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ABSTRACT The aim of 5G wireless networks to provide Mbps and Gbps data rates to end users is
expected to be fulfilled by the advanced technologies such as multi-input multi-output (MIMO), carrier
aggregation (CA), inter/intra-cell communication, and adaptive modulation and coding techniques, which
would be all realized in the Long Term Evolution-Advanced (LTE-A) heterogeneous network constituted
by macrocells (MCs) and small cells (SCs) adopting these 5G advanced techniques. Given the potential of
significantly increasing the network performance, the resource allocation (RA) problem involved becomes
harder than ever especially when MIMO and CA are included in the RA problem involving multiple types
of resources to be concurrently determined for the global optimization. Facing this challenge, we develop
a framework to jointly optimize energy efficiency (EE), spectrum efficiency (SE), and queue length for
downlink transmissions with an overall and comprehensive consideration of dynamically allocating resource
blocks (RBs), component carriers (CCs), modulation and coding schemes (MCSs), and deciding user
association (UA) with a power control (PC) mechanism on discrete power levels (PLs) in the heterogeneous
LTE-basedMIMOwireless networks. Specially, for the complex joint RA, UA, and PC problem, we conduct
a mixed integer programming model to accommodate the stochastic optimization problem involved with
the drift-plus-penalty (DPP) approach for Lyapunov opportunistic optimization. In particular, although it
involves a nondeterministic polynomial time (NP) problem, we can still show a reduced problem to be
solved easily through linear relaxation when its coefficient matrix is totally unimodular (TUM), and to be
solved efficiently as well even when the TUM property is not guaranteed. Based on the reduction, we further
develop a distributed or semi-distributed algorithm operated on two levels to approach the optimal results
with lower complexity if the UA requirement can be relaxed. Finally, apart from exhibiting its performance
on the weighting parameters, the numerical experiments also show our approach to make a good tradeoff
among SE, EE, and queue length, and outperform the greedy-based state-of-the-art algorithms.

INDEX TERMS LTE-A heterogeneous wireless networks, MIMO, carrier aggregation, multi-resource
allocation, user association, power control.

I. INTRODUCTION
The key techniques for 5G such as multiple-input multiple-
output (MIMO), carrier aggregation (CA), inter/intra-cell
communication, and adaptive modulation and coding tech-
niques would be all realized in the Long Term Evolution-
Advanced (LTE-A) heterogeneous network constituted by
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macro-cells (MCs) and small-cells (SCs) to fulfill the rapid
demand of smart phones and mobile internet services. Given
that, the long term evolution-advanced (LTE-A) standard
continuously evolves to support the very high data rates
required by the international mobile telecommunications-
advanced (IMT-Advanced) systems [1]. In future 5G net-
works, dense deployment of small cells (SCs) such as
picocells and femtocells has been envisioned to improve
the overall network capacity, spectrum efficiency (SE), and
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energy efficiency (EE). In particular, the 5G cellular wireless
systems with a multi-tier architecture consisting of MCs and
different types of SCs are expected to serve user equip-
ments (UEs) with varying quality-of-service (QoS) require-
ments. Resource allocation (RA) in such 5G systems will be
extremely complex due to many different types of resources
to be concurrently allocated in the irregular and pseudo-
random network topology, and the existing management
approaches may not be sufficient.

Specifically, for a LTE-A heterogeneous network wherein
serval SCs are deployed within a MC service area, how
to allocate the radio resources involved while deciding the
UE-to-cell association (UA) and the power levels for all
transmitters would be a major issue especially when MC
and its SCs share the radio resources from the same ser-
vice provider. To resolve this issue, SCs can use their own
frequency bands different from those of MC [2]. However,
the easy solution of dedicated radio usage would sacrifice
SE. Alternatively, SCs can totally or partially use the same
frequency bands of MC as noted in [3] adopting a co-channel
deployment or a partial co-channel deployment to manage
the radio resources. However, it could cause cross-tier inter-
ference, and hence certain partial co-channel deployments
were considered in [4], [5] to alleviate this difficulty. Apart
from the above, the heterogeneous network is also compli-
cated by the 5G advanced techniques such as carrier aggrega-
tion (CA) and multi-input multi-output (MIMO) which are
anticipated as the vital breakthrough that is necessary for
5G [6]. Specifically, they will continue to serve as the key
techniques of 5G because CA can aggregate several compo-
nent carriers (CCs) to support high data rate transmission,
and MIMO can enhance signal to noise ratio (SNR) through
transmit diversity (TD) or increase data rate through spatial
multiplexing (SM).

In the heterogeneous and complex environment, RAwould
be tremendously difficult due to many unique constraints
from these techniques to be satisfied simultaneously and the
existing RA schemes can hardly be sufficient. For instance,
the previous works [7], [8] addressed the problem of down-
link radio resource allocation with CA by employing load
balancing mechanisms that assign CCs to UEs first and
then schedule RBs of CCs for them at every transmission
time interval (TTI) to optimize the radio resource usage.
Given their contributions, these works, however, consider
only heuristic or greedy approaches, which provide no per-
formance guarantees and no benefits brought by MIMO.
In addition, even though more sophisticated greedy algo-
rithms such as those in [9], [10] have been proposed to
guarantee performance lower bounds, they still involve no
MIMO. In fact, most of the RA researches for CA-enabled
LTE networks [11]–[13] assumed CC selection, resource
block (RB) allocation, and MCS assignment as completely
separate problems, which may lead to the degradation of net-
work performance. By jointly considering these problems in
a framework, the related works [9], [10], [14]–[16] exhibited
more complete solutions among the others. However, they

still lack to consider MIMO [9], [10], [14], [15], heteroge-
neous network with multiple cells [9], [15], [16], or power
control [9], [10], [15], [16].

Taking these issues into account, in this work we study
a joint RA, UA, and PC problem for downlink transmis-
sions in 5G LTE-A heterogeneous wireless networks. In par-
ticular, we consider discrete power control to reflect the
fact that 3GPP LTE cellular networks only support discrete
power levels (PLs) in the downlink via a user-specific data-
to-pilot-power offset parameter [1], which would be still
useful in the 5G framework. Further, if the discrete power
allocation (PC) and the UE-to-cell association (UA) are
referred to as a kind of resource allocation, respectively,
then RA, UA, and PC in this work could be collectively
denoted by UE/RB/CC/MCS/cell/PL allocation problem or
multi-resource allocation (MRA) problem for short. Our
objective is then to jointly optimize EE, SE and queue length
in the long-term, under the constraints resulted from theMRA
problem, in addition to those from the LTE. For example,
we would take into account the constraint that a UE can be
only exclusively served by a single cell, and the constraint
that the same RB can not be allocated to two different cells
if there is interference between the two cells, which would
avoid complicating the power control.

Given the various constraints to be addressed concurrently,
the joint stochastic optimization problem is expressed here
as a mixed integer programming problem via a transfor-
mation, whose solution typically requires prohibitive time
complexity. As far as we know, the long-term metrics of
EE, SE, and queue length have not been jointly investigated
in the LTE-based heterogeneous wireless networks subject
to all the specific constraints including those just being
exemplified. In particular, although SE, EE, or their relation-
ship had been investigated in, e.g., [17]–[19], these related
works typically presume statical channel state and infinite
queue length. Based on these assumptions, the channel state
information (CSI) and the queue state information (QSI)
could be ignored, and the arrival traffic may not be trans-
mitted in time and the corresponding queue length would
accumulate unboundedly when the data is given in burst
without the awareness of CSI. Unlike the above, in this
work we try to maximize EE and SE while guaranteeing the
network stability in the heterogeneous networks, wherein RA,
UA and discrete PC are jointly considered to be a complex
MRA problem. Apart from the MRA that is a combinatorial
problem to be solved, our work involves also the stochastic
nature caused by varying channel and traffic state. For the
combined difficulty, in the high layer, we formulate the joint
optimization problem as a stochastic optimization problem
and resolve it through the drift plus penalty (DPP) approach
in the framework of Lyapunov optimization to accommodate
time-varying channel conditions and traffic arrivals without
prior knowledge of them. In the lower layer, we show that
even it is NP in general, the MRA problem can still be easily
solved through linear relaxation when its coefficient matrix
is totally unimodular (TUM). Then, inspired by the TUM
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property, we reduce this problem and develop a distributed or
semi-distributed algorithm operated on two levels to approach
the optimal result with lower computational complexity if the
UA requirement can be relaxed. Finally, to know its perfor-
mance, we conduct numerical experiments, showing that our
approach can make a good tradeoff among EE, SE and queue
length, and outperform the greedy-based start-of-the-art algo-
rithms, while showing the performance metrics varied by the
weighting parameters. Specially, it is also exhibited that the
two-level MRA algorithm proposed would obtain a solution
allowing the system to achieve more than half of the optimal
spectrum efficiency (SE) and throughput, and approach the
optimal energy efficiency (EE) while maintaining a larger
queue length, which represents a significant performance
gain against the computation cost decreased from nondeter-
ministic polynomial (NP) to polynomial (P). As a summary,
the characteristics of this work can be outlined as follows:
• Unlike existing studies on LTE-based wireless networks
where the performance metrics such as SE, EE, and
delay, the system techniques such as MIMO, CA, and
PC, or both, are partially considered, in this work a
synthetic framework is proposed to jointly consider EE,
SE, and queue length in the 5G LTE-based heteroge-
neous networks equipped with MIMO, CA, and PC.
To also account for the time-varying channel and traffic,
the joint design is formulated as a stochastic multi-
objective optimization (MOO) problem subject to the
constraints on the network stability, the constraints from
the multi-cell environment, and the unique RA rules for
LTE.

• A Lyapunov DPP technique is adopted to transform
the MOO problem to a mixed integer linear program-
ming problem. Further, a linear programming model
is found to easily solve the high-dimensional MRA
problem involved when the coefficient matrix is totally
unimodular (TUM) in a reduced model. Based on this
model, a distributed two-level MRA algorithm is pro-
posed for more computationally efficient solutions to
the NP allocation problem, in addition to the joint opti-
mization algorithm developed for the whole stochastic
MOO problem.

