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ABSTRACT Over the last three decades, accurate modeling and forecasting of electricity prices has
become a key issue in competitive electricity markets. As electricity price series usually exhibit several
complex features, such as high volatility, seasonality, calendar effect, non-stationarity, non-linearity and
mean reversion, price forecasting is not a trivial task. However, participants of electricity market need
price forecast to make decisions in their daily activity in the market, such as trading, risk management
or future planning. In this study we consider linear and nonlinear models for one-day-ahead forecast of
electricity prices using components estimation techniques. This approach requires to filter out the structural,
deterministic components from the original time series and to model the residual component by means
of some stochastic process. The final forecast is obtained by combining the predictions of both these
components. In this work, linear and non-linear models are applied to both, deterministic and stochastic,
components. In the case of stochastic component, AutoRegressive, Nonparametric AutoRegressive, Func-
tional AutoRegressive, and Nonparametric Functional AutoRegressive have been considered. Furthermore,
two naïve benchmarks are applied directly to the price time series and their results are compared with our
proposed models. An application of the proposed methodology is presented for the Italian electricity market
(IPEX). Our analysis suggests that, in terms of Mean Absolute Error, Mean Absolute Percentage Error,
and Pearson correlation coefficient, best results are obtained when deterministic component is estimated by
using parametric approach. Further, Functional AutoRegressive model performs relatively better than the
rest while Nonparametric AutoRegressive is highly competitive.

INDEX TERMS Electricity prices forecasting, parametric and nonparametric models, univariate and
multivariate time series, modeling and forecasting, IPEX.

I. INTRODUCTION
With the liberalization of the electricity sector, electricity has
become a tradable commodity. However, due to its natural
and physical characteristics, electricity as a commodity dif-
fers inherently from other commodities. For example, elec-
tricity has no shelf life because it cannot be stored in large
amounts over a long period of time. It’s storage possibilities
are limited and expensive. Therefore, to assure stability of
the power system, the amount of power fed into the grid
must constantly match demand. Because of these reasons
the electricity prices are highly volatile, which causes high
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risks to market participants [1], [2]. In addition, other fac-
tors such as weather conditions and calendar effects, may
also cause the electricity price to change. For example, due
to the change in climate conditions such as temperature
and the number of daylight hours, electricity demand shows
seasonal fluctuations which translate into seasonal behavior
of electricity prices, especially in spot prices. In general,
electricity prices across the world usually exhibit three dif-
ferent types of seasonal patterns including, daily, weekly
and yearly cycles and often contain a linear or nonlinear
trend. Moreover, electricity spot prices are highly volatile
in nature and prices over a short period of time can vary
extremely. In fact, electricity prices are far more volatile
than any other financial commodity. Thus, accurate price

123104 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5005-6991
https://orcid.org/0000-0003-4868-7932
https://orcid.org/0000-0001-9000-5064
https://orcid.org/0000-0002-5162-3908
https://orcid.org/0000-0001-6417-3750


I. Shah et al.: Forecasting One-Day-Ahead Electricity Prices for IPEX

forecasts are crucial for both market participants and market
operators [3]–[6].

Electricity price forecasting plays an important role in the
scheduling and management of electricity markets and there-
fore, electricity market participants may be interested in dif-
ferent price forecasting horizons. Generally, electricity price
forecasting can be divided into three main time horizons:
short-term, medium-term and long-term price forecast. The
forecasting based on these horizons is required for different
purposes. For example, short-term price forecast (STPF) is
usually referred to the time horizon of a few hours to a few
days. STPF plays an essential role in the power scheduling
and management, risk assessment and other decision making.
Market participants need STPF for making better bidding
strategies in order to get maximum profits in the day-ahead
markets [3], [7]. Medium-term price forecasts (MTPF) range
from a week to a few months and is generally required
for generation expansion planning, maintenance scheduling,
bilateral contacting, fuel contacting, developing investment
and hedging strategies [8]. On the other hand, long-term price
forecast (LTPF) generally covers time from several months to
a few years and is generally used for planning and investment
profitability analysis, such as making decisions for future
investments in power plants, inducing sites and fuel sources
[9]. As in many electricity markets daily prices are deter-
mined the day before the physical delivery bymeans of hourly
concurrent auction, STPF has received higher attention in the
literature.

