IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 16, 2020, accepted June 27, 2020, date of publication July 6, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007180

Optimization Model and Algorithm Design
for Rural Leisure Tourism Passenger

Flow Scheduling

FANG SU™, CHENGRUI DUAN ™, AND RUOPENG WANG

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Fang Su (sufang@bupt.edu.cn)

ABSTRACT A constrained optimization model and an iterative optimization algorithm based on PSO
are designed for rural leisure tourism passenger flow scheduling. Compared with the traditional tourist
dispatching scheme, this model maximizes the overall tourist experience and operation profit of the whole
region on the base of protection of tourists’ travel experience and the interests of operators in the dispatching
spots. Simulations and comparisons are taken to evaluate the feasibility and effectiveness of the model and the
optimization. The simulation results show that compared with the shortest-distance-based traffic scheduling
scheme and the gravity-model-based scheme, the new model and optimization could meet the requirements
of the rural leisure tourists dispatching and bring better tourist experience and tourism profit.

INDEX TERMS Adaptive algorithm, optimization model, particle swarm optimization, rural leisure tourism,

tourist scheduling.

I. INTRODUCTION
At present, the rural leisure tourism is developing rapidly. The
travel destinations of this new kind tourism are usually indi-
vidual tourism operation spots in a village. These spots are
mainly household-run small businesses or individual farm-
steads [1]-[3]. Compared with traditional tourism, the rural
leisure tourism does not rely on selling tickets to tourists.
On the contrary, the management attaches importance to the
overall reputation of a region, and the food as well as the
accommodations with rural characteristics are regarded as
the main source of income. Under these circumstances, most
spots have similar resources, but they scatter in a relatively
large and distributed region, such as a town or county, rather
than the places like traditional scenic spots. Therefore, almost
every weekend or holiday, most tourists are gathered in a few
hot spots. However, very few tourists are attracted to other
spots which are usually not far from the hot spots and have
similar tourism resources.

For the unbalanced distribution of tourists, the tourism
resources in the gathering areas may be consumed exces-
sively [4], [S], which results in a serious decrease of the
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tourist experience in these areas. In other areas where tourists
are scarce, the tourism operating efficiency is low. So this
problem must be seriously considered to improve overall
regional tourism profit and efficiency.

However, it is quite a challenge to design a reasonable
dispatching scheme to solve the problem. For the tourists,
the scheme should provide the same or better travel expe-
rience after the diverting. For the operators in hot spots,
the scheme should guarantee that the operating profit loss
be limited to an acceptable degree after the dispatching.
Moreover, for regional tourism regulators, the scheme should
provide all tourists with best experience and maximize the
overall operating profit of the whole region. Therefore, this
problem has become a major issue for the regulation of
leisure tourism in a region to affect the further sustainable
development [6].

Facing the challenge of passenger scheduling, some solu-
tions have been brought out by now. Generally, these solu-
tions can be concluded into two categories:

(1) Optimization models with single constraint factor.

This kind of model are often designed from the perspective
of the tourism operators. The model selects a single factor,
such as time, distance or price, as a constraint to achieve the
average tourists flow distribution at a reasonable cost [7]-[9].
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This kind of scheme only takes the average distribution of
total passenger flow in the whole area as the main objective,
without considering the changes of tourist experience and the
overall operating profit in the whole region caused by pas-
senger diversion. Therefore, these models are not suitable for
passenger scheduling optimization problem in rural leisure
tourism.

(2) Comprehensive optimization models with multiple
factors.

In the research of multi-factor tourist scheduling model,
Zhang et al. take the model of Logit as basis to balance the
loads of scenic spots. In the model, two factors are consid-
ered: the distance between the scenic spots and the influence
to the tourist experience caused by the wait time [9], [10].

Based on the gravity model, Xiao ef al. constructed a shunt-
scheduling algorithm with the priority of balancing the loads,
in this model, the tourists satisfaction punishment factor due
to waiting is considered [11].

This kind of model takes into account a variety of factors,
including not only the load of scenic spots, but also the road
distance, tourist experience and its losses. Therefore, it is
more reasonable than the first one. However, the primary goal
of these models is still how to meet the balance of tourist
load in each scenic spot to increase the overall capacity of
the scenic area.

To sum up, the scheduling optimization models mentioned
above are designed for traditional tourism applications. All
of them are just based on the micro-scheduling of a tourist
attraction operator. They do not consider how to promote the
overall tourist experience and whole operator profit based on
the micro-benefits. So far, there is still a lack of research on
the tourist scheduling model and its optimization algorithms
for rural leisure tourism, which has seriously affected the
development of related fields. The problem needs to be solved
as soon as possible.

In this paper, a new optimization model for rural leisure
travel flow scheduling is proposed. This model considers
factors of all stakeholders in rural tourism so as to protect
the interests of most tourists, operators and the destination
management organization. In order to obtain a reasonable
scheduling scheme, we design an iterative optimization algo-
rithm based on PSO, which aims to maximize the overall
travel experience and operating profit. After the iteration,
a scheme is determined and it explains the number of tourists
in an over-loaded spot need to be transferred and the carrying
capacity of under-loaded spots. The model pays more atten-
tion to the quality of the whole region. Under the guidance of
calculation results, the destination management organization
can obtain tourist information of all spots and make a proper
dispatch scheme in time.