• Apart from the Lyapunov approach to guarantee the
network stability even without prior knowledge of the
system state on channel and traffic, this work is also
aided by theweighted summethod that introduces differ-
ent weights to the objective function to make an optimal
tradeoff among SE, EE, and queue length.

The remainder of this paper is organized as follows. First,
in Sec. II we introduce the system model and formulate our
problem in terms of transmission modes for LTE, energy
efficiencymodel, and scheduling constraints. Then, in Sec. III
we adopt the weighted sum method to formulate the MOO
problem, and use the Lyapunov DPP approach to optimize
EE, SE, and queue length subject to the various constraints
involved. Following that, a distributed two-level RA algo-
rithm is proposed in Sec. IV to resolve the NP problem if the

UA requirement can be relaxed. The performance analysis
and numerical experiments are given in Secs. V and VI,
respectively, and finally conclusions are drawn in Sec. VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this work, we consider 5G LTE-based networks with a
multi-tier andmulti-cell heterogeneous architecture, as exem-
plified in Fig. 1, which consists of |S| base stations (BSs)
(including a micro base station (MBS) and |S|−1 small base
stations (SBSs)), and |U | UEs located in their service areas.
A number of |C| CCs obtained with CA are deployed in the
environment, and without loss of generality, each CC has the
same number of |B| RBs to be allocated. Then, |L|MCSs are
dedicated to each RB for transmission. Similarly, |P| discrete
power levels (PLs) denoted by P = {σ1, σ2, . . . , σ|P|}×Pmax
are designed for each BS, where 0 < σ1 < σ2, . . . , <

σ|P| = 1 and Pmax denotes the maximum power.

FIGURE 1. An example of the heterogeneous network.

A. TRANSMISSION MODE
As specified in LTE [20], there are different multi-input
multi-output transmission modes (TMs) to be used in the
system, which can be distinguished in terms of the antenna
mapping and the type of CSI feedback adopted. In this work,
we consider transmit diversity (TD) and spatial multiplex-
ing (SM) as the two major types of TMs usually thought for
the future 5G network development. As specified, TD sends
the same data via different antennas, and each antenna
stream uses different coding, which could enhance the signal-
to-noise ratio (SNR) and reduce the block error rate (BLER).
Specially, in the case of two antennas, TD could be done
based on space-frequency block coding (SFBC), and in the
case of four antenna ports, TD can be realized through a com-
bination of SFBC and frequency-switched transmit diversity
(FSTD) [21], [22]. Different from the above, SM supports
spatial multiplexing of two to four layers that are multiplexed
to two to four antennas respectively. In the specification,
the open loop spatial multiplexing does not rely on pre-coding
matrix indicator (PMI) being reported by UE and selects
PMI based on a predefined method, while the closed loop
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spatial multiplexing selects PMI based on the CSI feedback of
UE [21]. In this work, the latter is assumed for theMRA prob-
lem to be introduced. Specifically, with TD, RBs are allocated
from a single transport block (TB) per carrier component
(CC). In contrast, with SM, RBs are allocated from two TBs
per CC. Taking both into account, we define a transmission
mode table (Table 1) for our MRA problem wherein each
index specifies a specific TM mode used and the modula-
tion and coding scheme (MCS) per TB adopted. As shown
therein, 29 MCSs defined in the 3GPP LTE standard [23] are
considered in this work.

TABLE 1. The index table for transmission modes.

For such a stochastic transmission system wherein traf-
fic arrivals and channel conditions are both time-varying,
we propose an online algorithm that can dynamically resolve
the stochastic optimization problem with the Lyapunov DPP
approach to achieve the system stability while maximizing
the network utilization. To this end, we first introduce the
channel and power model, the spectrum and energy effi-
ciency, and the queueing dynamic. Then, we formulate the
constraints specific to the system, and present a complete
programming model for the optimization problem addressing
the complex RA, UA, and PC issues to be involved.

B. CHANNEL AND POWER MODEL
For high-rate networks with reduced degree of mobility, it is
vital for a resource allocation (RA) algorithm is conducted to
accommodate a slow fading network wherein channel con-
ditions would remain unchanged during an allocation period
(Ch. 6 of [24]). Accordingly, for downlink transmissions in
the networks, the signal to interference and noise ratio (SINR)
from BS s to UE u using RB b of CC c at PL p in time t can
be represented by

SNRc,b,ps,u (t)
4
=
Pps,u(t)|hc,bs,u(t)|

2d−ρs,u (t)

N c,b
s,u (t)+ I

c,b
s,u (t)

(1)

where the channel gain from BS s to UE u using RB b of CC
c is denoted by hc,bs,u , the distance from s to u by ds,u, and the
path-loss factor by ρ. In addition, when s transmits to u on
RB b of CC c, the noise on u is denoted by N c,b

s,u . The channel
is supposed to be Rayleigh fading and its gain to be exponen-
tially distributed, and further, an empirical downlink SINR to
channel quality indicator (CQI) mapping for LTE is adopted

to estimate the CQIs returned to BSs [25]. If MBS is in charge
of RA and these CQIs are collected, MBS would decide each
MCS index `(u, c, b, s, p) for the downlink transmission from
BS s to UE u using RB b of CC c at PL p. Then, it can transmit
the decision to all SBSs it associates. Here, based on the 3GPP
specification [26], the data rate would be represented by rl
through a mapping table for each RB based on MCS l in
the index `. Let �u,c,b,s,p be the index of the highest-rate
MCS on u, c, b, s, and p. As �u,c,b,s,p is the highest MCS
to be obtained, the achieved transmission rate vu,c,b,`,s,p on
` would be

∑
l rl where rl is the data rate corresponding to

MCS l in TB i ∈ {1, 2} in the entry of index `, and it would
be 0 if l is not available in the TM, or exceeds �u,c,b,s,p
which would result in unacceptable error rate. Providing a
RA matrix X which accommodates RA, UA, and PC through
a high-dimensional (6-dimensional) representation instead of
defining different variables for different metrics brought by
RA, UA, and PC, respectively, to unnecessarily complicate
its representation, the total data rate can be simply obtained
by Rtot (t) =

∑
∀u,c,b,`,s,p

(
xu,c,b,`,s,p(t) × vu,c,b,`,s,p(t)

)
.

Similarly, the total power consumption can be obtained by
Ptot (t) =

∑
∀u,c,b,`,s,p

(
xu,c,b,`,s,p(P

p
s,u(t) + Pcs,u)

)
, where

Pps,u(t) denotes the transmit power from s to u at power level
p, and Pcs,u denotes the constant circuit power for s and u.

C. SPECTRUM/ENERGY EFFICIENCY AND QUEUEING
DYNAMIC
Unlike the previous works focusing on SE, EE, or both at
the moment of observation [27], [28], in the stochastic sys-
tem with channel conditions and traffic arrivals to be time-
varying, we pay our attention to the limits of the time-average
expectations of these metrics. Specifically, the long-term
time-averaged expected transmission data rate and energy
consumption can be represented by

Rtot = lim
t→∞

1
t

t−1∑
τ=0

E{Rtot (τ )} (2)

Ptot = lim
t→∞

1
t

t−1∑
τ=0

E{Ptot (τ )} (3)

Here, the data rate Rtot is normalized by the channel
bandwidth. The spectrum efficiency (SE) is defined as the
long-term average data rate on all the transmissions in (2),
i.e.,

ηSE = lim
t→∞

1
t

t−1∑
τ=0

E{Rtot (τ )} = Rtot (4)

Following that, the energy efficiency is defined as the ratio of
the long-term aggregated data rate (i.e., ηSE ) to the long-term
total energy consumption. That is,

ηEE =
limt→∞

1
t

∑t−1
τ=0 E{Rtot (τ )}

limt→∞
1
t

∑t−1
τ=0 E{Ptot (τ )}

=
ηSE∑

∀u,c,b,`,s,p
(
xu,c,b,`,s,p(P

p
s,u + Pcs,u)

) (5)
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where P
p
s,u = limt→∞

1
t

∑t−1
τ=0 P

p
s,u(t) denotes the average

transmit power from s to u at power level p.
Apart from SE and EE, the queueing delay (or queue

length) is also jointly optimized in this work. For this, the sys-
tem is considered to be time-slotted, and the downlink traffics
to UEs at time t are aggregately represented by A(t)

4
=

(A1(t), . . . ,A|U |(t)), which are independently and identically

distributed over t with E{A(t)} = λ
4
= (λ1, . . . , λ|U |).

In addition, to ensure the system stability, it is assumed
that Au(t) will not exceed a peak or maximum value Amaxu ,
i.e., 0 ≤ Au(t) ≤ Amaxu , ∀u ∈ U and ∀t ≥ 0. The assumption
is based on the fact that the statistics of A(t) are usually
unknown and the capacity region involved is hard to estimate
in a practical system. In the real situation, a flow control is
generally required to limit the admitted traffic Ru(t) to be
lower than the arrival Au(t) for the system stability. Thus,
an admission control algorithm is required here to determine
Ru(t) fromAu(t), and a BS is conducted tomake RA decisions
to provide link rates µu(t) to serve the admitted traffics. With
the admitted traffic Ru(t) and the service rate µu(t), the data
queue dynamic for UE u ∈ U can then be formulated as

Qu(t + 1) = max{Qu(t)− µu(t), 0} + Ru(t) (6)

In the above, the queue is considered stable if it has a
bounded time-averaged backlog and finite average queueing
delay [29]. According to Little’s law [30], the average delay
would be proportional to the average queue length with a
specific arrival rate. Thus, it could use the queue length and
further the queue stability to describe the delay. Accordingly,
the strong stability for the average data queue length on u
would be considered for the system, defined as

Q
4
= lim

T→∞

1
T

T−1∑
t=0

∑
∀u∈U

E{Qu(t)} <∞ (7)

D. MULTIPLE RESOURCE ALLOCATION AND ITS
CONSTRAINTS
For the MRA problem, we use u ∈ U to denote a UE, c ∈ C
a CC, b ∈ B an RB, ` ∈ L an MCS index, s ∈ S a cell, and
p ∈ P a PL, as already appeared in the index of x.
At each TTI t , the system aims to allocate UEs/CCs/
RBs/MCSs/cells/PLs simultaneously or decide xu,c,b,`,s,p(t)
to maximize the network utility. Because the channel condi-
tion is time-varying, each UE is conducted to use the refer-
ence signals from MBS or SBSs for estimating the channel
condition, and accordingly, to transmit its CQIs to MBS or
SBSs. Then, a CQI for RB can be mapped to the highest-rate
MCS for a UE using the RB [26], and hence the channel
conditions on all UEs and RBs can be perceived by the system
through the CQIs reported [9]. All cells can eventually share
the channel state information (CSI) for the optimization with
each other via a backhual network.

