risk-
driven approach is more helpful to security practitioners since
detected vulnerabilities are analyzed and quantified, thus
enabling subsequent decision-making easier and straight-
forward. In following subsections, several aspects of RDFI
are discussed including the Execute Monitor Analyze Plan
over-a-shared Knowledge-base (EMAP-K) Feedback Loop,
security risk metrics, fault models and implementation of
chaos engineering in RDFI.

FIGURE 4. RDFI feedback loop - an adaptation of the MAPE-K framework
to support security fault injection campaigns and transfer of information
to security mechanisms.

A. RDFI FEEDBACK LOOP
There are currently no established guidelines for practic-
ing SCE. However, such practices exist for chaos engineer-
ing, infact, modern software engineering frameworks e.g.
microservices implement resiliency patterns e.g. timeouts and
bulkheads and circuit-breaker. The RDFI Feedback Loop
shown in Figure 4 summarizes howSCE can be used to ensure
security and resiliency in cloud infrastructure. It describes
the strategy for conveying the security information gained
from the chaos engineering campaigns to the deployed secu-
rity controls and mechanism in an efficient and iterative
manner. The idea for adopting a feedback loop is motivated
by control engineering and autonomous computing domains
where the MAPE-K feedback loop [20] is a popular mecha-
nism maintaining stability. However, the MAPE-K feedback
loop is passive since it listens to events i.e. employs event-
driven approaches. Conversely, SCE initiates events via fault
injection and then monitors, hence a proactive feedback loop
is more suitable. Therefore, we have adapted the MAPE-K
feedback loop by making the EXECUTE phase the first mod-
ule, aka EMAP-K. The mapping of the various MAPE-K
functions with CloudStrike is shown in Figure 5. Our adapted
model works as follows:

1) EXECUTE
The first component of the RDFI Feedback Loop is the
execute component. It is responsible for injecting security
faults into the target cloud infrastructure. For example, in
Algorithm 2, the faults injected disable the logging

Algorithm 2 Malicious User-Bucket Attack Scenario
1: procedure BucketAttack
2: createNewUser() F create a new user e.g. Bob
3: getCloudBuckets() F get a list of all the buckets in

the cloud
4: selectRandomBucket ← getCloudBuckets() F select

a random bucket from the set of buckets in the cloud
5: createBucketPolicy()
6: assignUserAccessPolicy← selectRandomBucket F

give user e.g. Bob read access to the existing bucket
7: end procedure

functionality of a specific AWS S3 bucket. This evasion
technique is commonly used by attackers to hide their tracks
and avoid detection. The execute component is responsi-
ble for implementing these fault injection operations e.g.
Algorithms 2 and 2. Unlike the MAPE-K model, where the
monitor component is the initiating component, the execute
component initiates the EMAP-K model. This is because
chaos engineering is a proactivemechanism and not a reactive
one like MAPE-K.

2) MONITOR
Following the successful injection of security faults, it is
critical to maintain real-time visibility of the target cloud
infrastructure. This enables timely intervention if the impact
of fault injection campaigns begins to adversely affect the
system, especially in production environments. Therefore,
the Monitor components uses several mechanisms to ensure
visibility. Firstly, logs from CloudStrike are collected and
analyzed, and thereafter observability tools from the cloud
service are leveraged e.g. AWS CloudWatch [32], AWS
X-RAY(distributed tracing) [33].

3) ANALYZE
Observations derived from the cloud infrastructures is col-
lected and analyzed. The analysis helps in refining the
information to aid better understanding and identification of
implications e.g. impact of the security risks. Furthermore,
detected vulnerabilities are scoring using security risk met-
rics, more details of the scoring methodology is provided in
Section III-B.

4) PLAN
The Plan component takes the security information acquired
during the fault injection and applies it in two major ways.
Firstly, the security information, is passed to the respective
security mechanisms e.g. security tools deployed to protect
cloud infrastructure where it is used for possible harden-
ing measures. Hence, the security controls, as enumerated
on Table 2 leverages the security information to implement
several security measures: preventive, detective predictive
and recovery. For example, security fault injection cam-
paigns orchestrated against the AWS infrastructure in Run-
ning Example would identify over-privileged IAM policies
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TABLE 2. Dependability VS security controls.

and flag it as a security control violation. Consequently,
a less permissive policy could be proposed to replace the
existing one. The second way the security information is
applied consist in preparing for subsequent fault injection
campaigns. The discovered vulnerabilities are leveraged to
plan more attacks for other assets in the cloud infrastructure
e.g. by enriching the fault models.

5) KNOWLEDGE-BASE
At the center of the RDFI feedback loop is the knowledge-
base, consisting of security information. The security infor-
mation about the cloud infrastructure is derived from several
sources e.g. fault models and cloud security best practices and
secure baselines. Also, the results of the analyzed behavior
due to fault injections is an important part of this knowledge-
base as it provides information that is immediately actionable.
For example, if there are no detected vulnerabilities due to
the security faults defined in Algorithm 2, that observation
is persisted in the knowledge-base. A different fault will be
injected into that specific cloud resource in the future fault
injection campaigns.

