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ABSTRACT In this paper, a feature extraction method is proposed based on the non-negative matrix factor-
ization (NMF) for classifiers for monitoring domestic activities with acoustic signals. Most of the classifiers
of the acoustic signals use data-independent spectral features (e.g., log-Mel spectrum and Mel-frequency
cepstral coefficients). Recently, some novel feature extraction methods have been researched, including
convolution-NMF-based features combined with K-means clustering. This study proposes an enhanced
NMF-based feature extraction method that is inspired by the NMF-based noise reduction algorithm. The
proposed method independently estimates the frequency basis matrix for each class, and then cascades the
basis matrices to form the entire frequency bases, where the acoustic signal is transformed to the proposed
feature by estimating the temporal basis matrix with the trained frequency bases. In addition, this study
proposes a data augmentation method for the proposed feature that is inspired by the “mix and shuffle”
method for audio waveforms. In order to evaluate the proposed system, which consists of the proposed
NMF-based feature and the convolutional-neural-network-based classifier, some evaluations were performed
using the Detection and Classification of Acoustic Scenes and Events (DCASE) 2018 Task 5 — Monitoring
of Domestic Activities Based on Multi-channel Acoustics — Database. The results showed that the proposed
system has comparable performance to that of state-of-the-art algorithms and that it has enhanced the F1-
score performance of 6%—12% in comparison with the conventional NMF-based feature extraction method
that is based on convolutional NMF and K-means clustering.

INDEX TERMS Acoustic scene classification, convolutional neural networks, feature extraction, non-
negative matrix factorization.

I. INTRODUCTION

Acoustic scene classification (ASC) is tasked to automat-
ically recognize environments through acoustic signals.
In particular, the ASC task focuses on classifying long audio
segments by characterizing whole audio environments, dis-
tinguishing from sound event detection problems to detect
short sound events [1]. The recognition of environments via
acoustic signals is one of the main problems of computational
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auditory scene analysis (CASA) [2] and it has become a major
area of interest in many recent machine learning techniques,
including robotic navigation [3] and personal archiving [4].
As the interest in the ASC problem grows, ASC-related
tasks are researched by several communities such as the
detection and classification of acoustic scenes and events
(DCASE) [5].

Both ASC and acoustic event classification (AEC) are
among the main analysis problems of environments through
sound signals, and the scene and event classification tasks
are not clearly distinguished. Recently, ASC tasks mainly
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tend to focus on classifying longer signals with analyzing the
whole acoustic environment [1], while AEC tasks deal more
with short acoustic events, such as knock sounds or laughs.
Also, ASC tasks have recently expanded into the monitor-
ing domestic activity (MDA) tasks, which classify in-door
sounds into several activity classes (e.g., vacuum cleaning,
cooking, or watching TV). Both the modern ASC and MDA
algorithms consist of two parts: feature extraction and classi-
fication modules.

The most common choices of the audio feature for recent
ASC and MDA algorithms are Mel-frequency cepstral coef-
ficients (MFCC) [3], [6], [7] or Mel-frequency-domain spec-
trum [8]-[10], which are kinds of spectrum-based values
processed in a psycho-acoustic frequency domain [11]. These
features are motivated by their success in speech signal
applications, but their performance is limited in the acoustic
scene or event classification applications, as acoustic envi-
ronmental signals are less structured [1]. To substitute the
Mel-frequency-based features, researches of the ASC algo-
rithm have studied with the features inspired by the com-
puter vision [12] or the modeling of statistical distributions
[13]. Recently, several psychoacoustics-based features, such
as the mel-frequency discrete wavelet coefficients [14], [15],
hybrid constant-Q transform [16], gammatonegram [17], and
gammatone-frequency cepstral coefficients have been studied
[18]. To improve the performance, a combination of mul-
tiple features, such as a DNN-based ensemble network of
the log-Mel-spectrogram, gammatonegram, and constant-Q
transform [19] and an ensemble of label-tree embeddings of
the log-Mel-spectrogram, gammatonegram, and MFCC [20]
have been studied.

MFCC and other similar features can be considered as
data-independent analysis techniques, as the required analy-
sis processes for extracting the features do not depend on the
signal characteristics. Recently, data-dependent signal analy-
sis methods, such as principal component analysis (PCA) [21]
and non-negative matrix factorization (NMF) [22], have been
researched. In particular, the NMF algorithm was applied
to analyze the magnitude spectrogram of an acoustic signal
in recent acoustic signal processing, such as music signal
processing [23]-[25] and speech denoising [26]-[29], as the
NMF technique can decompose the spectrogram into the
frequency and temporal basis matrices.