The remainder of this paper is organized as follows.
Section 2 describes the constrained optimization model. The
iterative optimization algorithm based on PSO are presented
in section 3. Section 4 presents the experimental results and
evaluations. Section 5 discusses the conclusion and the fur-
ther works.
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Il. OPTIMIZATION MODEL DESIGN
Assuming that A is a collection of n tourist operation points
in the region, then the tourist load rate of the tourism oper-
ation spot i at the fyp moment rl.lo is defined as follows, just
as in [10]:

fo
rl.’ozc—ii (ieA;ri=1,2,...,n) 1)
where N;O is the number of tourists of spot i at the ) moment
and ¢; is the tourist capacity of the spot i.

In order to consider the interests of tourists and operators
in the scheduling, two variables are defined: the tourist expe-
rience El.t" and the operator profit P;O.

The tourist experience represents the interest of visitors.
It is influenced by many factors which can be summarized in
two aspects according to the length of affecting time. From
a short-term perspective, the number of tourists has a great
impact on the tourist experience. If the number reaches a
certain threshold, the tourist experience begins to reduce.
From a long-term perspective, tourism resources, such as spot
reputation, traffic environment and quality of service, are the
key to guaranteeing the good tourist experience [12]-[14].
Among the resources, a good reputation is the prerequisite of
attracting tourists [15], [16]. There are three terms determin-
ing the spot reputation, identity, brand and image. Argenti and
Druckenmiller [17] give an illustration on the difference of
these terms, that is, identity addresses the scenic assessment
of itself; brand reflects the future development direction and
image replies the public impression of the spot. Darwish and
Burns [18] propose a model of tourist destination reputa-
tion definition which considers the experiences and emotions
of internal, peripheral and external stakeholders. The above
terms as well as the model give an accurate perception of
a spot reputation and help minimise the risk of unsatisfac-
tory tourist experience. As for other resources, if a spot has
convenient traffic conditions and can provide tourists with
comfortable accommodation and delicious food, it also can
improve the tourist experience. Thus, the spots with such
resources usually attract more tourists and make more profits.

The tourist experience function of the tourism operation
spot i can be defined as:

0, ril0 <0
E" = fir]®) = et ©)
Li- e 22, =0
o2
L; = wyires1 + woresy + waress 3)

As shown in formula 2 and formula 3, L; is related to the
tourism resources of the operating spot. resy, resy and res3
separately represent the spot reputation, the traffic environ-
ment, the quality of service, and w; is the weight of each
kind of tourism resource. Generally, L; is set to a constant
because tourism resource will not be changed a lot over a
long period of time. Except for L;, the rest part of function
describes the relationship between tourism experience and
the number of tourists, where o is the standard deviation of
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FIGURE 1. Tourist experience function (L; = 100, xo = 0.7,5 = 0.7).

tourism experience value and xg is the best experience load
rate.

Figure 1 is an example of the tourist experience func-
tion where the best experience load rate is 0.7 and the
value decreases when the load rate becomes higher or lower
than xg.

For rural leisure tourism, the operator profit mainly
depends on offering food and accommodations with local
characteristics for tourists. So, the profit is closely related to
the number of tourists. When the tourists are in a suitable
amount, the individual operators have the ability to provide
high quality service and they can make profit in an effi-
cient way. However, the food and accommodations they can
prepare are limited. If the number of tourists continues to
increase, these resources will be quickly exhausted. Mean-
while, the profit will begin to decline. When the number
exceeds the load rate, the operators have no conditions to
make more profit.

So, the operator profit function of spot i is also defined as
a function of tourist load rate:
kyr?, <
ky-t+ k2ln(rl.[° —1t41, < rl.to <w @
ki -t +kn(w—1+1), riloza)

P =

L

This function reflects the trend of the tourism profit of the
operating point with the increase of the load rate. ki, kp are
tourism profit increment parameters and their values may be
different in every operation point. T is the tourist load rate
when tourism profit begins to fade. w is the tourist load rate
when tourism profit reaches the maximum. An example of
tourism profit function is shown in Figure 2.

E; and P represent the total tourist experience and total
tourism profit of the area A at the #yp moment respectively,
which are defined as:

n E[o

E;O — i (3)
i=1 Em
n Plo

po=3Y L (6)
a Pm

where E,, and P, are the max values of E; and P;(i € A),
respectively.
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To ensure the profit of tourism operation spots, the scheme
seeks the maximization of the whole regional tourist experi-
ence and economic profit, while keeping the tourist load rate
in a reasonable range. Based on different values of load rate
rl.to, the set A of tourism operation spots can be divided into
three subsets:

A = {i € Alr]® < a}
Ao = {i € Al > B}
Ag = {i € Ala < 1" < B} @)

Operation points in A;, have low tourist load rates where
tourists can be diverted in. Operation points in A,,; have
high tourist load rates where tourists need to be diverted out.
Operation points in Ag have moderate tourist load rates.