Unlike the previous works [9], [10], [15] paying no atten-
tion to MIMO, our system accommodates 2 different MIMO
transmission modes (TMs), i.e., transmit diversity (TD) and

spatial multiplexing (SM). As noted before, the TM indices
for both selected MIMO TM per CC and MCS per TB are
summarized in Table 1, wherein the first 29 MCS indices are
given for TD since only a single TB per CC is considered
while 29× 29 = 841 indices starting at 30 are given for SM
as two TBs per CC will be used in this TM.

Providing that, for scheduling the multiple resources in
the network with CA and MIMO, we have the following
constraints which ignore the time index t for brevity. First,
as the basic unit for transmission, RB can at most be assigned
to a single UE u on a certain MCS `, and represented by∑
∀p∈P

xu,c,b,`,s,p ≤ y1u,c,`,s,

∀u ∈ U , ∀c ∈ C, ∀b ∈ B, ∀` ∈ L, ∀s ∈ S (8)

In the left hand side of (8), the summation on all p,
i.e.,

∑
∀p∈P , is used to ensure that each RB can be transmitted

at only one power level p. In the right hand side, y1u,c,`,s is
defined to be an auxiliary binary variable representing a CC
allocation, where y1u,c,`,s = 1 denotes that CC c is assigned
to UE u in cell s with TM index `. Complying with LTE, all
RBs allocated to UE u in CC c should have identical `, i.e.,∑

∀`∈L
y1u,c,`,s ≤ 1, ∀u ∈ U , ∀c ∈ C, ∀s ∈ S (9)

Next, a monopoly principle specific to the multi-cell environ-
ment is considered that a UE u can only be served by a single
cell s, and given that, it can not be served by the other cells
s′ ∈ S\s. To realize the above in a linear form, we have the
following two constraints. The first is∑
∀`∈L,∀p∈P

xu,c,b,`,s,p ≤ y2u,s, ∀u ∈ U , ∀c ∈ C,

∀b ∈ B, ∀s ∈ S (10)

where
∑
∀`∈L on x is used to denote that each RB can be

transmitted with only one TM index in addition to the fact
that only one power level is adopted for the transmission as
already noted previously by

∑
∀p∈P in (8). In addition, y2u,s is

an auxiliary binary variable used to represent an RB allocated
to UE u in cell s if its value is 1, and 0 otherwise. Given that,
the monopoly principle that a UE u can only be served by a
single cell s, is further enforced by the second constraint:∑

∀s∈S
y2u,s ≤ 1, ∀u ∈ U (11)

In addition, to reduce the inter-cell interference, another
monopoly principle about the multi-cell would be also spec-
ified that if an RB b of CC c is already allocated to a cell s,
it cannot be assigned to its neighboring cells s′ ∈ Ns which
would cause significant interferences to s. That is, a specific
RB can be either allocated in a cell s or its neighboring
cells s′, but not both. This involves a logical either-or con-
straint which can be transformed to regular linear constraints
with the aid of an auxiliary binary variable, y3c,b,s, to denote
whether RB b of CC c can be allocated to cell s or not.
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Accordingly, there are two conditions to be specified. The
first is for RB b of CC c allocated to cell s, denoted by∑
∀u∈U ,∀`∈L,∀p∈P

xu,c,b,`,s,p ≤ 1− y3c,b,s,

∀c ∈ C, ∀b ∈ B, ∀s ∈ S (12)

The second is for RB b of CC c allocated to its neighboring
cells s′ ∈ Ns, which can be similarly denoted by∑
∀u∈U ,∀`∈L,∀p∈P

xu,c,b,`,s′,p ≤ y
3
c,b,s,

∀c ∈ C, ∀b ∈ B, ∀s ∈ S, ∀s′ ∈ Ns (13)

Further, it is worth noting that in a LTE-based network,
the number of CC allocated to cell s would be limited to a
certain number, say fs. For example, a UE of LTE 8/9 can
only use 1 CC while a LTE UE is allowed to use 2 CCs.
Specifically, the cardinality constraint can be realized by the
following inequalities. The first is∑
∀u∈U ,∀b∈B,∀`∈L,∀p∈P

xu,c,b,`,s,p ≤ y4c,s, ∀c ∈ C, ∀s ∈ S

(14)

where y4c,s is a binary variable whose value 1 denotes CC c
being allocated to cell s, and 0 otherwise. With the aid of
auxiliary variable y4c,s, the cardinality of fs is further enforced
by the second constraint:∑

∀c∈C
y4c,s ≤ fs, ∀s ∈ S (15)

Apart from cell in the above, UE could have its own cardi-
nality constraint on CC as well; that is, each UE u can be
allocated at most du CCs for its transmission. Similarly, it can
be realized by linear inequalities, and the first is∑
∀b∈B,∀`∈L,∀s∈S,∀p∈P

xu,c,b,`,s,p ≤ y5u,c, ∀u ∈ U , ∀c ∈ C

(16)

where y5u,c is a binary variable whose value 1 denotes CC c
being allocated to UE u, and 0 otherwise. Then, with y5u,c,
the cardinality constraint on du can be finalized by∑

∀c∈C
y5u,c ≤ du, ∀u ∈ U (17)

E. SERVICE RATE, THROUGHPUT, AND POWER
CONSUMPTION
Providing the MRA satisfying the above constraints, the ser-
vice rate µu (adopted in (6)) can be obtained by

µu(t) =
∑

∀c,b,`,s,p

xu,c,b,`,s,p(t)× vu,c,b,`,s,p(t), ∀u ∈ U (18)

Given that, the total data rate introduced previously can be
also represented byRtot (t) =

∑
u µu(t). Clearly, there are two

parameters directly impacting the data queue dynamic (6).
The first is the data rate µu(t) just given. The second

is the throughput ru(t)
4
=

1
t

∑t−1
τ=0 E{Ru(τ )} that denotes

the admitted and transmitted data rate for u. In this work,
the time-average throughput ru in the long term serves as one
of the performance metrics, which should be higher than the
requirement Rrequ from u. Taking these into account, we have

ru
4
= lim

t→∞

1
t

t−1∑
τ=0

E{Ru(τ )} ≥ Rrequ (19)

Clearly, in the long term, the time-average throughput ru will
not exceed the time-average arrival rate λu, i.e.,

0 ≤ ru ≤ λu (20)

Similarly, in the short term, the throughput of u at time t ,
i.e., Ru(t), can not exceed its arrival rate Au(t), i.e.,

0 ≤ Ru(t) ≤ Au(t) ≤ Amaxu (21)

In parallel with the above, the power consumption of u at
time t can be obtained by Ps(t) =

∑
u P

p
s,u(t)+Pcs,u(t), and in

the long term, it can not exceed the maximum Pmaxs as well.
That is,

ps
4
= lim

t→∞

1
t
Ps(t) ≤ Pmax

s (22)

F. PROBLEM FORMULATION
As mentioned before, our work is to maximize SE and EE
simultaneously constrained by the queue stability, involving
the three key performance metrics (SE, EE, and queue length)
to be optimized at the same time. Here, as the average queue
length links the stability and the delay, the queueing delay can
be managed by investigating the queue stability. Apart from
the queue length or delay to be enforced by using constraints,
SE and EE representing our research targets would serve as
the objectives in the stochastic MOO problem. However, due
to the different units between SE and EE, it is more con-
veniently considered to maximize the normalized data rate
Rtot/Rmax and to minimize the normalized total power con-
sumption

∑
∀u,c,b,`,s,p

(
xu,c,b,`,s,p(P

p
s,u + P

c
s,u)
)
/Pmax , where

Rmax denotes the maximum data rate and Pmax the maximum
power in the system. Now, given the throughput constraints
in (19)-(21), the power consumption constraint in (22), and
the scheduling constraints in (8)-(17) in addition to the queue
stability constraint, we can formulate the MOO problem with
the following programming model:

Maximize
Rtot
Rmax

and

Maximize−

∑
∀u,c,b,`,s,p xu,c,b,`,s,p(P

p
s,u + P

c
s,u)

Pmax
subject to C1: Q <∞

C2: ru ≥ Rreq
u ∀u

C3: ps ≤ Pmax
s ∀s

C4: 0 ≤ ru ≤ λu, ∀u

C5: 0 ≤ Ru(t) ≤ Au(t) ≤ Amaxu , ∀u,∀t

C6: (8)− (17), ∀t (23)
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As shown readily, it is a highly challenging stochastic
optimization problem involving a large amount of stochastic
information on channel conditions and traffic arrivals to be
considered, and a high-dimensional variable representation
on 6 different types of resources to be determined. This
requires an online control and scheduling algorithm to obtain
the solutions within a reasonable time limit. In addition, for
the MOO problem, it is essential to jointly optimize the
multiple types of resources cooperatively representing RA,
UA, and PC, which is always a complicated mixed integer
programming problem that is NP in general. In addition,
BS also needs to concurrently maximize the data rate and
minimize the power consumption while keeping the average
queue length to be stable, which requires BS to maintain a
good balance among SE, EE, and queue length.