B. SECURITY RISK METRICS
The outcome of fault injection campaigns are not left in
binary categories e.g. secure/insecure or true/false, instead
fine grained security risk metrics are employed. These met-
rics are computed for every security vulnerability detected
during fault injection campaigns using the Common Vul-
nerability Scoring System (CVSS), one of the most popular
security metrics standard.

1) CVSS
We extended our previous works on threat modeling and
proactive risk analysis for cloud infrastructure, where we
used the CVSS version 2 to score vulnerabilities in cloud
infrastructure [34], [35]. The CVSS metrics are expressed
using with base scores, which are numeric representations of
risks, assessed in terms of severity [36], [37]. The base scores
are computed using the Impact (Eqn 2) and Exploitability
(Eqn 3) metrics, as expressed in Eqn 1. We have used our

expert knowledge to compute these metrics, comparing them
with similar vulnerabilities and following the guidelines in
the CVSS manuals [36], [37]. Therefore, detected vulnera-
bility due to the fault injection campaigns are scored, and the
scores serve as a guide for risk prioritization [38] and other
risk management tasks, thereby making our approach more
practically useful.

2) DERIVING SECURITY METRICS WITH CVSS
Let us consider how to compute security severity using the
CVSS for two representative cloud attacks: Cloud Storage
Enumeration Attack and Cloud Storage Exploitation Attack
[34], [35], [39].
• Cloud Storage Enumeration Attack. This attack aims at
detectingmisconfigured buckets for a selected target e.g.
a company’s AWS S3 buckets that are publicly acces-
sible. The attacker leverages previous knowledge about
the target acquired via enumeration techniques [40],
to construct possible keywords that are relevant to the
target e.g company name. These keywords are then fed
into the word-list generation tool e.g.Mentalist,4 to gen-
erate all possible word combinations that are potentially
AWS S3 bucket names. Thereafter, the generated word-
list is fed to a cloud exploitation tools e.g. Bucketfinder5

to conduct the attack. Bucketfinder uses the word-list
to construct and probe AWS S3 URLs using HTTP
GET requests, responses with code 200 are publicly
accessible. Due to space limitations, some details of the
Equations 1 - 2 are omitted e.g. static values for the
AccessVector, AccessComplexity, Authentication, Con-
fImpact, IntegImpact and AvailImpact. These values are
available at various resources e.g the CVSS Implementa-
tion Guide [36].We assignNetwork for the AttackVector
metric since the attack can be executed over the internet.
the AccessComplexity is assigned Low given that attack-
ers can execute this attack with tools available in the wild
e.g Metasploit and on several GitHub repositories. The
Authentication metric is set to None, because no authen-
tication is required for the attack. For the Impact met-
rics, IntegImpact, ConfImpact and AvailImpact is set to
Partial since there is a possibility of either acquiring
materials encrypted in buckets/objects with properly
configured Access Control List (ACL). Based on these
metrics (AV:N/AC:L/Au:N/C:P/I:P/A:P)6 we derive 7.5,
as the base score. The Cloud Storage Enumeration

4https://github.com/sc0tfree/mentalist
5https://digi.ninja/projects/bucket finder.php
6this is a vector string representation of all computed metrics for a vulner-

ability

BaseScore = round_to_1_decimal(((0.6 ∗ Impact)+ (0.4 ∗ Exploitability)−−1.5) ∗ f (Impact)) (1)

Impact = 10.41 ∗ (1− (1− ConfImpact) ∗ (1− IntegImpact) ∗ (1− AvailImpact)) (2)

Exploitability = 20 ∗ AccessVector ∗ AccessComplexity ∗ Authentication (3)
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FIGURE 5. Architecture of CloudStrike showing the mapping to MAPE-K model.

Attack is comparable to brute force password guessing
attacks e.g. CVE-2012-3137.7

• Cloud Storage Exploitation Attack The Cloud Storage
Enumeration Attack could use the previous attack as a
staging step. The actual attack against identified mis-
configured buckets are during this attack, using cloud
exploitation tools e.g. Bucketfinder. To compute the
severity scores, we assign Network to the AttackVector
metric, since the buckets are reachable via the inter-
net. The AccessComplexity is assigned Low, while the
Authentication metric is set to None, given there is no
authentication mechanism protecting the bucket. The
Impact metrics is more severe given the previous attack
informs the attacker of buckets that are publicly accessi-
ble. Thus, the IntegImpact, ConfImpact and AvailImpact
are set to Complete. We thus have the base metrics as
(AV:N/AC:L/Au:N/C:C/I:C/A:C), and arrive at a score
of 10.0. The score is reasonable considering it affords
an attacker full access to AWS S3 bucket.