Here o, B(0 < @ < B < 1) are thresholds which affect not
only the tourist experience and operation profit of the specific
spot, but also the overall tourist experience and profit of the
whole region.

From the point of view of the visitors, it is necessary to
limit the experience loss to an acceptable level after dispatch-
ing. From the point of tourism operators, it is also necessary
to keep the load rate in a reasonable range after scheduling to
ensure the profit.

Therefore N; ,,,; represents the number of tourists who need
to be diverted out from spot i and it is defined as follows:

0, rl.to <o
Niow=16 - —a)-c;, a<r®<p (8
0-(B—a)- i+’ —p)-ci 11’ =p

As shown in this formula, the tourism operation spot needs
no adjustment when its tourist load rate is less than «.. Tourists
in an operation spot should be diverted out with the proportion
of & when tourist load rate lies between « and . When tourist
load rate is higher than g, the exceeding part needs to be
diverted out completely.

Therefore, considering the individual operators and the
overall tourist experience and operating efficiency of the
region, the optimization model of this scheduling program is:

maxz = E. - P!!
1 i
st E' —E;" > =8
a<rl'<p (€A ©))

1

(w, kyw)

to
P;

FIGURE 2. Tourism profit function (r = 0.6, w = 1.1, k1 = 15, k2 = 5).
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where #1 is the moment after the scheduling, i € Ayyr,j €
A, 6 > 0, 8 is a constant, which determines how much the
tourism experience loss can be accepted after the scheduling.

Ill. OPTIMIZATION ALGORITHM DESIGN

In order to get the optimization result of the tourism travel
scheduling, an iterative optimization algorithm based on PSO
is constructed to find the Pareto solution.

A. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is an evolutionary algo-
rithm inspired by the movement of the bird flocks in nature,
which is proposed by Eberhart and Kennedy [19] and
Kennedy and Eberhart [20]. In PSO, a number of particles
are initialized and moving in the search space to find the best
solution. PSO was mathematically defined as follow:

V;Jrl = wvi +¢1 x rand x (pbest; — x)
+ ¢ x rand x (gbest; — x}) (10)
X = it (11)

where V! is the velocity of particle i at iteration ¢, w is the
inertia weight parameter, ¢; and c¢; are acceleration constants,
which are respectively self-experience weight and group-
experience weight, respectively. rand is a random number
between 0 and 1. xl? is the current position of particle i at
iteration ¢. pbest; is the best value achieved by particle i while
gbest; is the best one achieved by the population so far.

Compared with traditional optimization algorithms such
as gradient descent method [21], linear programming [22],
dynamic programming [23], using PSO for optimization,
there is neither need to construct a complex functional rela-
tionship between the objective function and the decision vari-
able, nor need to make the objective function differential. The
PSO has been widely used in many fields today, because it is
suitable for the optimization problem of complex scenes.

In this paper, we also apply PSO to optimize the schedul-
ing of passenger flow. However, considering the restrictive
factors of the decline in tourist experience and the decline in
operators’ interests, we need to carefully consider the design
of the optimization algorithm.

B. ITERATIVE OPTIMIZATION ALGORITHM

BASED ON PSO

In this paper, an Iterative optimization algorithm based on
Particle Swarm Optimization Algorithm (IPSO) is designed
to complete the tourist scheduling scheme.

As a heuristic optimization algorithm, PSO cannot be
directly applied to constraint optimization problems such as
the optimization of tourist scheduling problems. It should
also be combined with constraint processing methods in
application.

In the optimization of rural leisure tourist flow schedul-
ing, the decision variable is the specific number of tourists
transferred from an overloaded operating point to each

125298

under-loaded point. The scheduling objective function is
defined in Equation 9.

The goal of the scheduling is to maximize the product of
the regional tourism experience value and regional tourism
revenue after scheduling. However, the realization of this goal
is based on a prerequisite to ensure that the constraints can
be met. In the scheduling, an under-loaded operating point
accepts tourists from multiple overloaded operating points,
which may be difficult to meet the load rate constraints of
the under-loaded operating point. At the same time, after the
scheduling, the experience value of the tourists in the under-
loaded area is related to the number of original tourists and the
number of transferred people. Because tourists are transferred
from multiple overloaded points, these overloaded points will
have different experience values. However, it is a reasonable
scheduling result that the value of the tourist experience
of the under-loaded point is higher than the highest tourist
experience value of all the call-out points.

Therefore, it is quite significant to design a suitable tourist
scheduling optimization algorithm. In this paper, the PSO
based on iterative optimization method is designed to deal
with the scheduling problem. In this algorithm, the operating
points in A,,; are first sorted according to the number of
people who need to be dispatched. From high to low, for
each overloaded point, the method selects destinations that
can be scheduled based on the distance between the current
overloaded point and other under-loaded points, the schedul-
ing capacity of the under-loaded points, and other factors.
Then the PSO calculates the numbers of dispatched tourists
from the overloaded point to each under-loaded points. In this
process, the above-mentioned constraints are considered to be
satisfied at each iterative step. The feature of the algorithm is
that the overall schedule optimization process of the region
is decomposed into an iterative process. In each iteration,
the optimization is performed only for one overload point
and its corresponding acceptable scheduling operation points.
This method can simplify the constraints and reduce the
impact of scheduling among operating points.