Lee and Seung have shown that the NMF algorithm can
analyze two-dimensional non-negative data by using parts-
based representation [22]. For example, the NMF algorithm
makes decomposed images that correspond to parts of a face,
e.g. mouth and eyebrow, when the algorithm is applied to a
facial image, while the vector quantization algorithm makes
prototypes of the whole face and the PCA algorithm makes
“eigenfaces” that form a distorted version of the whole face.
For the analysis of a sound signal, the NMF algorithm decom-
poses magnitude spectrograms into frequency basis and tem-
poral basis matrices due to the parts-based representation
characteristic. Each frequency basis and temporal basis can
be a frequency structure and a temporal envelope of a musical
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note when the NMF method is applied to a music signal [23].
In speech denoising applications, the NMF method is used
to learn the frequency structures of speech and noise signals
a priori, and the temporal basis matrix of each frequency
basis is estimated from noisy speech signals [28], [29]. Most
of the NMF applications take advantage of the fact that the
NMF can analyze the characteristic frequency structure and
the temporal activation of the same class of signals.

Recently, the NMF algorithm was applied to acoustic scene
classification in both supervised [1] and unsupervised meth-
ods [1], [30], [31]. The supervised method was developed
based on the task-driven dictionary learning (TDL) model
with a multinomial logistic regression [32] and L-BFGS
[33]. However, the model and the update algorithms were far
from the recent classifiers, such as deep neural networks and
gradient-based algorithms, so it was difficult to extend them
using recent techniques, such as the convolutional neural
network (CNN). The unsupervised methods were developed
based on the NMF with time-averaged clips or convolutional
NMF with K-means clustering [1], [31], but they required
very a large data matrix and additional data reduction pro-
cesses, such as time averaging or K-means clustering, as they
have to deal with the whole un-categorized dataset. If the task
is supervised, we may generate the basis matrices via simpler
processes.

The task of monitoring the domestic activity [34] has a
goal of classifying the audio segments to predefined classes
that are composed of daily activities in home environments,
e.g., cooking, dishwashing, vacuum cleaning, etc. In order
to achieve this goal, in this paper, we try to develop a scene
classification method based on the NMF and CNN techniques
that is as simple and extensible as possible. The proposed
system consists of two modules: a NMF-based feature extrac-
tion module and a CNN-based classifier module. Our main
contribution is the development of simple feature extraction
and augmentation methods based on NMF in a supervised
manner and compatibility to common classifiers, such as the
simple CNN classifier.

Il. PROBLEM DESCRIPTION
A. PROBLEM DESCRIPTION
The ASC is a task used for classifying audio segments with
given durations. The common ASC is defined as the recogni-
tion of the audio environments, which are defined based on

Absence
Cooking
Dishwashing
Eating

A Monitoring system for
[ “MM M ‘\“\‘w”"{' domestic activity Other

Social Act.

Vacuum Clean.

Watching TV

Working

FIGURE 1. An illustrative diagram for the monitoring of domestic activity
system.
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Absence

FIGURE 2. Examples of spectrograms for the activity classes.

physical or social contexts, such as parks, offices, etc [35].
However, the monitoring of domestic activity tasks has a goal,
which is to classify the performed activities by people, such
as cooking, dishwashing, working, etc., as shown in Fig. 1.
Since the sounds of domestic activities include ensembles of
multiple sound events, classifying domestic activities can be
regarded as a kind of ASC tasks [34]. Moreover, the algorithm
has to focus on the characteristics of sound events, such as
keyboard typing and running water rather than the room envi-
ronments, such as room transfer functions and background
noise.

In order to classify domestic activity sounds, some fea-
tures can be extracted from the sound clips and then clas-
sified into activity classes with neural-network-based clas-
sifiers just like many other recent algorithms. Although
various classifiers with different network structures have
been recently tried, the features adopted were still similar
frequency-based features. For example, the log-Mel spec-
tral energies were used as the input feature in 26 systems
out of the 31 systems submitted to the DCASE 2018 Task
5. So, we would like to find a different feature extraction
strategy that is suitable for the recent neural-network-based
classifiers.

Figure 2 shows examples of the magnitude spectrograms
of domestic activities. The domestic activity sounds include
sets of event sounds that have distinctive characteristics in
the time-frequency domain as shown in fig. 2. For example,
the “vacuum cleaning” sound consists of broadband-noise
with two tonal lines around 500 Hz and 1 kHz, and the
“watching TV” and “‘social activity” sounds consist of vari-
ous harmonic components. Both the “eating” and “working”’
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Social Activity

Vacuum Cleaning

classes may have similar structures (impulsive sounds), but
their temporal characteristic (intervals between the impulsive
sounds) are quite different. Therefore, we hope that the NMF
method can generate distinctive features by analyzing the
temporal and spectral characteristics.