C. FAULT MODELS
Fault models [41] are commonly used in traditional fault
injection schemes to establish a sequence and order for con-
ducting fault injection campaigns. In order to derive the fault
models used in our scheme, several sources of security infor-
mation have been synthesized. Furthermore, an important
aspect of fault injection algorithms is the ability to detect all
possible faults ( wide fault coverage) within a defined failure
scope. Essentially, our failure scope encapsulates the impact
of security failures against cloud assets. We based our fault
models on the CSA cloud penetration test playbook [23],
which categorizes public IaaS into three domains (see
Figure 8) for security testing: (1) application, data, business

7https://nvd.nist.gov/vuln/detail/CVE-2012-3137

logic, (2) cloud service and (3) cloud account. However,
we focus on the latter two domains: cloud account security
and cloud service security which directly map to the cloud
IAM and cloud storage respectively. The following sources
considered to formulate RDFI fault models:

1) CLOUD SECURITY KNOWLEDGE-BASE
Cloud security best practices have been proposed by sev-
eral organizations such as the CIS benchmarks and the
CSA security guides. These best practices specify checks to
improve the security posture for CSPs and cloud customers.
Automated security tests could therefore be implemented
based on these best practices. For example, the AWS CIS
Recommendation 2.6 recommends activation of AWSCloud-
Trail: Ensure S3 bucket access logging is enabled on the
CloudTrail S3 bucket. This recommendation aims at ensuring
that all activities against the AWS buckets are recorded and
retained for subsequent retrieval and analysis. Accordingly,
an example of a security fault injection we have derived
from this recommendation is disable_bucket_logging.
Algorithm 1 illustrates the implementation of this fault
against AWS S3 buckets.

2) CLOUD PENETRATION TESTING PLAYBOOK
Although the above-mentioned approach provides rich guide-
lines for building fault models, we leverage existing knowl-
edge from traditional security testing e.g. penetration testing.
This is achieved by synthesizing the test cases provided in the
CSA Penetration Testing playbook [42], which contains over
70 test cases. A key advantage of the playbook is that it puts
the test cases within the context of public clouds and extracts
the responsibilities that are specific to the Cloud Customer
(CC). The test cases are generic and therefore applicable
to different cloud platforms. There are several categories of
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TABLE 3. Security fault injection categories - drawn from the CSA penetration testing playbook [23].

FIGURE 6. An attack graph of the running example (Note: portions of this graph were omitted for legibility).

security tests can be performed, some of these are shown on
Table 3.

3) ATTACK GRAPHS
One limitation of the above fault models is the lack of
methodologies for sequential injection of faults. In reality,
attacks are conducted in a step-by-step procedure i.e. from
unprivileged to privileged states to achieve desired objectives.
Furthermore, the chaining of attacks is a common attack
technique employed to hidemalicious tracks or persist control
e.g. cyber-attack kill chain [43] is a popular attack model that
defines methods of advanced persistent attacks. Therefore,
RDFI employs attack graphs [44], which are commonly used
to illustrate such steps employed by attackers. This approach
is similar to Lineage Driven Fault Injection (LDFI) [45],
in which a top-down approach is used to inject faults into
a system to observe the success rate of the system (conse-
quences). Attack graphs are also similar to fault trees, which
are commonly used to illustrate fault models. Furthermore,
attack graphs aid in avoiding randomized attack procedures
as practiced in other chaos engineering tools e.g. Chaos
Monkey [45]. Another advantage of using attack graphs is
they aid automation, and reduce the need for security experts

and chaos engineering experts as noted by Alvaro et.al [46].
We leverage the graph generation feature of Terraform8 to
construct attack graphs (Figure 6), which are then further
processed using GraphViz-Java,9 a Java implementation of
the of GraphViz. This is quite straightforward since Ter-
raform internally depends on Resource Graphs, to perform
its operations e.g. terraform apply. Furthermore, this feature
internally uses GraphViz 10 and Dot,11 which are popularly
used for graph visualization and expression language respec-
tively. Attack graphs can also be constructed for cloud infras-
tructure orchestrated using other tools by discovering the
infrastructure Terraform resource discovery feature.12 In this
case the cloud infrastructure is first converted to Terraform
state files to enable graph generation.

D. APPLYING CHAOS ENGINEERING WITH RDFI
CloudStrike uses several chaos algorithms to inject secu-
rity faults (AttackPoints) into cloud infrastructure, thereby

8https://www.terraform.io/
9https://github.com/nidi3/graphviz-java
10https://www.graphviz.org/
11https://graphviz.gitlab.io/_pages/doc/info/lang.html
12https://www.terraform.io/docs/providers/oci/guides/resource_

discovery.html
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TABLE 4. Examples of CloudStrike’s AttackPoints.

causing specific actions. Table 4 outlines some of these attack
points and the specific cloud resources that are impacted.
In general, the chaos engineering principles proposed by
Basiri et.al [16] are adhered to as explained below:

1) BUILD A HYPOTHESIS AROUND A STEADY-STATE
BEHAVIOR
Central to every chaos engineering experiment is the determi-
nation of a hypothesis about normalcy and abnormality, with
corresponding measurable attributes. Thus, we exploited the
concept of expected state [34] - the secure state of a cloud
resource at time to. Essentially, the expected state is known
by the resource orchestration system. For example, an ACP
may specify read access for a user, Alice at time to. This
is registered in the orchestration system and a measurable
attribute is defined e.g. a HTTP 401 error (unauthorized) is
produced if Alice sends a request to a resource (e.g. bucket)
after her privileges are removed.