The main process is described as follows:

(1) Determine A;;, and A,,;.

As described in Equation 7, according to the parameters «,
B and the current load rate in each point, the set of overloaded
point A,,; and the set of under-loaded points A;,, are deter-
mined. For each operation point in A,,;, the max number of
tourists that need to be exported is calculated, then the spots
are sorted based on this number.

Suppose A,y contains M operating points, for each point,
the upper bound of the tourists number that needs to be dis-
patched, which is donated as O;(i € Ayyt), can be calculated
by the following formula:

Oi=ri—a)xc, 1€Au (12)

Here, « is the lower limit of the load rate after the overload
operation point is scheduled. The result of r; — o shows the
maximal proportion of tourists needed to be dispatched. And
c; is the tourist capacity of the spot i. The concrete dispatching

VOLUME 8, 2020



F. Su et al.: Optimization Model and Algorithm Design for Rural Leisure Tourism Passenger Flow Scheduling

IEEE Access

number of each over-loaded spot can be calculated according
to formula 7 and the result can not be greater than O; in the
above formula. O; guarantees that the tourism revenue will
not be excessively reduced due to the transfer of too many
tourists.

In the iterative scheduling method, operating points with
more overloaded people are given priority for scheduling,
therefore, the elements in A,,; are sorted based on O;.

(2) For each overloaded point in A,,;, the most suitable k
operating points are selected as scheduling targets.

In the dispatching of tourists, every under-loaded operating
point can be taken as the dispatching target. However, such
calculations will make it difficult to reasonably consider fac-
tors such as scheduling distance, which may cause the total
scheduling distance of the final solution to rise. And when
there are many under-loaded operating points, the calculation
time will also be affected.

Therefore, by defining a new gravitational function,
we evaluate the under-loaded operating points, screens out
the k most matching under-loaded operating points, and uses
them as the scheduling target.

The development of the gravitational function is to cal-
culate whether the overload and under-loaded points in the
tourist distribution can be matched [24], [25]. When expand-
ing the model, this paper not only considers the matching of
the number of dispatchers, but also considers resistance fac-
tors such as distance and the decrease of tourism experience.

Our new gravity model is shown as follows:

1 1

riO . k]()

F,‘j = GT
ij

(i € Aout.Jj € Ain) 13)

Fj represents the matching degree between operating point
i and j, in the above formula, G is gravitational constant,
fo

;" and rjtO are the tourist load rates in overloaded spot i

and under-loaded spot j, respectively, kjtO = (rjto)_1 and Z;
is designed as the dispatch resistance factor between spot

iandj:
G =p-dy pff +g(EP —EP + By (14)

where 1 and ¢ are weights of distance cost and tourist expe-
rience respectively, pf]‘? is the dispatch cost of unit distance,
d;j is the physical distance between two spots. To ensure the
value of Z; is positive, max value of experience Ey, is added.

Then the above calculation is performed on the overloaded
operation point i, the k points with the largest Fj; values
are selected as the scheduling targets. These targets set is
recorded as D;, and the specific number of people transferred
into the k points is calculated to find the best scheduling
solution.

(3) Constraints processing

At each step of the iterative process, constraints are taken
into account.

Constraint 1: For the overloaded operating point i and its
target D;, the number of people who need to be dispatched

VOLUME 8, 2020

from i is equal to the total number of people who are dis-
patched into Dj, that is:

Noi= Y Nij (15)

Jje€Di
N,,; represents the number of people dispatched from
operation point i, and N;; indicates the number of people
dispatched from operation point i to operation point j.
Constraint 2: In scheduling, it is necessary to ensure the
tourist experience value does not decrease too much, that is:

ENV—E" > _§

¥ ; if Nj=>1, jeD; (16)

In this paper, take § = 0.1.

Constraint 3: For the place where tourists are transferred
out, it is necessary to ensure that the value of local tourism
revenue will not be excessively reduced due to the transfer of
too many tourists. So, we have the following constraints:
> (17)

1

In this paper, « is set to 0.8.

Constraint 4: For the transfer destination of tourists,
the number of transferred tourists needs to be controlled to
avoid new scheduling requirements. So, we have:

t
ril <1,

: jeD (18)

Therefore, for each overload point i in A,,; and its corre-
sponding destination D;, the number of tourists dispatched
to the candidate spots is used to construct a k-dimensional
decision variable. Then the following decision matrix can be
constructed:

Q{ Q}(
o=1: : (19)

QJ‘: represents the number of tourists transferred from the
i-th overload point to the j-th target point.

In each step, the objective function maxz = EJ' - P} and
the PSO algorithm is used to determine the dispatch plan.

The whole specific process of the algorithm is as follows
and shown in Algorithm 1.