III. STOCHASTIC OPTIMIZATION BASED ON LYAPUNOV
DPP TECHNIQUE
To resolve the MOO in (23), we adopt the Lyapunov DPP
technique to design an online algorithm with admission con-
trol to resolve the complex joint RA, UA, and PC problem.
Specifically, it involves the following key components.

A. VIRTUAL QUEUES
In (23), C2 represents the stability constraint to ensure
the arrivals to be eventually served by the system.
To address this constraint, we define virtual queues H(t) ={
H1(t),H2(t), . . . ,H|U |(t)

}
[29], and after the initial state

Hu(0) = 0, conduct the queue to be updated by

Hu(t + 1) = max{Hu(t)− Ru(t), 0} +Rreq
u (24)

In addition, we transform the average power constraint C3 to a
queue stability problem by introducing virtual queues Z(t) =
{Z1(t),Z2(t), . . . ,Zs(t)}, and after the virtual Zs initialized
with 0, update it by

Zs(t + 1) = max
{
Zs(t)− Pmax

s , 0
}
+ Ps(t) (25)

By the transformation, if the virtual power queues Zs(t),
∀s ∈ S are all stable, the power constraint C3 will be
satisfied [29].

B. LYAPUNOV DPP AND PROBLEM TRANSFORMATION
Next, according to the Lyapunov DPP, we can define 2(t)

4
=

{Q(t),H (t),Z (t)} as a concatenated vector of all Qu(t), Hu(t)
and Zs(t) queues, and then introduce a quadratic Lyapunov
function to represent a scalar metric of queue congestion as
follows:

L(2(t))
4
=

1
2

∑
u∈U

Qu(t)2+
1
2

∑
u∈U

Hu(t)2+
1
2

∑
s∈S

Zs(t)2 (26)

It can be seen that a small value of the Lyapunov function
would represent small lengths of the data and virtual queues.
Thus, by pushing the Lyapunov function towards a lower
congestion state, the queue stability can be ensured. To be
clearer, a one-slot conditional Lyapunov drift is defined by

1(2(t))
4
= E[L(2(t + 1))− L(2(t))|2(t)] (27)

Clearly, the drift function denotes the expected change of
the Lyapunov function between two contiguous slots condi-
tioned on the current state 2(t). By using the drift 1(2(t)),
we can force the Lyapunov function in a lower conges-
tion state, and make queues keep stable to control the
queueing delay [29]. Given that, the queue stability con-
straint C1, the average throughput constraint C2, and the
average power constraint C3 can be transformed to mini-
mize the drift. Specifically, to accommodate the different
units used in the metrics, we let R̃tot (t) = Rtot (t)/Rmax and

P̃tot (t) =
∑
∀u,c,b,`,s,p xu,c,b,`,s,p(P

p
s,u(t)+Pcs,u)

Pmax
. Similarly, we divide

Ru(t), Rreq
u , ru, λu, Au(t), Amaxu , and Q by Rmax as R̃u(t),

R̃req
u , r̃u, λ̃u, Ãu(t), Ãmaxu and Q̃, respectively, and divide

Ps(t) and Pmax
s by Pmax as P̃s(t) and P̃max

s as well, for the
normalization. Providing the above, the MOO problem is
transformed via the weighted sum method to

Minimize V̂1(2(t))−WE{̃Rtot (t)|2(t)}
+(1−W )E{̃Ptot (t)|2(t)}

subject to C4: 0 ≤ r̃u ≤ λ̃u, ∀u
C5: 0 ≤ R̃u(t) ≤ Ãu(t) ≤ Ãmaxu , ∀u, ∀t
C6: (8)− (17), ∀t (28)

where V̂ denotes the weight on the queue length, and W the
weight on the system performances including the spectrum
efficiency and the power consumption which cooperatively
exhibit the energy efficiency. To further accommodate the
quantitative metric difference between the queue length and
the system performances, we let V̂/ω = V with ω to absorb
the difference. Here, the weighted sum method is adopted as
it is extensively used for MOO problems to provide not only
multiple solution points by varying the weights consistently,
but also a single solution point reflecting the preferences
incorporated in the selection of a single set of weights [31].

However, due to the drift term involved, directly solv-
ing (28) is still challenging even given the weighted sum
method. For this, our DPP-based dynamic control algorithm
is conducted to make decisions on allocating UEs/RBs/
CCs/MCSs/cells/PLs to minimize an upper bound of the
following drift-plus-penalty at each time slot t . Specifically,
such an upper bound on the the Lyapunov drift 1(2̃(t))
resulted from the normalized metrics Q̃u(t), H̃u(t), and Z̃s(t)
can be shown by the following theorem.
Theorem 1: For all t and 2(t), the drift-plus-penalty with

any joint RA, UA, and PC strategy satisfies the inequality:

1(2̃(t)) ≤ 0 +
∑
u

Q̃u(t)E
{
R̃u(t)|2̃(t)

}
−

∑
u

Q̃u(t)E
{
µ̃u(t))|2̃(t)

}
−

∑
u

H̃u(t)E
{
R̃u(t)|2̃(t)

}
+

∑
s

Z̃s(t)E
{
P̃s(t)|2̃(t)

}
+

∑
u

R̃req
u H̃u(t)−

∑
u

P̃req
u Z̃u(t) (29)
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where 0 =
∑

u (̃A
max
u )2 +

∑
s(P̃max

s )2 + 1
2

∑
u(µ̃

max
u )2 +

1
2

∑
(̃R

max
req
u )2, and in this expression, µ̃maxu is the maximum of

µ̃u that can be obtained on u, Ãmaxu is Amaxu /Rmax , and R̃
max
req
u is

the maximum request allowed for u.
Proof: See Appendix A.

Given that, we canmultiply both sides of (29) by V and add
−WE{̃Rtot (t)|2(t)}+ (1−W )E{̃Ptot (t)|2(t)} at both sides to
obtain an upper bound of the objective in (28) as

V1(2̃(t))−WE
{
R̃tot (t)|2(t)

}
+ (1−W )E

{
P̃tot (t)|2(t)

}
≤ V0 + V

∑
u

Q̃u(t)E
{
R̃u(t)|2̃(t)

}
−V

∑
u

Q̃u(t)E
{
µ̃u(t)|2̃(t)

}
−V

∑
u

H̃u(t)E
{
R̃u(t)|2̃(t)

}
+V

∑
s

Z̃s(t)E
{
P̃s(t)|2̃(t)

}
+V

∑
u

R̃req
u H̃u(t)−V

∑
s

P̃req
s Z̃s(t)

−WE
{
R̃tot (t)|2(t)

}
+ (1−W )E

{
P̃tot (t)|2(t)

}
(30)

wherein Q̃u(t) denotes the data queue in (6) obtained with the
normalized R̃u(t) and µ̃u(t), H̃u(t) obtained with R̃u(t) and
R̃req
u , and Z̃s(t) obtained with P̃s(t) and P̃max

s . For a more
concise representation, the constants (V , 0, R̃req

u , P̃reqs (t), and
Pcs,u) and the involved terms can be neglected. In addition, R̃tot
and P̃tot can be shown in terms of µ̃u(t) and P̃s(t), respec-
tively, while ignoring any constant to be involved. Further,
as R̃u(t) ≤ Ãu(t) with the assumption of Ãu(t) ≤ Ãmaxu (t)

taken at every slot t in C5 implies r̃u
4
=

1
t

∑t−1
τ=0 E{̃Ru(τ )} ≤

λ̃u
4
=

1
t

∑t−1
τ=0 E{̃Au(τ )} in C4, the latter (C4) as well as

the other expectation operations could be removed when
considering the optimization at each slot t by employing
the concept of opportunistically minimizing the expectation.
Finally, by optimizing the right hand side of (30), we can
transform problem (28) to

Maximize
∑

u
V (Q̃u(t)− H̃u(t))̃Ru(t)

+

∑
u
(VQ̃u(t)+W )µ̃u(t)

−

∑
s
(V Z̃s(t)+ (1−W ))̃Ps(t)

subject to 0 ≤ R̃u(t) ≤ Ãu(t), ∀u, ∀t

scheduling constraints (8)− (17), ∀t (31)

C. PROBLEM DECOMPOSITION
In the sequel, we aim to find a solution to the MOO problem
by decoupling the programming model (31) to an admission
control sub-problem and a transmission control sub-problem,
which can be solved independently and simultaneously.

1) TRAFFIC ADMISSION CONTROL
From the objective of (31), we can see that the first term,∑

u V (Q̃u(t) − H̃u(t))̃Ru(t), can be used to admit the traffic

out of Ãu(t) arrivals to transmit subject to the constraints
involving R̃u(t). Specifically, by decoupling this term from
the joint problem, a traffic admission control sub-problem can
be formulated as

Minimize
Ru(t)

∑
u∈U

(
VQ̃u(t)−VH̃u(t)

)̃
Ru(t)

subject to 0 ≤ R̃u(t) ≤ Ãu(t), ∀u, ∀t (32)

For the linear problem obtained, we have a simple threshold-
based admission control strategy as

R̃u(t) =

{
Ãu(t), H̃u(t) > Q̃u(t)
0, otherwise

(33)

This strategy clearly shows that the newly arrivals can be
admitted to transmit only when the the virtual queue length
H̃u(t) is larger than the actual data queue length Q̃u(t).
Otherwise, the arrivals will not be admitted so that the data
queue can be stable. In fact, the threshold-based admission
control would reduce the value of H̃u(t) to push r̃u(t) towards
R̃u(t), thus stabilizing all the data queues involved.