B. RELATED WORKS

For the acoustic scene classification problem, V. Bisot et al.
have developed two NMF-related methods as mentioned in
the introduction. One of them is the supervised TDL model
with an L-BFGS optimizer [36]. Although the TDL model
demonstrated a good performance in the evaluation, it is
difficult to apply it with arbitrary classifiers, as the update
equations of the NMF basis and the model weight are strongly
combined. The other one is an unsupervised NMF model
for feature extraction [1]. The method can be applied to
various classifiers, as the NMF-based feature extraction and
the classifier learning process are clearly separated. There-
fore, this method is consistent with the goal of this study,
but it does not use the annotation data, so there is room
for improvement if we use the annotation data. Recently,
some networks for acoustic signals that are based on the non-
negative auto encoder (NAE) [37], [38], which is a variant
of the NMF, have been researched, but there is still not
enough research regarding the application of NAE to the
ASC tasks.

The unsupervised NMF method performs convolutive
NMF to each audio clip to generate a large set of NMF
bases, which are then clustered using the K-means cluster-
ing technique. Unfortunately, this process is complicated,
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and it takes a long time to estimate the NMF basis matrix
because of the K-means clustering technique. Therefore,
in this study, we aimed to develop an NMF-based feature
extraction method that is simple and easy to use. Further-
more, we also tried to enhance the classification performance
by using the annotation data in the NMF basis learning
step.

The NMF method has been tried in previous studies
for acoustic scene classification and sound event detection
tasks. However, these previous investigations utilize the NMF
method as an auxiliary tool to pre-process the input sig-
nal or the activity classifier, rather than a feature extraction
method. Zhou et al. [39] proposed the NMF-based sound
event detector, but the NMF method was only used to perform
noise reduction of the evaluation data. Mesaros et al. [40] also
proposed the coupled-NMF-based sound event detector that
consisted of the data analysis and classification step based on
the NMF. The data analysis step has similar purpose to the
feature extraction of the proposed method, but the dictionary
matrix was generated in an unsupervised manner and coupled
with the classifier, while the proposed method generates the
dictionary matrix in a supervised manner and independently
from the classifier. Chan’s NMF-CNN structure [41] was
developed for the weakly-supervised sound event detection
task, whose dataset consisted of the data with annotations of
the class and onset-offset time (strongly labeled), data with
class annotations only (weakly labeled), and data without
any annotation (unlabeled). Chan’s method may look similar
to the proposed method in that it uses both of the NMF
and CNN, but the NMF method was simply used to pre-
process the weakly-labeled and unlabeled data with pseudo-
labeling of onset and offset time, so the design purpose and
the structure are totally different compared to the proposed
method.

Ill. PROPOSED SYSTEM
A. FEATURE EXTRACTION

1) NON-NEGATIVE MATRIX FACTORIZATION

The NMF is a method for the estimation of non-negative
matrices W € sz rand H € RI}LX ~» Where the multipli-
cation of two matrices is the same as a known non-negative
matrix V € szN as [42]

V=WH +E. (1

where E € Rg «y is an error matrix. The matrices of W and
H are estimated by minimizing the cost function between V
and WH as [42]

W = arg n‘lgln C (VIWH) for fixed H 2)
H = arg rrgn C (VIWH) for fixed W 3)

where C (A|B) is the distance measure between the two
matrices A and B. Also, various distance measures, e.g.,
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Euclidean distance, Kullback-Leibler divergence, Itakura-
Sairo divergence, beta-divergence, etc., can be used for the
NME. The matrices W and H can be estimated to minimize
the Kullback-Liebler divergence by alternating the iterations,
which consist of [43]

[V/(WH)|HT
W<« Wg TlevHT “4)
T
H<Hs W7 [V/(WH)] 5

Wk n

where ® and the fraction denote element-wise multiplication
and division, respectively, and 1 «y means a K x N matrix
whose elements are all one.

In most of the NMF applications for acoustic signals,
the known matrix V is the magnitude spectrogram of the
input signals, and R is set to a small value relative to K or N
so that the magnitude can be modeled as the multiplica-
tion of the matrices W and H, which represent the spectral
characteristics and temporal activations of acoustical events,
respectively. For example, if the NMF algorithm is applied
to a magnitude spectrogram of a music signal that consists
of three musical events, each column vector of the matrix
W may correspond to a frequency structure, and the row
vector of the matrix H may correspond to a temporal envelope
of a musical event, as shown in Fig. 3 (a). By focusing
on these characteristics of the NMF method in the acoustic
signals, several NMF applications have been developed, e.g.,
the speech denoising [28], [29] and the active sonar rever-
beration suppression [44], as shown in Fig. 3 (b). Speech
denoising methods divide the bases into two classes, speech
and noise, and remove the noise bases after calculating the
temporal bases of each class. The active sonar reverberation
suppression technique uses a similar methodology to that of
speech denoising, where it divides the basis matrix into target
echo and reverberation classes instead of speech and noise
classes. Both the denoising and reverberation suppression
methods use the NMF method as a separation tool by pre-
training and merging the class-wise frequency bases. Focus-
ing on the music signal applications, we believe that if we
consider the matrix W and H as a transform matrix and a
feature matrix, respectively, the generated feature matrix by
the NMF can be considered as a sparse representation of the
input spectrogram, because matrix H is a sparse representa-
tion of the input music signal in the music signal processing
systems. Also, inspired by the denoising and the reverberation
suppression methods, we believe that if we construct the
frequency basis matrix by concatenating the class-wise fre-
quency basis matrices, the temporal activation pattern, which
is the H matrix, may vary depending on the class of the input
signal. This is due to the fact that Hg and Hy, represent the
temporal activations of the speech and noise classes in the
speech denoising system. Thus, we first propose a method
to construct the frequency basis matrix by concatenating the
class-wise bases, which greatly varies from the conventional
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FIGURE 3. lllustrative examples of the NMF applications for (a) the music signal analysis, (b) the speech denoising (upper), and the active