2) VARY REAL WORLD EVENTS
To simulate real world events, a variation of possible attacks
is implemented. CloudStrike orchestrates random actions
against target cloud systems e.g. deletion, creation, and mod-
ification, using the respective cloud APIs. Three chaos modes
are supported: LOW,MEDIUM andHIGH, which correspond
the magnitudes of 30 %, 60 % and 90 % respectively. Table 4
is an example of AttackPoints used, each AttackPoint defines
a specific action to be conducted, a combination of two or
more AttackPoints forms an attack scenario. Algorithm 2
combines AP1 and AP4 to create a scenario where an attacker
creates a random user in a cloud account, creates a privileged
policy for accessing a cloud bucket and attaches the policy to
the malicious account.

3) RUN EXPERIMENTS IN PRODUCTION
Chaos engineering experiments take a different approach
from traditional software engineering testing, where tests are
limited to development environments [17]. Since the major
motivation for Chaos engineering is to gain confidence when
systems are exposed to real-life scenarios i.e. production,

running experiments in such environments is imperative.
However, a phased approach is required based on the level
of maturity of the organization. These levels of maturity
are clearly outlined in the chaos maturity model [17] and
are hinged on two core metrics: sophistication and adop-
tion. Safety measures are required as a fundamental basis
for recovering systems to steady states. We achieve this by
employing the concept of expected states and cloud state [34].
These expected states are persisted and can be easily used to
recover cloud environments to its secure states. We deployed
CloudStrike against resources deployed on AWS and GCP.

4) AUTOMATE EXPERIMENTS TO RUN CONTINUOUSLY
A clear distinction between traditional security testing and
chaos engineering is the use of automation. Security automa-
tion enables continuous oversight, which is necessary in the
cloud due to constant changes e.g. change of ACPs and provi-
sioning of newAPI keys. These changes could be initiated for
either malicious or benign reasons hence the need for proac-
tively measures to experiment and study malicious scenarios,
thereby gaining insights into efficient ways for designing and
implementing secure cloud systems.

5) MINIMIZE THE BLAST RADIUS
The blast radius refers to the extent to which the impact of
a fault injection campaign might extend, in terms of sever-
ity and reach. Reducing the blast radius is an important
step to control the risk of system failure, especially against
production systems. At the Netflix Chaos Team, common
techniques implemented to deuce the risks included sampling
of requests, and use of sticky sessions [24]. Here we leverage
the already discussed safety techniques in Section II-F, which
employs the ability to rollback good states based on the
principle of state transition analysis.

IV. IMPLEMENTATION
All components of CloudStrike are implemented in Java,
attacks are transmitted to the cloud platforms using APIs of
AWS and GCP, hence there is no need to install agents on
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target cloud infrastructure. Figure 5 illustrates CloudStrike’s
architecture, details are as follows:

A. CHAOS CONTROLLER
This is the coordinator of the chaos injection experiments,
it receives requests for experiments with necessary parame-
ters e.g. cloud access credentials, preferred chaos mode and
cloud resources to be tested. This is based on a designated
security hypotheses and it is passed down to the Chaos
Manager. Eventually, the results of the chaos engineering
experiments e.g. the detected vulnerabilities are analyzed and
handed back to the chaos controller for onward transmission
to human administrators or external security tools. The Chaos
controller maps to the plan component of MAPE-K frame-
work (Section III-A4).

B. CHAOS MANAGER
The Chaos Manager receives the instruction to conduct
attacks based on specified attackmodes. The attackmodes are
categorized as follows: LOW, MEDIUM & HIGH. However,
to have more refined, fine-grained control, the rate of attack,
which is abstracted in the aforementioned attack modes,
could be varied from 0.1 - 0.9, where 0.9 refers to more
aggressive attacks. Thereafter, the ChaosManager aggregates
the specified targets from the expected state (see Figure 5),
then a subset of the collected set of assets is selected based
on the attack rate. The higher the attack rate, the more the
number of assets to be attacked. The selected assets are them
attacked based on RULES drawn from the Fault Engine e.g.
DELETEAWS S3 bucket X. The Chaos Manager maps to the
plan component of theMAPE-K framework (Section III-A4).

C. FAULT ENGINE
The fault engine maps to the knowledge-base component
of the MAPE-K framework (Section III-A5). It consists of
aggregated knowledge on about cloud compliance, best prac-
tices and attack graphs as described Section III-C. These
information is thereafter translated into actionable code,
in the form of RULES that define specific ACTIONS against
specific ASSETS. Here, we define an ACTION as what has
to be done against an asset, these could be:create, delete,
modify, which will create, delete and modify the cloud
resource respectively. Similarly, the ASSETS refers to the
cloud resource involved, e.g. AWS S3 bucket or AWS IAM
policy. For example, in the running example detailed in
Section II-A, a RULE will be of the form: MODIFY ACL for
BUCKET X TO DENY ACCESS TO USER Y, in this case the
chaos algorithm will fetch the ACL for Bucket X and remove
User X name from it. Effectively, User X will no longer have
access to the Bucket.