2) MULTI-RESOURCE ALLOCATIONS FOR TRANSMISSION
CONTROL
As the MRA problem for the transmission control is a core
of the framework, our main challenge is to concurrently
determine UEs, CCs, RBs, MCSs, cells, and PLs at each time
slot t to make an optimal tradeoff decision among SE, EE, and
queue length. To this end, the MRA problem is formulated
by decoupling the joint optimization problem to concurrently
consider the terms with respect to the transmission data rate
µ̃u(t) and the energy consumption P̃s(t) in the right hand
side of (30) subject to the scheduling constraints. Specifi-
cally, with their signs reversed for changing minimization to
maximization, the transmission control sub-problem can be
represented by

Maxmize
xu,c,b,`,s,p(t)

∑
u
(VQ̃u(t)+W )µ̃u(t)

−

∑
s
(V Z̃s(t)+ (1−W ))̃Ps(t)

subject to scheduling constraints (8)− (17), ∀t (34)

As shown in Sec. II-D, the variables xu,c,b,`,s,p in the schedul-
ing constraints are binary, and thus the transmission con-
trol sub-problem involving only these variables is a binary
integer programming (BIP) problem that is NP hard in
general. Moreover, as x is not only binary but also high-
dimensional, finding an optimal solution to this problem
would be time-consuming even given optimization tools.
To address this challenge, in addition to solving the BIP with
an IP solver, we develop also a distributed or semi-distributed
algorithm wherein the network nodes, or SBSs, can perform
the allocation independently or by the minimal assistance
of the central controller, or MBS, to be a more efficient
solution for practical implementations because of reduced
computational complexity.
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IV. DISTRIBUTED TWO-LEVEL MULTI-RESOURCE
ALLOCATION ALGORITHM
To realize a distributed or semi-distributed scheduling algo-
rithm to resolve the MRA problem in (34) for the downlink
transmissions, we first reduce the programming model to a
single-cell problem with only one power level. Inspired by
the reduced model, we then propose a distributed two-level
MRA algorithm for more computationally efficient solutions.

A. REDUCED MODEL
As the first step for the reduced model, the binary variable is
reduced to xu,c,b,` that involves no cells s and PLs p. Given
that, the constraints to avoid allocating RBs to neighboring
cells are no longer necessary, and can be reduced to∑

u

∑
`

xu,c,b,` ≤ 1, ∀c ∈ C, b ∈ B (35)

In addition, the CC cardinality constraint on each cell is also
unnecessary and can be ignored while the constraint on the
number of CC that each UE can have could be rewritten as∑

c

∑
`

yu,c,` ≤ du, ∀u ∈ U (36)

where yu,c,` is a new auxiliary variable adopted here, and
its value 1 represents that CC c is assigned to UE u with
TM index `, and 0 otherwise. Further, because this scenario
considers only one power level in a single cell, constraints (8)
and (9) can be simplified as{

xu,c,`,b ≤ yu,c,`, ∀c ∈ C, b ∈ B, u ∈ U , ` ∈ L∑
` yu,c,` ≤ 1, ∀c ∈ C, u ∈ U

(37)

Now, with a linear object function subject to the con-
straints (35), (36), and (37), we can reduce our model to a
single-cell problem without multiple discrete power levels
as that in [9] using certain equivalent max operations in
their constraints. There is no doubt that an IP problem like
the above is NP-hard in general. However, for the reduced
problem, the coefficient matrix of constraints could be a
totally unimodular (TUM) matrix whose determinate for
every square submatrix equals -1, 0, or 1. To show this

possiblity, we first let u
4
= |U |, c 4= |C|, ` 4= |L|, and b 4= |B|

to more concisely represent these quantities, and then order
the variables x and y to construct the following vectors

x = [x1, . . . , xm, . . . , xuc`b]T (38)

y = [y1, . . . , yn, . . . , yuc`]
T (39)

where xm = xu,c,`,b and yn = yu,c,` with their indices
calculated by

m = (u− 1)c`b+ (c− 1)`b+ (`− 1)b+ b

n = (u− 1)c`+ (c− 1)`+ `

These variable vectors are then concatenated and transposed
to a new vector, say v, as follows:

v = [xT yT ]T (40)

whose length is uc`b+ uc`. Given that, the constraints (35),
(36), and (37) can be more concisely represented. Specifi-
cally, let blkd(K , k) be a block diagonal matrix wherein a
block K is repeated k times in the diagonal line and the
other elements are all 0. Given that, the identify matrix 1b is
denoted by blkd(1,b), which leads to β1 = [1b · · · 1b]b×b`.
Then, (35) can be reformulated by

A1x � 1 (41)

where A1 = [blkd(β1, c) · · · blkd(β1, c)]cb×cbu`. Further, let
d = [d1 · · · du] and A2 = blkd(1Tc`,u). Then, (36) can be
rewritten as

A2y � d (42)

Similarly, by defining β3 = −blkd(1b,uc`) and then A3 =
[1uc`b, β3]uc`b×(uc`b+uc`) in addition to A4 = blkd(1T` ,uc),
we can transform (37) to{

A3v � 0
A4y � 1

(43)

Finally, by integrating all the constraints into a canonical
form, we have

Av � c (44)

where

A =
[
AT1 0 1uc`b 0
0 AT2 βT3 AT4

]T
(45)

and

c = [1T`b dT 0Tuc`b 1Tuc ]
T (46)

As noted before, the coefficient matrix of constraints, A,
could be totally unimodular (TUM). As a simple example,
given u = 2, c = 1, ` = 2 and b = 1, the coefficient matrix A
will be

1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


(47)

Thanks to the small size, its TUM can be verified by exhaus-
tively checking every square submatrix of A to have deter-
minant equal to ±1 or 0. As Schrijver revealed [32], if A
of an integer linear problem (ILP) is TUM, the ILP can be
relaxed to a linear programming problem (LP) by removing
the integrality constraints. Then, the LP relaxation of an
ILP could be solved through any standard LP technique.
This is further verified in our numerical experiments for
the two-level approach wherein the optimal results for the
single-cell problem could be obtained by using a LP solver in
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usual cases. However, the TUM property is not guaranteed.
For example, given u = 2, c = 1, ` = 2 and b = 2,
the coefficient matrix A becomes

1 0 1 0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 − 1 0 0 0
0 1 0 0 0 0 0 0 − 1 0 0 0
0 0 1 0 0 0 0 0 0 − 1 0 0
0 0 0 1 0 0 0 0 0 − 1 0 0
0 0 0 0 1 0 0 0 0 0 − 1 0
0 0 0 0 0 1 0 0 0 0 − 1 0
0 0 0 0 0 0 1 0 0 0 0 − 1
0 0 0 0 0 0 0 1 0 0 0 − 1
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1



(48)

In the above, the determinant of its square submatrix could
be 2 in addition to ±1, or 0. Although it is not always TUM,
the non-TUM integer programming problems only contribute
a small part of the experiments in Sec. VI, and have a coef-
ficient matrix like (48) being 2-regular1 which could be still
solved efficiently as that shown in [34].

B. DISTRIBUTED TWO-LEVEL MRA ALGORITHM
Inspired by the reduced problem or model, we next propose
a distributed or semi-distributed two-level MRA algorithm to
resolve the MRA problem for more computationally efficient
solutions. Specifically, in view of the start-of-the-art RA algo-
rithms such as those implemented in [9] adopting a two-step
assignment in a single cell, we would first allocate CCs in
an optimal sense, and then allocate the other resources in the
multi-cell scenario.

1) THE FIRST LEVEL RA (ON CC)
For the CC allocation, we sort c CCs in decreasing order
on the data rate perceived by cell s according to the 3GPP
table-based representation shown in Sec. II-B, for each
s ∈ S, resulting in a sorted list Cs = {Cs1 , . . . ,Csc}. Then,
we allocate these CCs by solving the following CC allocation
optimization problem:

Maximize
∑
∀s∈S

c∑
i=1

WiCsix
s
si

subject to D1:
∑

c∈C
xsc ≥ 1 ∀s

D2:
∑

c∈C
xsc ≤ fs ∀s

D3:
∑

s′∈Ns∪s
xs
′

c ≤ 1 ∀s, ∀c (49)

wherein Wi =
1
i represents the weight of CC Csi that is the

ith element in the list Cs in decreasing order. This weight

1As shown by Lemma 2.7 in [33], if for each non-singular square subma-
trix R of a matrix A, det(R) ∈ {±1,±k}, then A is k-regular. In this example,
k is 2, and according to Theorem 3.8 in [33], 2-regular matrices are the
rational matrices that ensure half-integral polyhedra.

implies that the higher SNR or data rate the cell s perceived,
the higher preference in the objective function. In addition,
xsc is a binary variable deciding whether cell s is allocated
with CC c or not, and xssi denotes the variable corresponding to
CC Csi . Given that, D1 denotes the constraint to enforce each
cell to be allocated at least one CC for its UEs. D2 ensures that
each cell can have at most fs CCs. D3 represents a constraint
that as long as a CC is allocated to cell s, it can not be assigned
to its neighboring cells s′ ∈ Ns to prevent excess interference.

Although the above CC allocation seems to be less com-
plex and may be solved more easily when compared with the
joint optimization problem in question, it is still an IP problem
that is NP in general if no special structures are imposed.
To resolve this problem, we conduct a greedy algorithm per-
formed by MBS to reduce the complexity of solving the RA
problem on CC while giving suboptimal solutions to be satis-
factory enough. To this end, the data rates of cell s on different
CCs c based on the CQIs reported by UEs are recorded in a
tableL ofMBS, in addition to a tableC initialized to be empty
to record the allocation results. As shown inAlgorithm 1, for
each CC c ∈ C, it finds the cell s∗ that has the highest data
rate obtainable, and if this rate is non-negative and the number
of CC allocated to this cell does not exceed its limit fs∗ , then
it permits the allocation and records this with C(c, s∗) = 1.
While allocating, it forbids the neighboring cells ŝ ∈ N (s∗)
to allocate the same CC by setting L(c, ŝ) = −1 so that
these neighboring cells have no v∗ greater than 0 to enter the
procedure starting at line 6.