Electricity price forecasting is much complex than
forecasting electricity demand because of its unique char-
acteristics, uncertainties in operations as well as the bid-
ding strategies of the market participants [2]. In the past,
extensive studies have been made on the problem of elec-
tricity prices forecasting using different modeling techniques
and procedures. Statistical models such as time series mod-
els, regression models, and exponential smoothing meth-
ods are widely used to forecast electricity market variables.
Statistical models generally use a mathematical combination
of the past and current information of the endogenous vari-
able (prices) with, sometimes, exogenous variables included
to the model. Autoregressive (AR), Vector autoregressive
(VAR), Autoregressive moving average (ARMA) model and
its different extensions like seasonal ARIMA, ARIMA with
exogenous variables (ARIMAX), autoregressive conditional
heteroskedasticity (ARCH) and generalized autoregressive
conditional heteroskedasticity (GARCH) models are some
of the common time series methods used for electricity
price forecasting problems in the literature [10]–[14]. For
example, for the Spanish and California electricity market,
Contreras, et al. [10] used ARIMA models to predict hourly
electricity prices. For both markets, their models produced
reasonable errors compared to the Artificial Neural Net-
works. Liu and Shi [15] used 10ARMA–GARCHapproaches
to model and forecast for hourly electricity prices. Using
electricity prices time series from theNewEngland electricity
market, they noted that the ARMA–GARCH(-M) models

are effective for modeling the electricity prices. Regression
models are the most commonly used statistical techniques.
Regression models, e.g., multiple regression models are used
to learn the relationship between dependent (interest) variable
and other independent variables. In our specific context,
they are used to model the relationship of current electricity
prices with other influential factors such as demand, calendar
conditions, temperature, fuel prices, etc. Regression models
are usually easy to implement and interpret and are widely
used for electricity prices forecasting [16]–[19]. For example,
based on multiple linear regression analysis, Ferreira, et al.
[18] investigated the impact of various explanatory vari-
ables on the electricity price modeling for the Portugal and
Spain electricity markets. They concluded that multiple lin-
ear regression model is a plausible strategy to obtain causal
forecasts of electric energy prices in medium and long-term
electricity price forecasting. On the other hand, modeling
approaches based on exponential smoothing are very pop-
ular in time series. These models are extensively used to
accommodatemultiple periodicities in time series data. In this
method, the variable of interest is predicted as an exponen-
tially weighted average of the sequenced past values. This
method uses a smoothing factor known as the smoothing con-
stant (lies between 0 and 1). It allocates the large weights to
more recent observations and the weights decrease exponen-
tially as the observations become more distant. Exponential
smoothing approaches have been extensively used to fore-
cast electricity load and prices [20]–[22]. For example,
Cruz, et al. [22] used double seasonal exponential smoothing
model to forecast hourly spot prices from the Spanish mar-
ket. In their study, exponential smoothing performs slightly
better than ARIMA, and both outperform the naïve method.
Jónsson, et al. [23] used exponential smoothing techniques
to predict the Nord Pool electricity market. All the models
used in the paper were based on thewell-knownHolt–Winters
model. The results suggested that exponential smooth-
ing techniques are effective for predicting the day-ahead
offering of wind power. Computational intelligence based
techniques use nonparametric tools (e.g, artificial neural
networks (ANNs), support vector machine (SVM), fuzzy
logic, etc.) to model price processes. AI-based models are
efficient in handling complexity and non-linearity, which
makes them promising for short term predictions [24].
These methods generally map the relationship between
input and output without exploring the underlying process.
In the context of electricity prices forecasting, these methods
have been used by some authors [25]–[33]. For example,
a three-layered feedforward neural network, trained by the
Levenberg-Marquardt algorithm, is used by Catalão, et al.
[34] for forecasting next-week electricity prices from the
electricity markets of mainland Spain and California. Based
on their results, the neural network approach outperforms the
ARIMA technique and the naive procedure in all considered
weeks.