D. FAULT INJECTOR
The fault injector is responsible for implementing the secu-
rity faults composed by the Chaos Manager. The faults are
orchestrated against the target cloud assets. Furthermore,
using a defined heuristic, the fault injector either injects

single attack points or combines multiple attack points into
attack scenarios as illustrated on Table 4. The Fault Injector
maps to the execute component of the MAPE-K framework
(Section III-A1).

E. CHAOS MONITOR
To ensure safety, the chaosmonitor continuouslymonitors the
progress of attacks to easily detect overwhelming effects due
to fault injection.We employ techniques that afford reversibil-
ity of states as described in Section II-F. We leverage our
previously developed system CSBAuditor [34], for main-
taining continuous visibility of monitored cloud accounts.
This is supported by a logging system based on Log4J,13

and Cloud provider logging mechanisms: AWS CloudWatch
and GCP Stackdriver. Combining both server-side and cloud-
side logging and metrics provides efficient observability for
deriving real-time insights of chaos engineering experiments.
The Chaos Monitor is also responsible for recovering the
target system to normal (secure) states either when the exper-
iment is terminated or completed (Figure 3). The chaos
monitor implements the state transition analysis to reverse
the effects of experiments. It also computes the risk scores
using the CVSS algorithms in Eqn 1 - 3 and persists the
reports generated in the risk database. The Chaos Monitor
maps to the monitor component of the MAPE-K framework
(Section III-A2).

F. CHAOS ANALYZER
The vulnerabilities detected during fault injection campaigns
are passed to the Chaos analyzer for subsequent analysis.
Here, pre-computed severity scores are assigned to the vul-
nerabilities and reports are generated. Furthermore, the obser-
vations are retained in a knowledge-base (risk database)
for later reference and also used for implementing security
counter-measures and mitigation. Possible recommendations
include updating security rules for security groups (cloud
firewalls), restriction of access to overly permissive access
control policies. The results of the analysis are also passed
to the Chaos Controller for onward transfer to the relevant
security mechanisms to remediate the detected vulnerability.
Therefore, the Chaos Analyzer maps to the analyze compo-
nent of theMAPE-K framework, while the risk databasemaps
to the knowledge-base component (Section III-A5).

V. EXPERIMENTS AND EVALUATION
We evaluated CloudStrike against a cloud infrastructure test-
bed that depicts an enterprise cloud environment, comprised
of assets deployed on AWS and GCP. We adopted the cloud
testing methodology proposed by the CSA’s Cloud Penetra-
tion Testing Playbook, which groups cloud infrastructure into
three security domains: (1) Application Data, Business logic,
(2) Service and (3) Account. Figure 8 clearly illustrates these
domains with more details.

13https://logging.apache.org/log4j/2.x/
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FIGURE 7. Comparing (a) GCP and (b) AWS performance.

FIGURE 8. Three-layered cloud infrastructure for security testing.

• Cloud Test-bed: Our experiments are focused on
IAM (users, policies e.t.c.) and cloud storage service
(S3 buckets, configurations e.t.c.), which are in cate-
gories (2) and (3). We do not consider the third com-
ponent i.e. the application layer. Fifty user accounts
are provisioned on AWS and GCP cloud infrastructure,
25 users per cloud. Each user account is properly con-
figured using privilege separation concepts.

• CloudStrike deployment: CloudStrike is deployed on
a Windows 10 computer, composed as follows: Intel
(R) Core (TM) i5-5200U CPU, 2.20Ghz processor, 8GB
RAM and 1 TB HDD.

A. TIME PERFORMANCE
These set of experiments aim at evaluating the performance
of CloudStrike w.r.t time overhead while injecting security
faults (workloads). For the first experiment, the major attack
modes LOW, MEDIUM and HIGH produced by the Chaos
Manager (Section IV-B), are launched against GCP assets.
After each attack mode, the assets are recovered back to the
secure state using the expected state [34] - the secure state of