Algorithm 1 The Greedy CC Allocation Algorithm
1: (Given) L(c, s),∀c ∈ C, and ∀s ∈ S;
2: (Initialization) C(c, s) = 0,∀c ∈ C, and ∀s ∈ S;
3: for c ∈ C do
4: v∗ = maxs L(c, s) and s∗ = argmaxs L(c, s)
5: while v∗ > 0 do
6: if

∑
c C(c, s

∗) < fs∗ then
7: C(c, s∗) = 1
8: L(c, ŝ) = −1,∀ŝ ∈ N (s∗)
9: else
10: L(c, s∗) = −1
11: end if
12: end while
13: end for

2) THE SECOND LEVEL RA (ON THE OTHER RESOURCES)
As shown in the literature such as [9], given a number of
CCs, the research works usually focus on the RA problem to
allocate the radio resources (RBs and CCs) to UEs in a single
cell. However, without the viewpoint of multiple cells, they
inevitably ignore the problem that if multiple neighboring
cells are allocated with the same CCs, they could use the same
RBs of these CCs to cause inter-cell interference. In this work,
the first level RA is already conducted to avoid the inter-cell
interferences by allocating different CCs to the neighboring
cells. Then, supposing that UE associating with the nearest
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BS is given in advance at a larger time scale, our program-
ming model could be degraded for the second level RA to
consider only one cell but still take into account multiple PLs
and the other resources. This is different from the reduced
model in Sec. IV-A or that shown in [9] addressing no power
control. Specifically, without the notion of s, the scheduling
constraints (8) and (9) could be reformulated for the second
level RA as∑
∀p∈P

x ′u,c,b,`,p ≤ y1
′

u,c,`, ∀u ∈ U , ∀c ∈ C, ∀b ∈ B, ∀` ∈ L

(50)∑
∀`∈L

y1
′

u,c,` ≤ 1, ∀u ∈ U , ∀c ∈ C (51)

where x ′u,c,b,`,p corresponds to the binary variable xu,c,b,`,s,p,

and y1
′

u,c,` to y
1
u,c,`,s. In addition, similar to that for the reduced

model in Sec. IV-A, the constraints specific to the multi-cell
environment should be also deleted or modified to fit the
single-cell scenario, as summarized as follows:
• First, the monopoly constraint on UE to be served by a
single cell, represented by (10) and (11), are no longer
needed and thus deleted here.

• Second, the monopoly constraint to enforce that a spe-
cific RB is either allocated in a cell s or its neighboring
cells s′ ∈ Ns would be modified to consider only the
allocation of an RB of a CC for a given cell. Thus,
the constraints (12) and (13) can be reduced to∑
∀u∈U ,∀`∈L,∀p∈P

x ′u,c,b,`,p ≤ 1, ∀c ∈ C, ∀b ∈ B (52)

• Third, the cardinality constraint fs on s, i.e., the number
of CC allocated to cell s not to exceed the limit fs, has
been done by the first level allocation on CC, and can be
eliminated. That is, (14) and (15) can be removed here.

• Fourth, the cardinality constraint that the number of CC
allocated to UE u can not exceed du is still valid despite
the number of cells. However, in the case of given s,
the notion on cells should be eliminated, and thus (16)
and (17) would be changed to∑
∀`∈L,∀p∈P

x ′u,c,b,`,p ≤ y5
′

u,c, ∀c ∈ C, ∀b ∈ B, ∀u ∈ U

(53)∑
∀c∈C

y5
′

u,c ≤ du, ∀u ∈ U (54)

Here, we would rather use y5
′

u,c to correspond to y5u,c
given in Sec. II-D to preserve a similar representa-
tion than adopt a new auxiliary variable like yu,c,l in
Sec. IV-A which is tailored for the notational simplicity
in the reduced model considering no power control.

3) HARDNESS RESULT
As shown readily in the above, providing that CCs are given
by MBS, the binary variables x ′ in the second level RA as
well as r̃u and R̃u shown in Sec. III-C can be independently
decided by SBSs for their UEs at each time slot t , leading

to the Lyapunov DPP-based dynamic control in Sec. III-B
realized in a distributive manner. In addition, as indicated in
Sec. IV-A, the coefficient matrix involved could be TUM or
possibly 2-regular, leading to the corresponding RA problem
solved efficiently as shown in our numerical experiments.
The above is worth noting because an MRA problem is

NP-hard in general if no special structures are imposed. In our
case, even the reduced model considered in Sec. IV-A is
NP-hard, similar to those already proved in the literature.
For example, by mapped to the well-known 3-SAT problem,
a radio resource scheduling problem in [16] was proved to
be NP-hard subject to the constraints: (i) each RB can be
assigned up to one UE, and (ii) only one MIMO mode can be
selected for all assigned RBs for a UE. Here, when considered
with only one CC and two MCSs, the reduced model can
be regarded as a special case of the scheduling problem,
in which the MCS selection is equivalent to the MIMO mode
selection in the scheduling problem, and hence it could be
reduced to a NP-hard problem through the same way of
3-SAT mapping. In contrast to the NP-hardness, if the coeffi-
cient matrix in this model is TUM, the LP resulted would be
of order (u + cb) × (uc`b + uc`) maximizing the objective
over all v in R(uc`b+uc`) such that Av � c. According to [35],
the worst-case complexity of solving the LP problem would
be O(

√
u+ cb+ uc`b+ uc` ln 1

ε
), where ε determines the

accuracy of the solutions obtained with the barrier method
in [35]. When u approaches infinity, it could be simply
represented by O(u1/2), showing a significant improvement
on the time complexity for the NP-hard problem. On the
other hand, the state-of-the-art greedy algorithm in [9] that
is based on submodular set functions has the time complexity
O(u2 ducb`), or simply O(u2) if u approaches infinity, which
is clearly higher than the former.

Finally, the overall optimization algorithm for solving the
stochastic MOO problem (28) is given in Algorthm 2 as a
summary for easy reference.

V. PERFORMANCE BOUNDS
Thanks to the Lyapunov DPP approach, the data and virtual
queues involvedwill bemean rate stable, which can be proved
as that shown in [29]. In addition to the stability on queues,
the weighted sum function defined by

f (x(t)) = W
Rtot (t)
Rmax

− (1−W )
Ptot (t)
Pmax

= WR̃tot (t)− (1−W )̃Ptot (t) (55)

is also considered that can capture the performance of EE and
SE for a specific range of W [36]. Specifically, with x(t) to
denote xu,c,b,`,s,p(t) for the simplicity on its representation,
we have the following theorem regarding this metric:
Theorem 2: If problem (28) is feasible, problem (31) is

optimally solved, and E{L(2̃(0)} < ∞, then the weighted
sum function f (x(t)) has the performance bounds as

fopt − 0V < lim
T→∞

1
T

T−1∑
τ=0

E{f (x(τ ))} < fopt (56)
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Algorithm 2 The Optimization Algorithm for Solving the
Stochastic MOO Problem (28)

1: (Given) weighting parameters V , W , T , R̃requ ,∀u,
P̃reqs ,∀s;

2: (Initialization) t = 0, Q̃u(t) = 0, H̃u(t) = 0,∀u, and
Z̃s(t) = 0,∀s;

3: while t < T do
4: Observe Q̃u(t), H̃u(t), Z̃s(t), R̃u(t), µ̃u(t), and P̃s(t);
5: (Traffic admission Control) Determine admitted traffic

R̃u(t),∀u with (33);
6: (MRA for transmission control) Determine xu,c,b,`,s,p

by solving (34) with either an IP solver or the dis-
tributed two-level MRA algorithm proposed;

7: t = t + 1;
8: (Queue Updates) Update the data queues Q̃u(t),∀u,

through (6) and virtual queues H̃u(t),∀u, through (24),
and Z̃s(t),∀s, through (25), with the normalized met-
rics involved;

9: end while

where fopt denotes the maximum value of E{f (x(t))} obtained
by any solution satisfying C1-C6 in this problem.

Proof: Please refer to Appendix B.

VI. NUMERICAL EXPERIMENTS
To numerically evaluate our proposal, we conduct a simu-
lation topology consisting of 1 micro base station (MBS)
and 3 small base stations (SBSs). As shown in Fig. 2, each
base station (MBS or SBS) initially serves 3 user equip-
ments (UEs) that are located within its transmission range.
The other parameters for the experiments are summarized
in Fig. 3 for reference. As shown therein, the numbers of
resources for the multiple resource allocation (MRA) prob-
lem involved would be significantly high enough for an opti-
mization tool to obtain a solution to the high-dimensional
combinatorial problem within a reasonable period of time.
Given that, each UE is simulated to estimate the channel
quality on each resource block (RB) of each component
carrier (CC) by using reference signals transmitted from base

FIGURE 2. Simulation topology of the multi-tier multi-cell network.

FIGURE 3. Parameter setting in the experiments, where Pt = 29 dbm.

stations (BSs), measuring their signal to noise ratios (SNRs)
and using a mapping table such as that in [37] to obtain the
channel quality indicators (CQIs) to be reported to BSs. Here,
SNR of each RB perceived by UE is assumed to be a random
variable uniformly distributed in the range between −5 and
22.38 according to the SNR-CQI index mapping in [37],
so that the allocation results would involve all possible map-
ping values in the simulation. Given that, the CQIs collected,
the MCS index mapping, and TBS index tables specified
in [38] are resulted and used by BS to estimate the achievable
data rates for UEs required by the different algorithms for
comparison in the experiments.

A. PERFORMANCE TRADEOFF ON SE, EE, AND QUEUE
LENGTH
In the first set of experiments, we focus on the critical
factors to impact the optimization algorithm. To show this,
the time-average spectrum efficiency ηSE , energy efficiency
ηEE , data queue length Q, and throughput γ are represented
by the mean values of the corresponding metrics in their
normal scales obtained from all UEs involved.