Even though a lot of models and techniques have been
presented for electricity price forecasting, but none of them
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FIGURE 1. Flowchart of the proposed modeling framework.

provides accurate forecasts in a consistent manner. Therefore,
a more efficient price forecasting framework is required since
many market participants and system operators depend on
it. This work considers the prices forecasting for Italian
electricity market. Different from previous studies, this work
investigates the role of parametric and nonparametric model-
ing approaches when considering models from both classes,
univariate and multivariate. In the case of multivariate, this
work considers a comparatively less explored modeling tech-
nique based on functional data analysis (FDA). In functional
modeling, each daily price curve is considered as a single
functional datum. Then, the daily electricity price profile
(functional datum) is predicted in an autoregressive fashion
using previous daily electricity price profiles. FDA is widely
used in different scientific fields, but little explored in the
context electricity market [35]–[37].

The rest of the article is organized as follows:
Section 2 describes the methods and models used in this
study. The description of the data and an application of the
proposed methods and models to Italian electricity market is
given in Section 3. The conclusion is given in Section 4.

II. GENERAL MODELING PROCEDURE
The main aim of this work is to forecast one-day-ahead
electricity prices by using different forecasting techniques
and models. As mentioned before, electricity price series is
characterized by different complex dynamics. To accurately
model these complex dynamics, first the price series is
filtered out for the deterministic component and then the
residual component is modeled by using different linear
and non-linear models. After modeling both deterministic
and stochastic components separately, the final forecast is
obtained by combining the estimates of both components. To
this end, let log(Pd,l) be the logarithmic price series for d th

day (d = 1, 2, . . . , n) and l th load period (l = 1, 2, . . . , 24).
The model for the log price dynamics, log(Pd,l), can be
described as:

log(Pd,l) = Dd,l + Rd,l (1)

That is, the logarithmic price series, log(Pd,l), is divided into
two main components: a deterministic, Dd,l , component and

a stochastic, Rd,l , component. The component Dd,l con-
sists of long-run dynamics, multiple periodicities (yearly and
weekly cycles) and calendar effects. Mathematically, Dd,l is
modeled as:

Dd,l = Td,l + Yd,l +Wd,l + Cd,l (2)

where Td,l refers to the long-run dynamic (trend), Yd,l and
Wd,l represents the yearly and weekly cycles, respectively,
and Cd,l denotes the calendar effect. Instead of including
daily periodicity in 2, it is accounted by separately ana-
lyzing each load period. Finally, the stochastic component
Rd,l (residuals) which accounts for the short-run dynamics,
is obtained as:

Rd,l = log(Pd,l)− D̂d,l
Rd,l = log(Pd,l)− (T̂d,l + Ŷd,l + Ŵd,l + Ĉd,l) (3)

and is modeled through different linear and non-linear mod-
els. Once both, deterministic and stochostic, components are
estimated, final one-day-ahead prices forecast is obtained as:

P̂d,l = exp(T̂d,l + Ŷd,l + Ŵd,l + Ĉd,l + R̂d,l)

= exp(D̂d,l + R̂d,l) (4)

The flowchart of the proposed modeling framework is given
in Figure 1.

A. MODELING DETERMINISTIC COMPONENT
This section explains the modeling and estimation of
deterministic components Dd,l . For this purpose two
approaches, parametric and nonparametric, are considered in
this study. In the parametric approach, long-run component
Td,l and the yearly component Yd,l are modeled through a
linear regression model. For estimation of regression coef-
ficients, Ordinary Least Square (OLS) technique is used.
In nonparametric approach, the long-run component Td,l and
the yearly component Yd,l are modeled by using smooth-
ing splines where the series of Td,l and Yd,l are treated
as a functional object. In both approaches, weekly cycles
Wd,l and bank holidays Cd,l are described by dummy vari-
ables. For weekly cycles seven dummy variables are used
i.e., Wd,l =