a cloud resource at time to. Details of our recovery strategy is
in Section II-F. Essentially, the expected-state is the single-
source-of-truth, hence is used to recover the test-bed to its
expected-state. The Chaos Manager is used to construct and
similar faults against the AWS assets, the time taken for each
step is recorded. Figures 7a and 7b show the results for GCP
andAWS respectively.We note that the performance for AWS
is better than GCP, for the LOW attack modes, it takes about
290 secs to complete the attack for GCP. Conversely, the same
attack mode (LOW) is completed within 38 seconds for AWS.
Similar disparities in time performance is observed for other
experiments, essentially the GCP APIs are more complex,
having layered dependencies andmore calls are made to com-
plete requests. The next experiment is similar to the previous
ones, but only one attack rule is used: public_bucket_access.
This rule is used for making private buckets public, hence the
expected-state is first enumerated, to acquire the details of the
buckets and respective ACLs. A subset of random buckets
is extracted from the set of all buckets, then the ACLs of
the randomly selected subset of buckets are changed from
PRIVATE to PUBLIC. Figure 9 illustrated the combined time
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taken to based on varying attack-rates. The graph is plotted
on a scale of 0.1 to 0.9 illustrating the implemented attack
rates: 0.9 depicts the most severe attacks, resulting from a
higher number of compromised assets. We note that the time
taken is almost linear, reflecting a linear increase of time
relative to increase in attack rates. Hence, the time taken
has no significant overhead to the system, implying that the
system can be easily scaled (e.g. to test hundreds of cloud
resources on multiple cloud infrastructure) without risking
the consequence high overhead or performance challenges.

FIGURE 9. Time taken for public_bucket_access attacks against AWS and
GCP.

FIGURE 10. Performance of CloudStrike fault injection over three modes:
LOW, MEDIUM and HIGH.

B. PERFORMANCE OF RECOVERY OPERATIONS
Safety is crucial for security fault injections campaigns,
as earlier explained in Section II-F. Therefore, CloudStrike
performs recovery operations on completion of security fault
injection campaigns. We want to evaluate the impact of these
operations to gain insights of the overhead. Therefore faults
are injected against the AWS test-bed using the three fault
modes i.e. LOW, MEDIUM and HIGH for about 10 minutes.
The results are resented in Figure 10, it shows the time on the
x-axis and the number of requests executed by CloudStrike
on the y-axis. Figure 11, combines the number of requests
for the fault injection (in blue), and the number of requests
for the recovery operations (in red). Clearly, the recovery
operations require more API calls, compared to the fault
injection requests. The reason for this is that the recovery
operations execute global checks for all assets using the
state transition analysis technique and expected-state earlier
explained in Section II-F. On the one hand, this approach
has the advantage of exhaustively inspecting the entire set of
resources to detect and reverse changes. On the other hand,

this results in a lot of HTTP requests depending on the volume
of injections (mode of injection) that composed the fault
injection campaign.

FIGURE 11. Performance of recovery operations to recover the secure
baseline.

FIGURE 12. CPU performance.

FIGURE 13. Memory consumption.

C. CPU AND MEMORY CONSUMPTION
The aim of this experiment is to analyze the overhead with
regards to CPU and RAM. Figure 12 illustrates the CPU
consumption of CloudStrike, we observe that on the average,
the CPU consumption is less than 10 %, however, there are
some spikes observed which correspond to the period when
the GCP assets are attacked. The GCP API has a higher
overhead due to re-authentication and more complex HTTP
requests/responses, hencemore CPU is utilized. Similarly, for
memory consumption, we observe that memory consumption
gradually rises from a minimum of 28mb to a maximum

VOLUME 8, 2020 123055



K. A. Torkura et al.: CloudStrike: Chaos Engineering for Security and Resiliency in Cloud Infrastructure

FIGURE 14. Improvement of attack detection due to application of knowledge provided by CloudStrike.

of 175mb, this corresponds also to the increased rate of
attacks in two different attack cycles (Figure 13).

D. SECURITY EVALUATION
A goal of SCE is to prove security hypotheses, and there-
after, provide guidance on appropriate security countermea-
sures. The adapted MAPE-K model (EMAP-K) illustrated
in Figure 4, provides a model for automating this process
thereby making it agile and continuous. The experiments
described above implemented several security hypotheses
composed of attack points and attack scenarios (Figure 4).
In order to evaluate the performance of CloudStrike from a
security perspective, consider the attack illustrated in Algo-
rithm 2. Here the hypothesis is Security Alarms will be trig-
gered if the bucket logging feature is disabled. We chose the
bucket logging feature since it is a best practice recommended
by the CSA: Ensure S3 bucket access logging is enabled on
the CloudTrail S3 bucket and also recommended as a Test for
Repudiation in the CSA Penetration Testing Playbook [23]:
Test for Repudiation - Disable data store access logging to
prevent detection and response T05 on Table 3.
We describe some of the results below. Since the cloud

assets are deployed on AWS, we enabled several AWS secu-
rity services to i.e. anomaly detection architecture com-
posed: AWS Detective, AWS Config, AWS GuardDuty and
AWSCloudWatch. Following, the attacks implemented in the
above section, we notice the only one detection captured the
hypotheses tested via the fault injection campaigns.

Specifically, the only hypothesis proven right was Alarms
will be triggered if S3 bucket policies are altered. For exam-
ple, the AWS GuardDuty alarm in Listing 1 was thrown
indicating the detection of malicious event, the even twas
triggered due to our fault injection campaigns. However,
the other faults injected were not detected by the AWS secu-
rity tools. To improve the detection efficiency and security of
the system, it is necessary to fine tune the detection configu-
rations of the AWS security services. Therefore, based on the
results of the fault injections, i.e. the infrastructure that was
successfully compromised, we can exploit this knowledge as
a guide. This is done by implemented a detection rules on
AWS CloudWatch, so we the policy in Listing 2 to detect
bucket policies and bucket ACLs modification events. The
rule works by aggregating all access logs using Cloudtrail

Listing. 1. Security alert from AWS guardduty indicating a BucketLogging
disabled event.