C. COMPLEXITY ANALYSIS OF OPTIMIZATION
ALGORITHM

Suppose N;, N, represents the number of people who need
to be dispatched, M is the population particle number and
T is the maximum number of iterations. D is the dimension
of each particle, which is equal to the value of selected top
k spots. Therefore, the complexity of PSO is O(M - T - D).
The calculation of matching degree and the process of sorting
are parallel with PSO, the complexity of which are O(V;)
and O(N; - logNj) respectively. The whole complexity can be
defined as O(N, - (M - T - D + N; 4+ N; - logN;)). Considering
that O(M - T - D) is much greater than the other two items,
so the final complexity of the algorithm is O(N, - M - T - D).
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Algorithm 1 The Pseudo Code for IPSO
1: Determine A;, and A,,; according to Equation 7
2: for each overloaded spot i, i € A,y do
3: Determine the number of people (O;) need to be
scheduled
for each under-loaded spot j, j € A;,, do
5: Calculate matching degree F;; between operating
spot i and j according to Equation 13
end for
Sort the under-loaded spots by the matching degree
in descending order
: Select the top k spots as dispatching targets D;
9: Use PSO to find a scheduling solution for overloaded
spot i with Equation 9 as objective function
10: Delete the spots from A;, that are not under-loaded
after dispatch
11: end for
12: Combine the dispatching results and get the final dispatch
plan

IV. SIMULATION AND EVALUATION

A. SIMULATION ENVIRONMENT AND
EXPERIMENTAL DATA

Simulation environment is described in Table 1.

TABLE 1. Simulation environment.

CPU 3.2 GHz Intel Core i5
Memory 8 GB 1333MHz DDR3
System CentOS 7
Language Python 3.6
Libraries Numpy/Pandas/Matplotlib

As the tourist diversion scheme is still in the research stage,
it cannot be implemented until it is mature, so at present, only
simulation data can be used to prove the effectiveness of the
scheme. Table 2 shows the initial tourist flow data of 20 spots,
which is randomly generated.

In this paper, it is assumed that the actual geographical
distribution among different places is ignored and the dis-
tances among spots are Euclidean Distance. Based on this
assumption, simulation has been made to prove the feasibility
of the scheduling model.

In this section, our scheme is compared with two other
schemes, a scheme that based on gravity model [10] and a
scheme in which distance is the only consideration.

The parameters in Table 2 are described as following:

o ID is the identifier of a spot.

o Coordinates is the coordinates of a region, which is

used to characterize the actual geographical location.

« Capacity is the maximum of tourist number a spot can

serve.

o NV; is the current amount of tourists.

o r; is the tourist load rate of the tourism operation spot i

before shunting.

125300

o E; is the tourism experience value of a operation spot,
which is calculated through formula 2, where L; = 100.

« 0 is the standard deviation of tourism experience value
in formula 2.

o P; is the operation profit which is calculated through
formula 4, where k, = 1, T = 0.8.

o ki is the parameter in formula 4.

o wis the tourist load rate when spot tourism profit reaches
the maximum in formula 4.

B. EXPERIMENTAL RESULTS AND ANALYSIS
As described in Table 2, The spots are divided into 3 subsets
according to its current load rate.

« The spots that have low tourist load rate. These spots
can receive the diverted tourists, and the maximum of
their load rate will be limited to .

« The spots that have over load rate. In our scheme, they
have to dispatch out some tourists.

« The spots with proper load rate. These spots do not
need to make any scheduling.

In Table 2, the overloaded spots include spot 2 (load rate is
1.460), spot 8 (load rate is 1.166), spot 9 (load rate is 3.250),
spot 12(load rate is 1.586), spot 13 (load rate is 2.210), spot
14 (load rate is 1.814), spot 15 (load rate is 1.119).

The concrete scheduling scheme is generated via the itera-
tive calculation of the overall load rate and tourist experience
under the constraints discussed above. The simulation results
of the scheduling scheme are shown in Table 3.

The simulation results of shortest distance scheme and
gravity model are shown in Table 4 and Table 5.

In the simulation, the filtering of the tourist dispatch desti-
nation is completed by gravitational model. The parameter
k was set to 5. The reason that the number of dispatch
destinations in the dispatch result less than 5 are:

o The number of under-loaded spots is less than 5.
o After the optimization process of PSO, the number of
people dispatched to certain spots is 0.

Simulation results show that the above scheduling strate-
gies can play the role of scheduling diversion at macro
level and make the load of tourists balanced in the whole
leisure travel area. However, due to their different scheduling
optimization goals, the final scheduling solutions are obvi-
ously different. The shortest-distance-based traffic schedul-
ing scheme and the gravity-model-based scheme only take
the traffic load balancing in the area as the optimization
goal. While the scheme proposed in this paper not only
consider the balanced distribution of the load of tourists in the
whole region, but also consider the overall business interests
of the region and the maximization of the overall travel
experience.

Taking the high-load spot 13 as an example, it can be
seen from the tables that the shortest distance-based traffic
dispatch solution selects only the point 0 and 3 for diversion
so as to pursue a balanced distribution of all the tourists in
the area, gravity model based dispatch solution select only the
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TABLE 2. Simulation data.