sonar (lower).
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FIGURE 4. Diagrams for (a) learning procedure of the frequency basis in the proposed method and (b) classification system with the proposed

feature extraction.

NMF-based feature extraction [1], as described in the next
section.

2) CLASS-WISE LEARNING OF THE FREQUENCY BASIS
MATRIX
As mentioned in the previous section, the NMF method
decomposes the spectrogram V into a transform matrix W
and a feature matrix H. The matrix W may be estimated
before or during the analysis process in the acoustic signal
processing applications. However, we decide to learn the
matrix W in advance because the NMF method has scale and
ordering ambiguities, so it may interfere with the training and
inference procedures if it is learned during the analysis.

As inspired by the NMF-based noise reduction algorithm

[28], [44], we divide the basis vectors into C groups as
W=[W; W, W] (6)
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where W, € R}' «R, 18 a class-wise frequency basis matrix.
W, is estimated by iterative update equations as

[Ve/(WH)H!
\%Y A% —_— = ¢ 7
c < c by leNLHZ ( )
WDV, /(WH,)]
H H,. < 8
¢ T He® Wik N ©

where V. € RY ,, and H. € R;gcx nr. are the class-wise
spectrogram and temporal basis matrix, respectively, and R,
K, N, and L are the number of bases per class, the number
of frequency bins, the number of frames in a clip, and the
number of clips in a class, respectively. The data matrix V,
consists of the spectrograms of the files in class ¢ as

V.= [Vc,l T Vc,L] ) )
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where V. ; € ]R;gx  1s the spectrogram of the /th file in the
cth class.

The procedure for constructing the frequency basis matrix
is described in Fig. 4 (a). To construct the frequency basis
matrix W, the audio clips are collected for each class, and
spectrograms in each class are concatenated along the tempo-
ral axis, the NMF methods ((7) and (8)) are applied until con-
vergence to estimate We. After that, the classwise frequency
matrices are concatenated by (6) to compose the frequency
basis matrix W.

3) FEATURE EXTRACTION
After the learning of the matrix W is completed, the feature
extraction and classifier learning step can be performed. If we
denote V; as a magnitude spectrogram of the /-th audio clip,
the feature matrix H;, which describes temporal activation of
the basis vectors, of the clip is obtained by the iterations of
W7 [V;/(WH))]
Wik N
During the estimation of H;, the frequency bases W are not
changed. Thus, the feature extraction procedure requires a rel-
atively small number of iterations. Fig. 5 shows examples of
the change in the cost function with the number of iterations
for training data (The details of the dataset are described in
Chapter IV). The gray-colored area denotes the inter-quartile
range between the 25th and 75th percentile points, and the
thick solid line indicates the average values. The graphs show
that the cost function may converge with about 20 iterations.
The entire structure of the classifier system with the pro-
posed feature extraction method is shown in Fig. 4 (b).
As shown in Fig. 4 (b), the proposed feature extraction
method can be used by the same structure as that of the
conventional features e.g. Mel-spectrogram, if the NMF fre-
quency basis matrix W is pre-trained.

H <« H® . (10)

8000
7000 | |
|
|
6000 |
|
|
c |
§ 5000 \
= \
5 \
S 40001
2
k7]
Q 3000r i
8 - 75% Quartiles
2000 [
Average
1000
— - 25% Quartiles
0 : ) ' ‘
0 20 40 60 80 100

Number of iterations

FIGURE 5. Convergence analysis of the feature extraction step.

4) DATA AUGMENTATION

Inspired by the data augmentation of the mixing and shuffling
of the sound waveform [9], [45], we augment the data by mix-
ing and shuffling the temporal basis matrix. In the waveform-
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based data augmentation method, the new waveform is gen-
erated by mixing two randomly chosen waveforms with a
randomly shuffled order. That is, the augmented waveform
Xaug 1S generated as

T
o] D

where b; and c¢; are the block number and the clip number,
respectively, [ is the number of shuffle blocks in a clip,
and x,, ., is the b;-th block of the ¢;-th clip in the database
of a certain class. b; is randomly chosen in {/: 1 <[ <L}
without duplication, and ¢; is randomly chosen from two clip
numbers.