Listing. 2. AWS CloudWatch rule for detecting malicious events.

and thereafter filtering the logs for specified API calls that
trigger corresponding events, we are interested in these two
API calls: PutBucketPolicy and PutBucketAcl. Since Cloud-
trail provides detailed history of all events, this provides
an effective way for detecting when malicious requests are
made. Thereafter we repeat the fault injection as above andwe
observe that the number of events detected by the detection
system increases, this is illustrated in Figure 14.

E. COMPARISON WITH ChaoSlingr
To the best of our knowledge, ChaoSlingr14 is the only
application that provides similar functionalities with Cloud-
Strike. The other Chaos Engineering tools either operate

14https://github.com/Optum/ChaoSlingr
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FIGURE 15. Comparing response distribution for injecting faults into AWS S3 buckets (CloudStrike VS ChaoSlingr).

FIGURE 16. Comparing trace distribution for injecting faults into AWS S3 buckets (CloudStrike VS ChaoSlingr).

at a different abstraction level are designed to ensure non-
security resiliency attributes e.g. availability, as summa-
rized on Table 1. In order to compare the performance
of CloudStrike with ChaoSlingr, we deployed ChaoSlingr
and configured it against the environment earlier explained
in the beginning of this section. ChaoSlingr was imple-
mented as a Proof-of-Concept for SCE, however the tool
implements only three rules: s3_Policy_slingr, s3_acl_slingr
and PortChange_Slingr. We compared CloudStrike with
ChaoSlingr using the rules that are responsible for making
the S3 buckets to be public, these rules are designed to check
if there are any security alerts that are triggered when the
buckets are switched from PRIVATE to PUBLIC, therefore
the rules s3_acl_slingr and cloudstrike_acl_publicwere com-
pared respectively. A new bucket is created in the AWS envi-
ronment - chaoticseval01, and configured to be private. Then
one after the other the rules are executed against the bucket
and the time performance based on time is recorded using the
AWS XRAY. Figures 16a and 16b illustrate the performance
of CloudStrike and ChaoSlingr respectively. As seen in the
Figure 16, ChaoSlingr is slightly faster than CloudStrike with
approximately 30s. However, we assume the gain in speed
to be based on the the fact that ChaoSlingr is implemented
as AWS Lambda serverless functions [47], which makes it
faster since most intercommunication is between internal
AWS APIs, while the communication used by CloudStrike
involves more of external API since we use the basic AWS
Java APIs, and CloudStrike is deployed locally deployed on
a local PC. A closer look at the trace distribution as measured
by AWS XRay (distributed tracing service), shows that the
initialization phase for ChaoSlingr is about 276ms, while that
for CloudStrike is about 360ms. Furthermore, ChaoSlingr is

faster for the actual fault injection. However, CloudStrike
implements over 20 fault injection rules some of these are
listed on Table 4, therefore a wider fault space is covered.
ChaoSlingr implements only 3 rules.

F. DISCUSSION
Currently, the aspects of most cloud security configuration
involve manual efforts, this increases the chances of human
error, considering the need to scale while configuring com-
plex cloud assets like access policies [39]. There is a grow-
ing adoption of IaC and orchestration techniques, however
these mechanisms are mostly not focused on security and
therefore require security configuration in order to orches-
trate infrastructure securely. Furthermore, security services
offered by CSPs e.g. AWS CloudWatch and AWS Detective
are quite immature, mostly requiring human expertise to use
effectively. Hence, SCE provides a test-based approach that
provides clearer guidance on which security efforts to focus
andwhat configurations are not secure. Though some security
knowledge might be required, the goal is to produce reports
that are clear and direct, stating the detected vulnerabilities
and recommended solution. For example, in the security
evaluation (Section V-D), the detection efficiency of AWS
CloudWatch improved following implementation of the rules
necessary to mitigate the vulnerabilities detected by Cloud-
Strike. However, the rules were added manually, and will not
scale in reality, therefore automating the entire process will
be an interesting future effort. Similarly, the use of attack
graphs would aid automation and integration with other tools.
We consider this a huge gain for security professionals not
conversant with cloud technologies since attack graphs are
well known. However, the performance of the attack graph
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was not evaluated in this work as we focused on the results
produced using random fault injection techniques, therefore,
the attack graph analysis is planned for future work. We also
acknowledge that most of the evaluation focused on AWS,
this is due to the concentration of tools and methodologies
around AWS technologies. Furthermore, the cloud threat
landscape has seen more attacks focused on AWS infrastruc-
ture such as the Capital One data breach which we used as a
running example (Section II-A). However, we have developed
the chaos algorithms and other components of CloudStrike to
also test resources on GCP.