ID7 Coordinates  Capacity N; T o k1 w Experience E; Profit P;
0 (103, 125) 1149 718  0.625 1.38968 15.08 1.16 28.480772 9.425
1 (2, 14) 1309 179 0.137 399531 1592 097 9.848722 2.18104
2 (68, 39) 1228 1793 1.46  1.58048 15.64 0.95 23.134162 12.65176
3 (27, 13) 1472 207  0.141 1.31643 1525 091 26.735968 2.15025
4 (25, 83) 1270 221 0.174 6.24293 15.66 1.14 6.358259 2.72484
5 (116, 59) 1344 999  0.743  8.23017 1543 1.18 4.847199 11.46449
6 (116, 78) 757 365 0482  6.4261 1581  1.00 6.200559 7.62042
7 (58, 76) 1153 674  0.585 5.84932 15.04 097 6.815713 8.7984
8 (125, 98) 637 743 1.166  9.70776 1533 091 4.1066 12.36836
9 (18, 132) 567 1843 325  7.80521 15.83 1.04 4.865531 12.87911
10 (82,52) 914 861 0942 6.08896 1581 1.11 6.550114 12.78078
11 (52, 60) 535 424 0.793 853404 15.1 1.18 4.674716 11.9743
12 (129, 58) 1083 1718 1.586  7.88851 1592 097 5.032216 12.893
13 (65, 146) 711 1571 221  7.81728 1579 1.11 5.020996 12.90203
14 (67, 46) 1052 1908 1.814 5.67604 15.82 1.07 6.917267 12.89502
15 (109, 133) 706 790  1.119 2.68584 1594 1.06 14.749141 12.98311
16 (19, 112) 1479 232 0.157 745051 1549 093 5.33466 2.43193
17 (62, 44) 1311 423 0.323  9.75031 15.4 1.15 4.086692 4.9742
18 (57,76) 1413 892  0.631 1.38922 15.71 1.01 28.505291 9.91301
19 (84, 49) 1410 1399 0992 732397 1554 1.18 5.445206 12.60763
TABLE 3. Simulation results of passenger flow scheduling (« = 0.8, 8 =1,6 = 0.3).
Dispatch Dispatch Number Distance Load rate Load rate Experience Experience
out spot in spot (j) of dis- from 7 to before after before after
(@) patched J (di5) dispatching dispatching dispatching dispatching
people (r%) (G (E{%) (E}M)
(N3, 5)
4 361 49.497 6.380724
9 3 694 119.34 3.25 0.822 4.86553081 29.9974
1 322 119.08 9.931025
0 191 43.417 28.70689
13 18 145 70456 2.21 0.819 5.0209963 28.68461
4 406 74.626 6.390266
7 247 70.349 6.820319
14 18 ” 31.623 1.814 1.399 6.91726671 28.71625
3 357 51.856 30.27842
12 6 241 23.854 1.586 0.82 5.03221607 6.208155
16 589 122.54 5.351669
18 297 38.601 28.42094
2 3 178 48.549 1.46 1.013 23.1341622 30.03523
0 74 92.849 28.68419
8 17 125 82.976 1.166 0.821 4.10659975 4.088447
1 95 148.946 9.948106
15 0 41 10.000 1.119 1.061 14.749141 28.64601

nearest operation spot 3 for diversion. The scheduling scheme

proposed in this paper chooses more operation spots 16, 0,
1, 18, and 7 for diversion considering not only the balanced
distribution of the load, but also the overall regional business
interests, as well as the overall tourist experience.

In order to evaluate the performance of our tourists

scheduling scheme, the following indices are defined or used
for a comprehensive comparison and analysis.

VOLUME 8, 2020

« 2. The optimization objective of the scheduling, which

is the product of the regional overall tourism experience
value and the tourism profit value, is calculated accord-
ing to formula 9.
o E,. The total tourist experience of the region, which is
calculated according to formula 5.

o P! The total tourism profit of the region, which is

calculated according to formula 6.
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TABLE 4. Simulation results of passenger flow scheduling based on shortest distance.

Dispatch Dispatch Number Distance Load rate Load rate Experience Experience
out spot in spot (j) of dis- from ¢ to before after before after
(@) patched J (dij) dispatching dispatching dispatching dispatching
people (r%) (G (E{%) (E}M)
(N, 5)
9 16 1247 20.025 325 | 4.865531 5.33466
4 29 49.497 6.358259
13 0 431 43.417 291 | 5.020996 28.48077
7 429 70.349 6.815713
14 17 856 5.385 1.814 1 6.917267 4.086692
12 5 345 13.038 1586 | 5.032216 4.847199
6 290 23.854 6.200559
17 32 7.81 4.090919
19 11 18.868 5.445206
) 10 53 19.105 1.46 | 2313416 6.550114
11 111 26.401 4.674716
7 50 38.328 6.817863
18 308 38.601 28.50529
3 6 102 21.932 1166 | 41066 6.207838
18 4 71.47 28.69914
15 18 84 77.156 1.119 1 14.74914 28.69689

TABLE 5. Simulation results of passenger flow scheduling based on gravity model.