∑7
j=1 αjId,l where Id,l = 1 if d indicates the jth
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FIGURE 2. IPEX price forecasting: (First row) logarithmic prices series for load period 8 with superimposed in red (right) parametrically estimated Td ,8
(left) nonparametrically estimated Td ,8, (Second row) (right) parametrically estimated Yd ,8 (left) nonparametrically estimated Yd ,8 (Third row) (right)
Rd ,8 from parametric model (left)Rd ,8 from nonparametric model.

day of the week and 0 otherwise. Similarly, two dummy vari-
ables are used for the bank holidays, i.e., Cd,l =

∑2
j=1 βjId,l

where Id,l = 1 if d represents a bank holiday and 0 otherwise.
In the case of parametric estimation, all the components of
Dd,l are jointly estimated using the OLS technique whereas,

back fitting algorithm is used in the case of nonparametric
estimation to avoid curse of dimensionality.

An example of the estimated deterministic components are
plotted in Figure 2. In the figure, the first row depicted the
logarithmic prices for the load period 8 with superimposed in
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red parametrically (left) and nonparametrically (right) esti-
mated long trend Td,8. In the second row, parametrically
estimated yearly component Yd,8 (left) and its nonparametric
counterpart is plotted in right panel. As the estimation of
weekly component Wd,l and bank holidays Cd,l is similar in
both cases, we prefer not to show their plots. The third row
of Figure 2 refers to the stochastic component Rd,l (residual)
which is further modeled using parametric and nonparametric
approaches.

B. MODELING STOCHASTIC COMPONENT
This section explains the modeling and estimation of
stochastic (residuals) component Rd,l . To this end,
two classes of models, i.e., univariate and multivariate
(functional) models are used. Within each case, a parametric
and a nonparametric approach is considered to specify the
models. In the case of univariate models, parametric AutoRe-
gressive (AR) and its nonlinear version, NonParametric
AutoRegressive (NPAR) models are considered. On the other
hand, a parametric Functional AutoRegressive (FAR) and a
NonParametric Functional AutoRegressive (NPFAR) mod-
els are estimated. The details of each models are provided
as under.

1) AutoRegressive MODELS
In univariate time series modeling, AutoRegressive (AR)
models are perhaps the most widely used linear models. In an
AR model, the variable of interest is regressed on its own p
past values. The value p is called the order of an AR model,
which indicates the number of past values required to predict
the current value. Mathematically, an AR model of order p,
AR(p), can be written as:

Rd,l = b+ β1Rd−1,l + β2Rd−2,l + . . .+ βpRd−p,l + εd,l
(5)

where Rd,l is a stationary time series, b is a constant
(intercept) term, βj (j = 1, 2, . . . , p) are parameters and εd,l is
a white noise process, i.e., εd,l ∼ WN (0, σ 2

ε ). The parameters
of the model are estimated using the Maximum Likelihood
(ML) method.

The choice of the lags used in the model is an important
issue and is generally addressed by either looking at the
ACF and PACF plots of the residual series or using some
kind of information criteria, such as Akaike Information
Criterion (AIC) or Bayesian Information Criterion (BIC) etc.
This work consider the inspection of the ACF and PACF
plots of Rd,l and selected a restricted AR(7) model with
β3 = · · · = β6 = 0.

2) NonParametric AutoRegressive MODELS
NonParametric AutoRegressive (NPAR) models are the
extension of linear AR models. A Non-Parametric AutoRe-
gressive (NPAR) model is built simply by permitting
non-linearity in an AR model. NPAR models account the
relationship between interest variable and its lagged vari-
ables without considering any specific parametric form.