VI. RELATED WORK
There is a limited amount of work on resiliency testing of
distributed systems using chaos engineering techniques, and
most of these work aim at tackling the non-security attributes.
Conversely, security fault injection has been used in contexts
other than cloud systems. We compare and contract our work
with these two categories of related works i.e those that focus
on non-security attributes and those that investigate security
attributes.

A. NON-SECURITY FAULT INJECTION
Chaos Monkey [8] is a tool invented by Netflix for injecting
random faults in production. Together with its variants (Net-
flix SimianArmy), perturbations are injected into various lev-
els of cloud infrastructure including VMs, to cloud network
regions and availability zones. Through these means, various
resiliency issues are detected especially at the network levels.
However, the faults injected specifically test the availability
related attributes of cloud services. We aim at the secu-
rity attributes in order to introduce resiliency that improves
security. Moreover, Chaos Monkey injects faults in a ran-
dom manner, we aim at employing sequential fault injection
strategy via RDFI. Gremlin [19] is a fault injection system
aimed at testing the resiliency of microservices. It achieves
its objective by injecting non-malicious faults against the
network layer of microservices. Our fault injection strategies
leverage the API connecting cloud customers and cloud ser-
vices and focus on security faults. Zhang et’al [10] proposed
ChaosMachine, a system for live analysis and falsification
of exception-handling in the JVM. ChaosMachine employs
bytecode instrumentation and remote control of fine-grained
fault injection to detect resilience weaknesses in try-catch-
exemption handling. These issues are thereafter reported to
developers via reports. Alvaro et’al proposed LDFI [45], as an
alternative to random fault injection to provide structured
and intelligent exploration of defined fault space. We gained
the intuition for employing attack graph for exploring cloud
infrastructure attack surfaces (which defines the fault space
from a security viewpoint) since LDFI does not suit the
security use-case.

B. SECURITY FAULT INJECTION
Du ’et al [48] proposed an approach for detecting vulnera-
bilities in software systems via injection of security faults.
The fault models employed were extracted from vulnerability

databases. Similarly, Fonseca et.al [49] proposed Vulnerabil-
ity & Attack Injector Tool (VAIT) for automatic injection of
security faults into web applications. Similar to our work,
security faults are injected based on the continuous analysis
the target web application and the injected attacks are realis-
tic. In [50], a fault injection taxonomy for Service-Oriented
Architecture (SOA) is proposed, the taxonomy includes secu-
rity faults such as authentication and authorization faults.
Infection Monkey15 is a open source Simulation As tool
used for validating the resilience of cloud networks and com-
pute instances. However, the techniques adopted by Infection
Monkey are very similar to conventional penetration testing,
hence it differs from chaos engineering. There are no safety
guarantees like roll-back, black-box testing techniques are
employed and it is not based on experimentation as defined
in the principles of chaos engineering. Our work is purely
based on those principles and therefore employs a different
philosophy to cloud security. Moreover, Infection Monkey
targets cloud network layers, we target the cloud APIs, cloud
account components e.g. users, ACPs etc. To the best of our
knowledge, there is no other work that injects security faults
against cloud systems.

VII. FUTURE WORK
A more intelligent recovery strategy will be implemented,
that specifically takes note of the cloud assets that were
changed during the security fault injection campaign. It is
envisaged that this will improve efficiency by reducing the
time overhead. Also in order to improve the performance
and reduce the overhead due to network issues, it will be
nice to implement the CloudStrike using serverless functions
such as AWS Lambda. We did not analyze the performance
of the Attack Graph construction in this article, however,
this is planned as a future investigation. Furthermore, whilst
we focused on IAM and cloud storage in this work, it will
be interesting to extend it to cover other cloud services and
systems such as AWS EC2 and Kubernetes.

VIII. CONCLUSION
We have presented CloudStrike, a security chaos engineer-
ing system designed for multi-cloud security. The state-
of-the-art chaos engineering systems focus on detecting
non-security weaknesses, which are largely based on avail-
ability properties. CloudStrike however, extends the gains
of chaos engineering to security by injecting security faults
that impact confidentiality, integrity and availability into
cloud infrastructure. The notion of RDFI has been pro-
posed to aid automatic, risk-based mechanisms by leveraging
attack graph techniques and scoring detected vulnerabilities
with CVSS algorithms. The security faults are realistic and
are automatically injected using techniques that guarantee
safety through state reversibility while verifying defined
security properties. These security properties are specified as
security hypotheses which are then proved. In order to trans-

15https://www.guardicore.com/infectionmonkey/
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fer the output of the fault injections in an effective manner,
we have adapted the MAPE-K framework and implemented
the core functionalities as components of CloudStrike. These
proposed methods are suitable for detecting vulnerabilities
in cloud infrastructure, including human errors and miscon-
figurations, thereby enhancing cloud customer’s confidence
that such systems will withstand attacks in production e.g.
the recurring AWS S3 data breaches. CloudStrike has been
implemented and used for extensive evaluations against cloud
infrastructure deployed on AWS and GCP.
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