Dispatch Dispatch Number Distance Load rate Load rate Experience Experience
out spot in spot (j) of dis- from 7 to before after before after
(@) patched J (dij) dispatching dispatching dispatching dispatching
people r®) ri) (E{%) (ESY)
(N, 5)
9 16 124 20.025 305 1 4865531 5.33466
4 29 49.497 6.358259
13 3 860 138.322 221 1 5.020996 26.73597
14 17 856 5.385 1.814 1 6.917267 4.086692
12 6 392 23.854 1586 | 5.032216 6.200559
5 243 13.038 4.847199
2 18 521 38.601 146 | 2313416 28.50529
3 44 48.549 30.25572
8 0 106 34.828 1.166 1 4.1066 28.48077
15 0 84 10.000 1.119 1 14.74914 28.65634

« Eyx. The general tourist experience, which is calculated spot i to j.

as following:
o C= Y djNy 1)
Es =) EiN (20) iJEA. 7]
e C
= Cr = c (22)
. . 0

o S2. The differences of the number of tourists of all spots,
which is the variance of the tourist load rate after dis- To avoid the influence of randomness, 5 simulations were
patching. The smaller the value, the better the scheduling carried out for each group of parameters, and the average
scheme. value was used as the final result.

e Nj,j. The number of people scheduled from point i to j. The comparison result of different scheme is shown
> jea Nij 1s the total number of people been scheduled in Table 6 which indicates that our scheduling can achieve
in the area. obviously the better z, the optimization objective, than other

o C,. The relative cost during the dispatch. Dispatching schemes. This means that our scheduling can greatly improve
cost C is defined as below. Cy is the cost of gravity- the regional tourist experience and tourism profit, whether
model-based scheme as the standard value which is from the scenario that a large number of visitors are scheduled

1 as shown in Table 6. dj; below is the distance from (IPSO, ¢ = 0.4, 8 = 1.0,6 = 0.3) or the one that relative
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TABLE 6. Comparison of different scheduling schemes.

Parameters

Algorithm a B 0 z P, E, Ex S2 Zi,jeA Nij  Cr
Original data - 99.57506 14.528 6.854009 5918.681 0.596351 - -
Gravity model - 123.514 17.50262 7.056887 6934.182 0.064772 4382 1
Shortest distance - 118.5835 17.09547 6.936544 6273.763 0.089691 4382 0.372
0.8 1.0 0.1 125.075 17.75596 7.047925 7405.177 0.047533 4073.8 1.784
IPSO 0.8 1.0 03 126.494 17.72677 7.042909 7499.752 0.050746 4094.4 1.803
swarmsize — 100 0.8 1.0 05 126.843 18.00240 7.046019 7441.301 0.035812 4375.8 1.900
Q=05 0.8 1.0 0.7 126.261 17.94517 7.045895 7426.740 0.044920 4298.8 1.881
PHIP : 0.5 0.8 1.0 09 127.685 17.92691 7.042768 7487.732 0.046461 4325.8 1.804
PHIG =05 06 1.0 03 127.135 17.87797 7.043099 7491.841 0.042589 4299.6 1.780
_ 0.4 1.0 03 127.291 18.02819 7.049724 7420.026 0.043239 4375.6 1.912
MAXITER = 100
0.8 1.2 03 124.588 17.65361 7.051712 7374.746 0.056926 3813.0 1.639
0.8 14 03 122.385 17.38210 7.043376 7235918 0.083391 3268.6 1.423
TABLE 7. Comparison of different parameters with high load rate.
Di Original data a=0.6,5=1.0 a=0.8,=1.0 a=038,=1.2
i _ e Bl chd oot Bl b et T s
0 0.519 284643  7.8222 0.772  28.6691 11.6406 0.947  28.2573 12.2012  1.092  27.5890  12.3200
1 1.277  9.8816 12.8930 0.615 9.9830 9.7869 0982 9.9604 12.8930 1.047 99477  12.8930
2 0.396 24.7785  6.1898 0.670  25.2372 104723 0.961 24.8999 12.6518  1.133 243110  12.6518
3 0.872  30.0464 12.2698 0.909 29.9265 12.3032  0.884  30.0090 12.2810 0.949 29.7682  12.3044
4 0.720  6.3903 11.2703 0.781 6.3898  12.2373 0.904 6.3869 12.6272 0.924 6.3862 12.6453
5 0.312 4.8419 4.8219 0.785 4.8471 12.1109 0.990 4.8443 12.5182 1.158  4.8398 12.6500
6 1.518 6.1581 12.8303 0.939 6.2038 12.7785 0.989  6.2019 12.8213 1.199  6.1895 12.8303
7 0.860 6.8178 12.0906 0.628 6.8198 9.4473 0974  6.8129 12.1890 1.036  6.8091 12.1890
8 1.520  4.0949 12.3684 0.898  4.1087 12.3572 0.870  4.1089 12.3316 1.132  4.1054 12.3684
9 1.741 5.0660 12.8791 0.625 5.1110 9.8878 0986 5.1078 12.8347 1.018 5.1070  12.8610
10 0.686 6.5519 10.8456 0.811 6.5508 12.6585 0919 6.5476  12.7607 1.117  6.5366  12.9180
11 1.359  4.6608 12.4021 0.782  4.6745 11.8111 0.805 4.6744  12.0847 1.041 4.6710 12.2960
12 0.236  5.0485 3.7632 0902 5.0556 12.8329 0.934 5.0550 12.8617 0941 5.0549 12.8682
13 1.930 5.0406 12.9020 0986  5.0999 12.8029 0.942  5.1009 12.7646 1.012  5.0993 12.8244
14 0986 7.0196 12.8264 0.670  7.0284  10.5965 0.887  7.0247  12.7397 1.009 7.0182 12.8454
15 0.190 14.5880  3.0254 0.845 14.8320 12.7957  0.817 14.8396 12.7684 1.109 14.6824 12.9831
16 0.865 5.3533 12.4548 0.941 5.3518 12.5142 0.893  5.3528 12.4805 0.848  5.3535 12.4391
17 0.617 4.0914 9.5031 0.973  4.0900 12.4791 0.935  4.0904 12.4464 1.052  4.0889 12.5446
18 1.389  25.3979 12.7586  0.797 28.6464  12.5279 0.922  28.3543 12.6827 1.110  27.4917 12.7586
19 0.721 5.4471 11.2086 0.775  5.4468 12.0399 0.804  5.4465 12.4365 0.835  5.4462 12.4661
little amount people are diverted (IPSO, « = 0.8,8 = In Table 2, the actual number of tourists in each spot is