Mathematically, NPAR can be written as

Rd,l = g1(Rd−1,l)+ g2(Rd−2,l)+ . . .+ gp(Rd−p,l)+ εd,l
(6)

where gk (k = 1, 2, . . . , p) are smoothing functions
representing the underling relations between the variable
of interest and explanatory variables and εd,l is a random
error term. The smoothing functions gk can be described and
estimated by using different techniques [38]. In this study,
penalized cubic smoothing splines are used to define gk .
To prevent the issue of the curse of dimensionality, which
is attributed to the exponential decay of data points within a
smoothing window by increasing the dimension of regressors
[39], an additive form is usually considered which assumes
that the explanatory variables are uncorrelated. For the esti-
mation purpose of gk , back-fitting (iterative procedure) algo-
rithm is used. Likewise, in the case of AR, the selection of
the lags used in NPAR model is done by inspecting the ACF
and PACF of Rd,l and lag 1, 2, and 7 are used to fit the model.

3) FUNCTIONAL AutoRegressive MODELS
Functional data analysis (FDA) is a relatively new field
where analysis is done by using information from curves
or functions. In FDA, each datum is a single structured
functional object. Due to this feature, FDA combines infor-
mation on both, across and within sample units to make
inference about the population. In addition, assuming the
information as a functional object bypasses the problem of
the numbers of variables and also allow to use additional
information that may exist due to smoothness or derivatives
contained in the functional structure. In FDA, the data are
first converted to smooth functions known as basis function.
In our case, the daily prices profile is considered as functional
object (datum) and is converted to basis function by

ψd≡ψd (l) ≡δ(Rd,1, . . . ,Rd,l)=
K∑
k=1

akγk (l) d = 1, . . . , n

where ak are constant parameters and γk (j) are Fourier basis
functions.

The functional version of the aforementioned classical
linear autoregressive model is first introduced by [40], and
is given by

ψd =

p∑
i=1

∫
s ∈ (0,l)

αi(s)ψd−i(s)ds+ ηd . (7)

The kernels of the Hilbert-Schmidt operators, αi(s) are the
functional parameters of the model, and ηd is the functional
error. This model is referred to as a functional autoregressive
model of order p (FAR(p)) and it allows to predict daily
prices curves conditionally to past observed curves. This
model is estimated using the methodology described in [41]
that deals with the covariance and cross-covariance operators
estimation of a Hilbert space (H )-valued autoregressive pro-
cess. Furthermore, FAR(1) model is used for modeling and
forecasting purposes.
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TABLE 1. IPEX price forecasting: Mean absolute percentage error (MAPE), Mean absolute error (MAE) and Person correlation coefficient (r) for
one-day-ahead out-of-sample forecast using different approaches for deterministic component D and different models for stochastic component R.

4) NonParametric FUNCTIONAL AutoRegressive MODELS
The nonlinear version of the above stated functional model is
called the NonParametric Functional AutoRegressive model
(NPFAR). In this case, we do not assume any paramet-
ric form of the relationship between response and predic-
tors, thus allowing for any possible nonlinear relationship.
Mathematically, it is defined as

ψd =

∑n
t=p+1 ψdKb(ξ (ψd−p, ψ̃))∑n
t=p+1 Kb(ξ (ψt−p, ψ̃))

(8)

where ψd (.) is a functional random variable valued in some
semi−metric space (E, ξ ), ψ̃ is a given element of E , K (·) is
a probability density function (kernel) with Kb(u) = K (u/b)
and b represents the smoothing parameter (bandwidth).
Estimation procedure and more details about this model
can be found in [42]. Finally, likewise FAR, this work
consider NPFAR(1) model for modeling and forecasting
purposes.