If we assume that the length of each block is an integer mul-
tiple of the length of the FFT window, (11) can be presented
in the time-frequency domain as

_ T T
Xaug = I:gh],c‘] Xpr oo

Virels (12

where V is the time-frequency-domain presentation, e.g.,
the spectrogram of x. According to the NMF model (1),
the temporal slice of the spectrogram corresponds to the
slice of the temporal basis matrix. For example, [V|V3] ~
W [H; |H;]. Therefore, (12) can be represented as

Vaug = [Xbl,cl sz,cz

Vaug = [Wﬂbl,q Wﬂbzgcz e WHbL,CL]
~ W [ﬂblscl Hbz,cz —bL,CL]
2 WH . (13)

As a result, the temporal basis matrix, which is the proposed
feature, can be augmented by mixing and shuffling as

H, ] (14)

without performing an additional NMF feature extraction
process. The illustrative diagram of the proposed augmen-
tation procedure is described in Fig. 6. The conventional
mix and shuffle augmentation method have to be applied to
the waveform directly, and so the augmented data have to
be processed by the NMF, which is the most time consum-
ing part of our feature extraction procedure. However, our
data augmentation method, which mix and shuffle matrix H;
instead of the waveform, can augment data without additional
STFT or NMF calculations. While the NMF method consists
of numerous multiplications, the mix and shuffle uses no
multiplication, and the proposed data augmentation method
can expand a large amount data with very light operations.

Haug = [Ebl,cl ﬂbz,cz

B. NETWORK STRUCTURE OF THE CLASSIFIER

The recent classifiers for the 2-dimensional data, e.g. Mel-
Frequency spectrogram and MFCCs, are mainly based
on or include the CNN structure [9], [46]. The feature matrix
H; is also a 2-dimensional data, so the CNN-based classifier
is used in our system.

In order to compare the proposed method with the con-
ventional feature extraction method, the classifier is simi-
larly designed to the state-of-the-art classifier of the log-Mel
energy features [9]. An example of the classifier structure of
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FIGURE 6. An illustrative example of the data augmentation method by mixing and shuffling the extracted NMF-based features.
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w/ ReLu MaxPool(4,1) Conv(22,1)

w/ ReLu
(w/o padding)

FIGURE 7. Example of the classifier structure.

the proposed NMF-based features is displayed in Fig. 7 with
Rc = 10. Since the first-axis dimension of the input matrix
(90 in Fig. 7) is defined by NcR¢, where N is the number of
classes, the filter length of the second CNN layer (Conv(22,
1) in Fig. 7) is calculated by LN C4RC
floor function.

J, where | | means the

IV. EVALUATION

A. EVALUATION SETTING

In order to evaluate the proposed system for the monitoring
domestic activities, some simulations were performed with
the DCASE 2018 Task 5 database, which is an audio dataset
for the monitoring of domestic activities that was recorded
in a living room and a kitchen [34]. The audio files were
recorded with 4-channel linear microphone arrays.

There were 9 activity classes: absence (nobody in the
room), cooking, dishwashing, eating, social activity, vacuum
cleaning, watching TV, working, and other (non-relevant
activity), as shown in Table 1. Each audio file was 10-
seconds long and represented one activity. The audio files
were acquired with a 16-kHz sampling rate and a 12-bit quan-

122390

-
Conv(1,7) Global
w/ ReLu Max Pooling

"Dropout(O.S) &
Fully Connected

tization. The detailed recording setup, including the floor-
plan, can be found in [34].

The dataset consisted of development and evaluation sets.
The development set approximately had 200 hours of data
from 4 microphone arrays for the training and evaluation of
the monitoring system. The evaluation set consisted of data
from 7 microphone arrays, and the quantity of the evaluation
set was similar to that of the development set. The used
4 microphone arrays to get the evaluation set were same
arrays used for the development set, and the other 3 micro-
phone arrays that were used for the evaluation set were not
used for the development set.

The audio clips were short-time-Fourier-transformed by
512-samples Hamming window with 50% overlap into
512 frequency bins. The number of NMF iterations was
set to 100 for learning frequency basis matrix and 30 for
the feature extraction. We also tested the enhanced NMF
methods by sparseness and temporal continuity [47] with
various parameters, but it could not improve the performance.
The classifiers were trained by Adam optimizer [48] with a
learning rate of 0.0001. The batch size and number of epochs
were 16 and 100, respectively. The input audio in the dataset
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had a 4-channel signal, so each frequency basis matrix was
independently trained and applied for each channel.

The performance was measured by the Fi-score, which is
defined as

_ 2PR
~ P+R
where P and R are the precision and recall, respectively.