1.0,6 =0.1).

Our program always manages to keep or enhance the
visitor travel experience after the diverting. So we can see
from Table 6 that although the number of people dispatched
in our plan and the total tourist experience of the region
are all comparable to the other two plans, but our scheme
can also get remarkably better performance in Ex than the
scheme based on gravity model and distance-based schedul-
ing scheme, which means more tourists can benefit from our
scheme. It shows that our scheme can also get obviously
better performance in S 2 which means better visitor load
distribution balance.
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generated randomly, which represents a situation in a real
scene. Beyond that, the tourist number will increase sharply
when some popular holidays come. Therefore, a simulation
with high load rate is taken to verify the performance of
the optimization model and the result is shown in Table 7.
It can be concluded that after the dispatching, the load rate
of each spot is located in proper section. Comparing with
the original data, the overall tourism experience and operator
profit increase to some extent, which proves the performance
of the model in such an extreme scene. In addition, the setting
of the parameters counts a lot. If the value of « is too small,
the number of under-loaded spots will decrease. It is possible
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FIGURE 3. Simulation results based on different initial conditions.

to select some spots far from the current spot so as to increase
the dispatching cost. Similarly, if § > 1, some spots still
maintain over-loaded after dispatching. Therefore, when the
load rate of the whole region is high, the value of 8 is set to
1 as far as possible. As for «, its value can be increased to
provide more under-loaded spots nearby.

However, IPSO has a higher value of C, than the other two
schemes. It can reach 1.912 when the parameters «, §, and
6 are set to 0.4, 1.0 and 0.3. It means tourists needs to be
scheduled to farther places. This is the cost of the dispatching.
But it can be accepted in most circumstance because in rural
leisure tourism, people usually prefer to driver a little further
to get better experience.

The simulations above are all based on the same original
data. To verify the generality of the scheme, we carried out a
comparative experiment based on different initial conditions
that having different tourist load rate in the region. The related
results are shown in Figure 3.

From the results, we can see that in different visitor loads,
our algorithm can get better and more stable scheduling
result. The value of the objective function z is higher than the
other two scheduling schemes. It shows that our algorithm
can ensure that tourists will get better experience both in
E, and Ey after the scheduling, comparing with the other
two algorithms. The Figure 3(d) also shows our algorithm
can make tourists distribution more balanced than the oth-
ers in low tourist load rate. However it is difficult for our
algorithm to get further improvement in higher load rate
situation, because the space that can be used to accommodate
the diverted visitors become much smaller.

V. CONCLUSION
In this paper, a new traffic scheduling scheme for the
problem of unbalanced distribution of tourists is presented.

125304

The purpose of our plan is to improve the overall business
interests and tourism experience of the region on the basis of
protecting the interests of tourists and operators. Simulation
results show that our approach outperforms the shortest-
distance-based traffic scheduling scheme and the gravity-
model-based scheme in most common situations. For each
over-loaded spot, the scheme can find the most suitable
under-loaded spots to divert tourists and minimize the influ-
ence on tourist experience and operator profit. During the
process of dispatching, although some tourists need to spend a
little time driving to other under-loaded spots, they can avoid
crowded conditions, even can get higher quality of service,
which is meaningful for all stakeholders. In addition, it is
proved that the scheme is also efficient under an extreme con-
dition where most spots are over-loaded. However, the model
also has some limitations that the parameters are difficult to
be set properly. For example, if the value of « is too small,
the under-loaded spots might be located in long-distance
places, which takes more dispatching cost.

For the future work, it is considerable to follow the
two aspects. First of all, the model proposed in this paper
took an overall objective based on tourist experience and
operator profit. The future research could consider multi-
objective model which will regard tourist experience and
operator profit as two individual objectives. It will be more
convenient and flexible to calculate the optimal value of
each objective. Secondly, our model provided suitable dis-
patching scheme for administrators and tourists with a
low demand on real-time performance. For further study,
the parallel computing will be a possible direction to
improve real-time performance. The number of dispatch-
ing tourists of over-loaded and under-loaded spots will
be calculated together to accelerate the entire dispatching
process.
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