C. THE BENCHMARK MODELS
We conclude this section by introducing two benchmark
models that belong to the similar-day technique. The first
benchmark model will be called Naïve1 method proposed
by [17]. In this method, electricity price forecast of hour
l on Saturday, Sunday, and Monday are determined by
using prices on l hour a week ago on the same day,
i.e., p̂d,l = pd−7,l . While for Tuesday, Wednesday, Thursday
and Friday, the electricity price forecast for hour l is set
equal to the price for the same hour on the previous day,
i.e., p̂d,l = pd−1,l .
The second benchmark model, Naïve2, also belong to

the similar-day technique. This method proceeds as follows.
To forecast, for example, Monday, we select the day before
Monday, i.e. Sunday. We then select all the previous Sundays
in the data and compare every Sunday independently with
the current Sunday price profile. The difference between any
previous Sunday and current Sunday is summarized using
MAE (Other statistics can also be used, e.g. MAPE etc.,
however we found MAE to be more useful in forecasting).
In this way we obtain a vector of MAE values for each com-
parison. We then find the Sunday that produces the smallest
MAE value when compared to the current Sunday. Once the
Sunday is identified, we use the next day to the identified

Sunday, i.e.,Monday and use it as the forecast for theMonday
we are interested. We do the same procedure for all days of
the week.

III. OUT-OF-SAMPLE PRICE FORECASTING
In this work, the electricity prices data from the Italian
ElectricityMarket (IPEX) are considered. The data set ranges
from January 1st 2012 to December 31th 2017 (52608
observations, covering 2192 days). Each day of the data set
comprises of 24 observations, where each observation cor-
responds to a load period. For modeling and forecasting pur-
poses, the data set is further divided into two sets: January 1st
2012 to December 31th 2016 (43848 observations, covering
1827 days) for identification and estimation of the models,
and January 1st 2017 to December 31th 2017 (8760 obser-
vations, covering 365 days) for evaluating one-day-ahead
out-of-sample forecasting accuracy of the models. For each
load period, all the models are separately estimated for deter-
ministic component, and when considering univariate mod-
eling of stochastic component. For the whole 2017 year,
one-day-ahead forecasts are obtained by using the expanding
window method. For comparing the forecasting accuracy of
the models, three different types of descriptive statistics are
used. These includes, Mean Absolute Error (MAE), Mean
Absolute Percentage Errors (MAPE), and Pearson correlation
coefficient (r). Mathematically, they are defined as:

MAE = Mean
(
| Pd,l − P̂d,l |

)
MAPE = Mean

(
| Pd,l − P̂d,l |

Pd,l

)
· 100

r = corr(Pd,l, P̂d,l)

where Pd,l and P̂d,l are the observed and forecasted prices
for d th day (d = 1, 2, . . . , 365) and l th load period
(l = 1, 2, . . . , 24), respectively.
The results for one-day-ahead out-of-sample forecasting

for the complete year 2017 are listed in Table 1. The first
column of the table refers to the estimation of the determin-
istic component either through, parametric or nonparametric
estimation. The second column listed the models used for
the estimation of the stochastic component. By combining
models from both, deterministic and stochastic, components
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TABLE 2. P-values for the DM test. Null hypothesis: equal prediction accuracy, Alternative hypothesis: model in the row is more accurate than model in
the column (squared loss function used).

TABLE 3. IPEX price forecasting: Day-specific mean absolute percentage error (DS-MAPE) for one-day-ahead out-of-sample forecast using different
approaches for deterministic component D and different models for stochastic component R.

FIGURE 3. IPEX price forecasting: Hourly MAPE values for NPAR and FAR models with both, parametric (P) and
nonparametric (NP) estimation of deterministic component D.

give eight models to compare. The results obtained from
benchmark models are also listed in the last two rows of
Table 1.

The results suggest that when the estimation of determin-
istic component is done through parametric approach, the
models FAR and NPAR perform relatively better. The MAE
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FIGURE 4. IPEX price forecasting: Observed prices (solid) with forecasted prices by NPAR (red dashed) and FAR (blue dotted)
when deterministic component D is estimated through parametric approach.

and Pearson correlation coefficient, r, values are slightly
better for FAR while NPAR produced comparatively small
MAPE value. On the other hand, when the deterministic
component is estimated nonparametrically, the FAR pro-
duces better MAE, MAPE and r values compared to the rest.
Note that, the overall forecasting is better when the esti-
mation of deterministic component is done with parametric
approach. Secondly, as FAR produced slightly better results
in both cases, it may indicate that parametric functional mod-
eling is relatively better than the univariate. Furthermore, all
the autoregressive models outperform both the naïve bench-
marks. It is worth mentioning that Naïve2 performs much
better compared to Naïve1.