The precision and recall are relevance measures, which are
defined as

1 (15)

P = _nre (16)
nrp + ngp

R= " (17)
nrp + NEN

where nrp, npp, and npy are the numbers of true posi-
tives (relevant answers), false positives (false answers), and
false negatives (missing answers), respectively. We used the
macro-averaged score, where the class-wise scores were first
calculated, and then averaged, to evaluated the performance.

The performance of the development dataset was cross-
checked by 4-folds and then averaged. For example, suppose
we divide the development dataset into 4-blocks, named a, b,
¢, and d. The first fold consists of the training data of a, b, ¢
and the evaluation data of d, and the second fold consists of
the training data of a, b, d and the evaluation data of ¢, and so
on. The frequency basis matrix for each fold was generated
by only using the training data, and the evaluation data of
the development and evaluation datasets were not used. Also,
the detailed cross-check configuration, including the clip list
for each fold, was in accordance with the DCASE 2018 Task
5.

TABLE 1. Activity classes and their quantity in the DCASE 2018 Task 5.

Activity classes Number of files
Absence 18860

Cooking 5124
Dishwashing 1424

Eating 2308

Social activity 4944

Vacuum cleaning 972

Watching TV 18648

Working 18644

Other 2060

B. COMPARISONS WITH THE STATE-OF-THE-ART
ALGORITHM

In order to evaluate the performance, the proposed sys-
tem was compared with Inoue’s algorithm [9] and Liu’s
method [7], which have the best performances in the DCASE
2018 Task 5 competition. Inoue’s algorithm consisted of log-
Mel-spectrogram-based features and the CNN-based classi-
fier with three CNN layers with batch normalization (BN) and
ReLU activation and two fully-connected layers with the soft-
max output, which is a similar structure to that of the proposed
system. In the implementation of Inoue’s system, the 40-bin
log-Mel spectrograms were extractced using a 64-ms window
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with a 20-ms overlap, and the classifiers were trained using
the Adam [48] optimizer with a learning rate of 0.0001 for
100 epochs. The detailed structure of the classifier can be
found in [9].

Liu’s method used an ensemble structure of three sub-
systems. The first sub-system used 40-bin Mel-spectrogram
features per frame and a CNN-based classifier, which has
a similar structure to that of the proposed and Inoue’s sys-
tems. The second sub-system used 40 Mel-frequency cepstral
coefficients (MFCC) per frame and a CNN-based classifier
with the same structure of the first sub-system. The third sub-
system used 128 extracted features by a pre-trained VGGish
[49], which is a variant of the VGG [50] for audio signals,
per frame and a long-short-term-memory -based (LSTM)
classifier. The detailed structures can be found in [49], and
the classifiers were trained by the Adam optimizer with a
learning rate of 0.0001 (0.001 for the LSTM classifier) for
100 epochs.

Table 2 shows the Fl-score results of the comparison
and the proposed methods. NMF-CNN denotes the proposed
system, and “with BN means that each CNN layer in the
classifier was combined with the BN modules. The results
show that the performance of the proposed system is slightly
less than that of Inoue’s method and better than that of Liu’s
method in both the Dev and Eval2 datasets. The Evall per-
formance of the proposed method is similar to that of both
Inoue’s and Liu’s methods.

According to the results of Inoue’s method with and with-
out BN, the BN in Inoue’s method can improve the perfor-
mance. However, the results of the proposed method with
and without BN show that the BN is not effective for the
proposed system. The performance of the proposed method
without BN is comparable to that of Inoue’s method without
BN. The proposed method is slightly better in the Dev dataset,
slightly worse in the Evall dataset, and almost the same
in the Eval2 dataset. Therefore, the performance differences
between the proposed method and Inoue’s method may be
due to the difference in the adequacy of BN for the features.

There is one more thing to note. The performances of
Inoue’s and Liu’s methods are about 1% and 2.5 % lower,
respectively, in the Eval2 data than in the Evall data. This
phenomenon not only occurs in the those methods but also in
most of the submitted methods to DCASE 2018 Task 5. How-
ever, the performance difference between the two datasets is
relatively small, about 0.4 %, in the proposed method.

C. PERFORMANCE CHANGE ACCORDING TO THE
NUMBER OF BASES

The number of bases is used as a major engineering parameter
in many NMF-based signal processing methods. Therefore,
the performance change according to the number of bases
was analyzed in this paper. Table 3 and Fig. 8 show the
performances of the proposed systems with Rc = 20, R¢ =
10, Rc = 5, and R¢c = 3. Since the number of classes is 9 in
the experiment, the dimensions of the features for a certain
time frame are 180, 90, 45, and 27.
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TABLE 2. Performance comparison with the state-of-the-art system.