As shown in Figs. 4(a) and 4(b), the performance trends
of spectrum efficiency (SE) and energy efficiency (EE)
are shown by varying the system parameters (or weights),
W andV , givenω = 0.002. Specifically, in Fig. 4(a), it can be
seen that, given the same V , the SE value would continuously
increase withW due to the higher transmitted power adopted
to enhance the transmission rate. Unlike the performance
trend on SE, it can be seen in Fig. 4(b) that EE would rise up
first and then turn to decrease as W increases. The trend on
EE can be so observed because whenW is high, the transmit
power consumption is negligible as compared to the circuit
power consumption, and in this condition SE would grow
faster than the total power consumption dominated by the cir-
cuit. Thus, as shown in these sub-figures (Figs. 4(a) and 4(b)),
whenW is low, EE increases as SE increases. However, after
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FIGURE 4. Impacts of varying V and W upon (a) spectral efficiency ηSE , (b) energy efficiency ηEE , (c) data queue length Q, and
(d) throughput γ .

the peak value of EE, the transmit power would dominate the
total power consumption instead of the circuit power, and the
increment of the total power consumption would be larger
than that of SE afterward, leading to EE gradually decreased
as shown in this sub-figure (Fig. 4(b)).

From another viewpoint, it can be also seen that, for a
given W , increasing V could decrease SE or EE at a milder
degree than the above. Specifically, when W < 0.9 along
with the other parameters in the experiments, EE is exhibited
to decrease as V increases while SE is shown to increase
with the growth of V . However, when W ≥ 0.9, the trend
is slightly reversed with some fluctuations. This trend could
be observed because, when W is small, increasing V would
require the wireless links to increase their data rates so as to
decrease the average queue backlog, which leads to a better
SE. At the same time, as the emphasis on the data rate is given
to all links in the network, the total transmit power would thus
increase, which eventually degrades EE. As just indicated,
this trend is slightly changed when W is large. In this case,
increasing V provides a stronger enforcement on reducing
the queue length to a lower congestion state as indicated.
However, due to a large weight W on the data rate, lowering
the energy consumption would contribute more to EE when
a larger data rate is resulted in this case.

Apart from the above, the results on the average queue
length (Q) are summarized in Fig. 4(c). As exhibited therein,

although with slight fluctuations, this metric has the trend to
descend withW and V . With respect to V , it has been shown
in the above that as V increases, the system would emphasize
more on decreasing the queue length, and therefore the queue
backlog declines. With respect to W , it can be seen from
the objective function that a larger W represents a stronger
emphasis on SE. When applied, the transmission data rate is
enhanced and thus the average queue length is decreased.

Finally, we present the performance trend on the sys-
tem throughput γ defined as the sum of UE throughputs,
i.e., γ =

∑
∀u ru. By comparing Fig. 4(a) with Fig. 4(d),

we can see that the SE and the throughput have the same trend
because the admission control is based on the average queue
length, and a higher transmission data rate (SE) would reduce
the average queue length, which leads to more traffic to be
admitted for entering the queues of UEs (i.e., increasing the
throughput). However, it can be also seen that whenW < 0.2,
the SE (ηSE ) is less than the throughput (γ ). This could be
observed because in the experiments the traffic arrival rate is
conducted to saturate the system; that is, its value is much
higher than the throughput requirement, Au(t) � Rrequ ,∀u, t .
WhenW < 0.2 in the experiments, the service rate could not
fulfill the requirement, and queuewill build up after admitting
the arrivals. Given that, the transmission data rate would take
a long time to resolve the queue backlog, leading to a low SE
and a high queue length as shown in Fig. 4(a) and Fig. 4(c),
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FIGURE 5. Performance comparison on (a) spectral efficiency ηSE , (b) energy efficiency ηEE , (c) data queue length Q, and
(d) throughput γ , by varying V .

respectively, in the W < 0.2 range. In this range, the system
throughput in the long termwould be larger than the SE while
satisfying the minimum requirement Rrequ ,∀u. In contrast,
when W increases to be larger than 0.2, the service rate and
the SE approach the system capacity that is much higher
than Rrequ ,∀u. In this situation (W ≥ 0.2), the queue length
could decrease as shown in Fig. 4(c). Therefore, to satisfy the
throughput requirement Rrequ ,∀u that is less than the capacity,
the throughput γ would be less than the SE according to the
admission control, which can be observed when comparing
Fig 4(a) with Fig. 4(d), as well.

B. PERFORMANCE COMPARISON
In the second set of experiments, we letW be 0.1 and vary V
to exemplify the performance differences between the opti-
mization algorithm (Algorithm 2) using an IP solver, and
that using the distributed two-level MRA algorithm to resolve
the MRA problem. For the distributed two-level algorithm in
the latter, we use the second level RA algorithm proposed in

Sec. IV-B2 to obtain the optimal solutions in the reduced pro-
grammingmodel, or adopt the greedy algorithm as well as the
LL+RS algorithm in [9] to obtain the heuristic solutions in
the second level. Similarly, we use either an optimal IP solver
or the greedy CC allocation algorithm shown in Algorithm 1
to resolve the first level RA problem on CC (49). Specifi-
cally, by first indicating the RA algorithm used in the second
level, and then that used in the first level, we denote the
variant methods based on the distributed two-level MRA
algorithm by 2L ‘‘optimal/greedy/LL+SS RA’’ with ‘‘opti-
mal/greedy CC’’, resulting in 3× 2 = 6 different two-level
(2L) method-names as shown in the legends of Fig. 5.

In Fig. 5(a), providing W = 0.1, the SE is shown to
increase as V increases, complying with the results in the first
set of experiments with W < 0.9. Clearly, all the two-level
methods have the same trend. However, the 2L optimal
RA-based methods would outperform the 2L greedy-based
methods (including those using the greedy RA algorithm and
the LL+SS RA algorithm in the second level) in spite of the
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CC allocation obtained either optimally or greedily in the first
level. In addition, it can be also seen that in the greedy-based
methods, the methods using the greedy RA algorithm would
outperform those using the LL+RS RA algorithm, in spite
of the CC allocation as well. Nevertheless, how to allocate
CC still has its own impact on the performance, exemplified
by the fact that the greedy CC allocation algorithm would
improve the computational complexity at the cost of slightly
decreasing SE when compared with the optimal.

Similarly, from Fig. 5(b), we can see that by means of
the second level RA algorithm (in Sec. IV-B2) and the greedy
CC allocation algorithm (i.e., Algorithm 1) in the first level,
the 2L optimal RA with greedy CC method can approach the
optimal EE. This suggests that using the distributed two-level
algorithm proposed in Sec. IV-B to replace an IP solver to
resolve the MRA problem is a good way to trade the EE
performance off against the time complexity. In addition,
as already noted in Sec. VI-A, the trend is the same for all
the methods for comparison that EE would decrease as V
increases if W < 0.9. However, when compared with the
2L optimal RA-based methods, the 2L greedy-based methods
have worse performances and would drop even more signifi-
cantly, especially when V increases larger than 0.4.
From the viewpoint of queue length, the tradeoff would

be seen more clearly. Specifically, although the 2L optimal
RA-based methods can approach the joint optimization with
an IP solver in terms of EE, the queue length would be
the cost, as shown by its value not so close to the optimal
exhibited in Fig. 5(c). In addition, among the 2L greedy-based
methods, the methods with the greedy RA algorithm would
be better than those with the LL+RS RA algorithm in terms
of queue length. The performance difference also provides
a valuable reference to choose the greedy-based methods in
addition to that based on SE and EE. Further, from Fig. 5(d),
we can see that the performance trend on the throughput is the
same as that on SE. It is expected because the traffic allowed
for transmission reflects the data rate resulted in the dynamic
system through the Lyapunov-based admission control. More
specifically, the trend complies with that shown in Sec. VI-A,
which can be also observed here by comparing Fig. 5(a)
with Fig. 5(d) to show that γ would be larger than SE when
W < 0.2 (in this case W = 0.1), and these performance
metrics would increase as V grows in this case. Finally,
as shown in all the sub-figures of Fig. 5, the greedy CC
allocation algorithm might decrease the performance metrics
only at a slight degree when compared with the optimal CC
allocation. Apart from the CC allocation, the whole two-level
MRA algorithm would lead the system to achieve more than
half of the optimal SE and γ , and approach the optimal EE
while maintaining a larger queue length. These confirm our
design aim to obtain an effective algorithm to reduce the com-
plexity for the RA optimization while obtaining sub-optimal
solutions to be satisfactory enough.

Next recall that, in Sec. II-B, the channel condition is
assumed to remain unchanged during an allocation period
which leads to a CQI for RB to be mapped to the highest-rate

MCS for a UE using the RB [26], and the channel conditions
on all UEs and RBs can be perceived by the system through
the CQIs reported [9]. However, if certain issues affecting the
condition arise, e.g., the channel suddenly varies fast during
the period, or the BSs adopt a large-scale CSI (including
path-loss and shadowing) scheme for SINR to reduce the CQI
overhead [40], the MCSs obtained could be overestimated to
result in an unacceptable bit error rate for the transmission.
For this, in addition to the full CSI assumption adopted before
(represented here by Pe = 0), we assume the over-estimation
error to be happened with a probability Pe = 0.1, 0.3, or 0.5,
which diminishes the data rate of a MRA to 0 due to the
unacceptable bit error rate resulted, while fixing W = 0.1
and V = 0.5 to exemplify the performance trend. Otherwise,
the data rate is considered to be correctly represented by
vu,c,b,`,s,p(t).