To access the significance of the differences among the
results listed in Table 1, Diebold and Mariano (DM) [43]
test is performed and the results are listed in Table 2. The
null hypothesis of the DM test corresponds to equal forecast
accuracy while the alternative hypothesis states that model
in row is more accurate than in the column. The results in
the table confirms the superiority of NPAR and FAR models
compared to the rest, especially when the deterministic com-
ponent is estimated through parametric approach. Further,
the forecasting accuracy of FAR is no longer superior than
NPAR.

To see the performance of models on different days of
the week, day-specific MAPE values are listed in Table 3.
From this table one can see that MAPE values are

comparatively higher for Monday, Saturday, and Sunday than
the remaining week days. As the weekend comprised of
Saturday and Sunday, these days generally have different
pattern of electricity prices compared to the working days,
thus forecasting error is high. On the other hand, Monday
is followed by Saturday and Sunday, thus models perform
relatively poor to capture Monday pattern. As NPAR and
FAR models perform relatively better compared to AR and
NPFAR, the hourly MAPE (H-MAPE) values for these two
models are depicted in Figure 3, when the deterministic com-
ponentD is estimated by using parametric and nonparametric
approaches. From the figure one can see that H-MAPE is
relatively lower in the initial and final hours of the daywhile it
is higher in the middle load periods of the day. The H-MAPE
is relatively higher for NP-NPAR till mid-day whereas it
starts decreasing for the remaining hours. The forecasting
superiority of P-NPAR and P-FAR is evident from the graph
as they show minimum MAPE values on most load periods.
The forecasted prices time series for the two best models
along with the observed prices are plotted in Figure 4. From
the figure it is evident that both the models are following the
observed series quite well.

Finally, the forecasting performance of our models is
highly competitive compared to the results reported in the
literature. Note that it is generally difficult to compare results
from other research work as different authors used differ-
ent forecasting horizon, forecasting period and indicators.
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For example, [44] reported a root mean square error (RMSE)
of 11.58 obtained with an ARX-EGARCH model, whereas
we obtained 8.43 (RMSE are not reported here) with the
P-FAR. [45] obtained a RMSE of 16.72 and 15.79 using
ARMA and GARCHmodels respectively that is considerably
higher than our value of 8.43. The work of [46] resulted in
MAE of 8.58 which is significantly higher than our MAE
value of 5.48.

IV. CONCLUSION
The main aim of this work is to model and forecast electricity
price time series. To this end, a components estimation
method is used where the price time series is divided into
two major components: deterministic and stochastic. The
deterministic component consists of long-run dynamics, mul-
tiple periodicities (yearly and weekly cycles) and calendar
effects whereas the stochastic component accounts for the
short-run dynamics of the process. Deterministic as well as
stochastic components are modeled through parametric and
nonparametric approaches. For the estimation of stochas-
tic component, two univariate models, i.e., AutoRegressive
(AR) and Nonparametric AutoRegressive (NPAR), and two
multivariate models, i.e., Functional AutoRegressive (FAR),
and Nonparametric Functional AutoRegressive (NPFAR),
are used. After modeling and forecasting both deterministic
and stochastic components separately, the final forecasts are
obtained by combining the estimates of both components.
The electricity price data, ranges from January 1st 2012 to
December 31 2017, are used from the Italian electricity mar-
ket (IPEX). The results indicate that the component esti-
mation approach is efficient in forecasting electricity prices
series. The parametric estimation of deterministic component
leads to better forecasting results. Finally, the functional
model FAR produced better results compared to the rest
models while the univariate model NPAR was a good com-
petitor. Since, the results of this work are based on only IPEX,
empirical analysis conducted on other electricity markets are
recommended for the future studies. In addition, one may
investigate the possibility to include exogenous variables, like
temperature, oil prices, forecasted electricity demand, etc.
to the model in the future work.
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