Dev Evall Eval2
Fold 1 Fold 2 Fold 3 Fold 4 Average (Dev. set mic.) (Unknown mic.)
Inoue et al. [9] 90.45 88.93 88.86 92.84 90.27 89.81 88.07
Inoue et al. (without BN) [9] 88.76 86.35 87.76 90.79 88.42 88.14 87.24
Liu et al. [7] 87.58 85.77 87.83 91.26 88.11 87.86 85.24
NMF-CNN (Rc = 20) 88.53 88.06 87.18 91.98 88.94 87.72 87.25
NMF-CNN (R¢c = 20) (with BN) 88.41 87.95 88.14 92.32 89.26 86.19 85.14
TABLE 3. Performance change with the number of bases.
Dev Evall Eval2
Fold 1 Fold 2 Fold 3 Fold 4 Average (Dev. set mic.) (Unknown mic.)
NMEF-CNN (Rc = 20) 88.53 88.06 87.18 91.98 88.94 87.72 87.25
NMEF-CNN (Rc = 10) 88.23 86.60 87.54 91.74 88.53 87.35 86.95
NMEF-CNN (Rc = 5) 87.58 86.74 87.97 91.27 88.38 87.19 87.15
NMF-CNN (Rc = 3) 86.95 86.15 85.22 90.65 87.24 86.29 85.66

In the Rc = 20, R¢ = 10, and R¢c = 5 cases, the perfor-
mances of the systems slightly increase with the increase in
the number of bases. The performance of the Eval2 dataset
does not significantly change even if the number of bases
changes in those cases. However, the performance of the
proposed method with R¢c = 3 is noticeably reduced with all
the datasets. We think that the performance of the proposed
system was not largely affected by the change in the number
of bases when Rc > 5 in this experiment.

As mentioned in the previous section, the performance
differences in the proposed systems between the Evall and
Eval2 datasets are relatively small. This property is also
shown in the result of Rc = 10 and R¢c = 5 cases.
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Inoue et al.

FIGURE 8. Performance comparison of the proposed systems with
various numbers of bases.

D. COMPARISONS TO THE CONVENTIONAL NMF-BASED
FEATURE EXTRACTION METHOD

In order to evaluate the performance of the proposed fea-
ture extraction method, we compared the proposed system
with the conventional NMF-based feature extraction method
[1], which consists of the convolutional NMF and K-means
clustering. Just like the proposed features, the audio clips
were short-time-Fourier-transformed by 512-samples Ham-
ming window with 50% overlap into 512 frequency bins.
The spectrogram of each audio clip was decomposed to 20
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2D-dictionaries with 257 frequency bins and 4 time frames.
Therefore, a dictionary from an audio clip was Rf““m.
The whole dictionaries were clustered into 256 and 512 cen-
ters with K-means clustering, but the K-means clustering to
512 centers failed to converge in our dataset.

Table 4 shows the comparison results between the classi-
fication performances using the conventional convolutional-
NMF-based features and the proposed features. The used
classifier for the conventional features are the same as those
of the proposed system. The results show that the proposed
NMF-based features may be more suitable for the used CNN-
based architecture in the proposed system.

TABLE 4. Performance comparison to the conventional NMF-based
feature.

D Evall Eval2
v (Dev. set mic.) (Unknown mic.)
ConvNMF + K-means
(R = 256) [1] 83.07 79.34 75.84
NMF-CNN
(Re = 20) 88.94 87.72 87.25

E. COMPARISONS WITH CONVENTIONAL FEATURES

In order to compare the performace of the proposed fea-
ture with the various existing features, the performance of
the proposed system was compared to the systems utiliz-
ing the conventional features, including constant-Q trans-
forms (CQT) [51], [52], power-normalized cepstral coeffi-
cient (PNCC) [53], Mel-frequency discrete wavelet coeffi-
cients (MFDWC) [14], gammatonegram (GAM) [17], and
gammatone frequency cepstral coefficient (GFCC) [18]. The
length of window and overlap for the Fourier transform were
set to 64 ms and 20 ms, respectively, which are the same val-
ues as in the log-Mel spectrogram case. The CNN classifiers
were the same as in the proposed system, as shown in Fig. 7.
Similar to the proposed system, the filter length of the second

feature

CNN layer was adjusted to , where Npaure is the

number of features in a frame, so that the first dimension of
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the second CNN layer output was one. All training data were
equally augmented by the mix & shuffle method [45] in the
waveform domain.