The results are now summarized in Fig. 6 for reference.
Specifically, it is shown in Figs. 6(a) and 6(b) that SE and
EE would degrade on their metrics, respectively, and if nor-
malized with respect to the error-free results (i.e., SE and
EE with Pe = 0), their values would be around the four
levels of Pe (i.e., 0, 0,1, 0.3, and 0.5) for each method with
little fluctuations, as expected. In Fig. 6(d), the throughput
is similarly shown to degrade, but if normalized with respect
to its error-free result, it would be lower than the Pe levels,
respectively, except the first 0. That is to say, even with a less
data rate due to Pe, the throughput or admitted traffic does not
decrease as much, and the excess traffic can be absorbed by
the increased queue length as shown in Fig. 6(c). This reveals
a unique merit brought by the DPP-based dynamic control
with the data and virtual queues to achieve the system stability
while maximizing the network utility.

Finally, we show that the distributed two-level RA algo-
rithm (represented here by 2L RA-based and greedy-based
methods) would be computationally efficient in terms of
the LP optimal ratio and the objective improvement. First,
by LP optimal ratio, we mean the number of optimal results
obtained by a linear programming (LP) problem solver
divided by the total number of results in the experiments.
As shown in Table 2, this ratio is around 96% despite the
CC allocation algorithm, exhibiting the fact that most of the
experiment instances would have their coefficient matrices
to be TUM and could be solved easily without an integer
programming (IP) problem solver for the MRA problem.
Second, by objective improvement, we mean the improve-
ment degree on the objective function values obtained by

TABLE 2. Performance comparison between the methods based on
integer programming and those based on linear programming.
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FIGURE 6. Performance comparison on (a) ηSE , (b) ηEE , (c) Q, and (d) γ , by varying Pe while fixing W = 0.1 and V = 0.5.

a linear programming problem solver compared with those
by an integer programming problem solver. Here, the small
negative value around−0.066% exemplifies the performance
trend that LP would only slightly degrade the objective func-
tion while significantly improve the computational complex-
ity from nondeterministic polynomial (NP) to polynomial (P).
Taking a closer look to see the components in the objective
function, i.e., SE , EE , and queue length (Q), we can find
also that as the objective is a weighted sum of these metrics,
it is not necessary that all of them would be degraded as the
objective function itself. Specifically, SE and Q are degraded
while EE is improved, and γ is also degraded, reflecting the
same trend on SE .

As shown in the above, most of the problems encoun-
tered have their coefficient matrices to be TUM and can
be solved efficiently. However, a MRA problem may still
have its coefficient matrix without the property of TUM or
2-regular. In this case, developing a (re)formulation that leads
to an integer polyhedron for a subset of constraints can be

valuable. This in fact motivates the study to find the classes
of constraints so that specific cutting plans can be found
to yield an exact representation or a tighter approximation
of the convex hull of the feasible integer points. It further
invokes the decomposition-based approaches that decompose
the original IP formulation into several subproblems, one or
more of which can be solved efficiently through an exact or
approximated representation developed for the integer solu-
tions [39]. In our work, such a development for the MRA
problem would be very complex if it is not impossible, which
requires our future study.

VII. CONCLUSION
In this work, we have addressed a joint stochastic optimiza-
tion problem on energy efficiency (EE), spectrum efficiency
(SE), and queue length for downlink transmissions in the
5G LTE-based heterogeneous wireless networks with the
advanced techniques for 5G such as multi-input multi-output
(MIMO) and carrier aggregation (CA). Specifically, for the
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multiple objectives to be optimized concurrently, we pro-
posed a Lyapunov optimization framework on the downlink
transmissions with an overall and comprehensive consider-
ation for the joint problem concurrently involving resource
allocation (RA), user association (UA), and power control
(PC) in the complex networks. In particular, for the mul-
tiple resource allocation (MRA) problem involved, which
is NP-hard and served as a key issue in this work, we had
shown a reduced problem to be solved easily via linear
relaxation when its coefficient matrix is totally unimod-
ular (TUM), and accordingly, developed a distributed or
semi-distributed algorithm with low computational complex-
ity to resolve this NP-hard problem. Finally, in the numerical
experiments, we have demonstrated that our framework can
make a good tradeoff among EE, SE, and queue length,
provide the design insights on the tradeoff decision through
the system weights designed, and produce the performance
metrics outperforming the greedy-based state-of-the-art
counterparts.

APPENDIX A
PROOF OF THEOREM 1
First, by squaring both sides of the data queue dynamic
Q̃u(t + 1) = max{Q̃u(t)− µ̃u(t), 0} + R̃u(t), we have

Q̃u(t + 1)2 ≤ Q̃u(t)2 + R̃u(t)2 + µ̃u(t)2 + 2Q̃u(t)(̃Ru(t)

−µ̃u(t)) (57)

as anyA ≥ 0, b ≥ 0,Q ≥ 0, (max{Q−b, 0}+A)2 ≤ Q2
+A2+

b2+2Q(A−b) would hold. Then, by summing over all u ∈ U
and taking the fact R̃u(t) ≤ Ãmaxu (t) and µ̃u(t) ≤ µ̃maxu (t) into
account, we have∑
u∈U

(Q̃u(t + 1)2 − Q̃u(t)2) ≤
∑
u∈U

(̃Amaxu )2 +
∑
u∈U

(µ̃maxu )2

+2
∑
u∈U

Q̃u(t)(̃Ru(t)− µ̃u(t)) (58)

Similarly, for the virtual queue dynamics H̃u and Z̃s,
we have∑
u∈U

(̃Ru(t + 1)2 − R̃u(t)2)

≤

∑
u∈U

(̃R
max
req
u )2 +

∑
u∈U

(̃Amaxu )2 + 2
∑
u∈U

R̃u(t)(̃Rrequ − R̃u(t))

(59)

and∑
s∈S

(Z̃s(t + 1)2 − Z̃u(t)2)

≤ 2
∑
s∈S

(P̃max
s )2 + 2

∑
s∈S

Zu(t)(̃Ps(t)− P̃max
s ) (60)

Next, by combining these bounds and taking the expectation
with respect to 2̃(t) on the both sides of the result, we derive

the one-slot conditional Lyapunov drift as

1(2̃(t)) ≤ 0 + E
{∑

u

Q̃(t)(̃Ru(t)− µ̃u(t))|2̃(t)
}

+E

{∑
u∈U

H̃u(t)
(
R̃req
u − R̃u(t)

)
|2̃(t)

}

+E

{∑
u∈U

Z̃u(t)
(
P̃u(t)− P̃req

u

)
|2̃(t)

}
(61)

In the above, 0 =
∑

u∈U (̃A
max
u )2 +

∑
s∈S (P̃max

s )2 +
1
2

∑
u∈U (µ̃

max
u )2 + 1

2

∑
u∈U (̃R

max
req
u )2 is obtained by combin-

ing the constant terms in the right hand sides of (58), (59)
and (60), where µ̃maxu denotes the maximum of the transmis-
sion rate µ̃u that can be obtained on u, Ãmaxu isAmaxu /Rmax , and

R̃
max
req
u represents the maximum request allowed for u. Finally,

by removing the expectation operations on the constant terms,
we can obtain the inequality shown in (29).

APPENDIX B
PROOF OF THEOREM 2
Assume E{Ru(t)} ≤ η1, E{Ps(t)} ≤ η2, and E{Au(t)} ≤ η3,
where η1, η2, and η3 are finite positive constants. According
to Theorem 4.5 in [29], if problem (28) is feasible and the
boundedness assumption is given, then for any δ > 0 there is
one policy that can satisfy

E{f (x∗(t))|2(t)} = E{f (x∗(t))} ≤ fopt − δ (62)

E{̃R∗u(t)|2(t)} = E{̃R∗u(t)} ≥ R̃
req
u − δ (63)

E{̃P∗s (t)|2(t)} = E{̃P∗s (t)} ≤ P̃
max
s + δ (64)

E{̃R∗u(t)− µ̃u(t)|2(t)} = E{̃R∗u(t)− µ̃u(t)} ≤ δ (65)

As the optimization is turned to minimize the R.H.S of (30),
the optimal solution to this problem must satisfy

V1(2̃(t))− E{f (x(t))|2̃(t)}

≤ V0 + V
∑
u

Q̃u(t)E
{
R̃u(t)|2̃(t)

}
−V

∑
u

Q̃u(t)E
{
µ̃u(t)|2̃(t)

}
−V

∑
u

H̃u(t)E
{
R̃u(t)|2̃(t)

}
+V

∑
s

Z̃s(t)E
{
P̃s(t)|2̃(t)

}
+V

∑
u

R̃req
u H̃u(t)−V

∑
s

P̃req
s Z̃s(t)

−E{f (x∗(t))|2̃(t)} (66)

Taking (62)-(65) into (66), we have

V1(2̃(t))− E{f (x(t))|2̃(t)}

≤ V0 + δV
∑
u

Q̃u(t)+ δV
∑
u

H̃u(t)

+δV
∑
s

Z̃s(t)− fopt + δ (67)
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When δ→ 0, (67) reduces to

V1(2̃(t))− E{f (x(t))|2̃(t)} ≤ V0 − fopt (68)

Given that, we can take expectations of both sides of (68) and
then adopt the law of iterated expectations, resulting in

VE{L(2̃(t + 1))}−VE{L(2̃(t))}

≤ E{f (x(t))} + V0 − fopt (69)

The results for all t ∈ {0, 1, . . . ,T−1} can be futher summed
up, and dealt with the law of telescoping sums to yield

VE{L(2̃(T ))}−VE{L(2̃(0))}

≤

T−1∑
t=0

E{f (x(t))} + TV0−Tfopt (70)

Next, by rearranging the above while neglecting non-negative
terms when appropriate, we can obtain, for all T > 0,

1
T

T−1∑
t=0

E{f (x(t))} ≥ fopt−V0 −
VE{L(2̃(0)}

T
(71)

As T → ∞, the lower bound is obtained while the upper
bound is clearly represented by fopt as the the maximum value
of E{f (x(t))} as defined, which completes the proof.
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