All the compared features are frequency-based so they
can be implemented with the short-time Fourier transform.
The parameters of the Fourier transforms, e.g., the win-
dow/overlap length, number of FFT points, and type of the
window function, were set to the same values as used by
Inoue [9] and the proposed system. The number of features
adopted for each system is displayed in Table 5. The lower
bound frequency was set to 32.7 Hz and the number of
CQT bins was 12 per octave in the CQT system, so the
96 CQT bins (= 8 octaves) could cover the whole frequency
range. The number of the PNCC features was set to 40,
the same as in reference [53]. The numbers of featrues of
the MFDWC and GFCC were 15 and 13, respectively, as in
the previous studies [14], [18], and larger numbers of coef-
ficients (MFDWC31 and GFCC26) were also tested. The
MFDWCIS5 system used 8, 4, 2, 1 coefficient at scale 4,
8, 16, 32, respectively, the same as in reference [14], while
the MFDWC31 system used 16, 8, 4, 2, 1 coefficient at
scale 4, 8, 16, 32, 64, respectively. Therefore, the number of
Mel-bands was set to 64 in the MFDWC31 system, while
the MFDWCI15 system used 32 Mel-bands. The ensemble
systems consisted of the independent networks for the log-
Mel-spectrogram, CQT, and the GAM, and the prediction
results of the networks were averaged.

TABLE 5. The types and numbers of conventional features.

Number of features

Abbreviation Feature type

for a frame
CQT constant-Q transform 96
PNCC power-normalized cepstral 40
coefficients
MEDWCI5 Mel-frequency _ discrete 15
wavelet coefficients
MFDWC31 Mel-frequency discrete 31

wavelet coefficients
GAM gammatonegram 48
gammatone-frequency cep-

GAM

GFCC13 stral coefficients 13
GFCC26 gammatone-frequency cep- |

stral coefficients

ensemble system of the log- | 40 (Mel spectrogram)
Ensemble Mel-spectrogram, CQT, and | 96 (CQT)

48 (GAM)

In the averaged results of Dev dataset, the performance
of the proposed feature is better than the results for all of
the other features, except for the GAM, MFDWC31, and
the ensemble system. Although the proposed feature per-
forms slightly better than MFDWC31, the improvement is
only marginal. The results from the Evall dataset show
that the MFDWCs and the GFCC26 features perform bet-
ter than the proposed algorithm, unlike the results from the
Dev dataset. However, the results for the MFDWCs and the
GFCC26 features exhibit significantly degraded results for
the Eval2 dataset. As a result, the proposed features demon-
strate a better performance than all of the compared systems,
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except the GAM and the ensemble system, and a very close
performance to the GAM and the ensemble system.

The Fi-score of the most of the analyzed systems is
about 1.5% to 5% lower for the Eval2 dataset than for the
Evall dataset. For the MFDWC and GFCC systems, the per-
formance assessed on the Dev and Evall datasets improves as
the number of features increases, but the difference between
the Evall and Eval2 datasets also increases, so the perfor-
mances on the Eval2 dataset decrease. However, the proposed
system shows a difference of only 0.47% between the two
datasets, so the proposed system can be regarded as robust to
the change of the room transfer function. The PNCC system
exhibits the smallest difference (0.8%) between the datasets
among the compared systems, but the performance of the
PNCC system itself is inferior to the proposed system.

TABLE 6. Performance comparison to the conventional features.

Dev Evall Eval2
(Dev. set mic.) | (Unknown mic.)

NMF-CNN
(Re = 20) 88.94 87.72 87.25
CQT 84.06 83.50 78.33
PNCC 87.62 87.33 86.51
MFDWCI15 87.80 88.47 86.27
MFDWC31 88.78 89.01 85.76
GAM 89.16 88.85 87.27
GFCC13 87.25 86.64 83.25
GFCC26 87.60 87.81 81.55
Ensemble 89.10 88.64 87.36

V. CONCLUSION

In this paper, an NMF-based feature extraction method is
proposed for the monitoring domestic activity tasks by using
sound signals. The proposed method was designed for super-
vised classifiers for domestic sounds. Inspired by the NMF-
based source separation methods, the proposed method esti-
mates class-wise frequency bases using annotated sound sig-
nals. Then, the temporal bases matrix is extracted from the
input signal based on the concatenated class-wise frequency
basis matrices. The temporal basis matrix was used as the
feature matrix, and the features could be augmented using the
proposed data augmentation method that is derived from the
waveform-based mix and shuffle method without additional
calculations.

In order to evaluate the proposed feature extraction
method, some experiments were performed based on the
DCASE 2018 Task 5 database. First, the proposed method
was compared to state-of-the-art algorithms that utilize the
log-Mel spectrum, Mel-spectrogram, and VGGish model out-
put as input features. The evaluation results showed that the
combined system of the proposed NMF-based feature and
the CNN-based classifier has comparable performance to
that of the state-of-the-art algorithms. Second, the proposed
algorithm was evaluated by changing the feature dimension,
and the results show that the performance of the proposed
algorithm is consistent with the change in the feature dimen-
sions, except for the extremely-small-bases case (Rc = 3).
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Third, the proposed algorithm was compared to the conven-
tional NMF-based feature extraction method, which consists
of convolution NMF and K-means clustering, and the results
showed that the proposed algorithm has better F1-score per-
formances of 6%—12% in comparison with the conventional
NMF-based features.
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