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ABSTRACT Recently, new paradigms for designing modern cryptographic schemes were proposed based
on Rubik’s rotations. However, most of them lack rigorous provable security reductions. Enlightened by
this interesting progress, we present a novel method for designing encryption schemes by using Rubik’s
groups. Different from most naive designs of permutation ciphers based on Rubik’s cubes, our proposals are
probabilistic encryption schemes that combine some of the newest cryptographic primitives with modern
coding theory. More specifically, under the intractability assumption of the conjugacy decision problem
over Rubik’s groups, the proposed schemes have provable security reductions (in the random oracle model).
Furthermore, the proposed schemes have two remarkable performance advantages: zero setup and linear
encryption/decryption speed. In addition, the processes of encoding/encryption and decryption/decoding are
demonstrated graphically.

INDEX TERMS Rubik’s cube, encryption, provable security, zero setup, linear speed.

I. INTRODUCTION
As an ancient, heuristic and classic cryptographic method,
the permutation cipher is not new to us. The Rubik’s cube,
perhaps one of the best-selling iconic puzzle tools, is also
well known to us, even in our childhood. Recently, very
interesting progress has been made by researchers trying to
bridge these subjects: many cryptographic schemes, such as
Cayley hash functions [17], [18], key agreement protocols
[16], image encryption schemes [5], [12], digital watermark-
ing schemes [26], and zero-knowledge protocols [21], were
proposed based on Rubik’s groups. However, most of them
lack provable security reductions, and some even lay their
security basis on a taken-for-granted hardness assumption:
recovering of a Rubik’s cube with random configuration
(RRC for short). Today, we know that the RRC problem over
a 3 × 3 × 3 Rubik’s cube is so easy that it can be solved
within 20 steps [19].

Therefore, it is interesting to design new Rubik’s
cryptographic schemes by following the paradigm of
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modern cryptography: provable security reductions under
well-established models and falsifiable intractability assump-
tions. In this paper, we present two encryption schemes by
using Rubik’s groups. Compared to the existing permutation
cipher based on Rubik’s cubes, our proposals have the fol-
lowing essential differences:

• Our proposals couple two mainstream methods for
designing modern cryptography: permutation and sub-
stitution. This technique contribution comes from an
easy but seemingly neglected, method for mapping mes-
sages as arrows with four different directions and then
embedding them onto the 54 facets of the Rubik’s
cube.

• Our proposals are probabilistic encryption schemes
that, under the intractability assumption of the conju-
gacy decision problem over Rubik’s groups, have rigor-
ous provable security reductions (in the random oracle
model).

• Last but not less significant, our proposal has two
remarkable performance advantages: zero-setup and lin-
ear encryption/decryption speed.
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In addition, the processes of encoding/encryption and decryp-
tion/decoding are demonstrated graphically, and all related
source codes are open accessible.

The rest of the contents are organized as follows. Neces-
sary preliminaries, including group theoretical aspects about
Rubik’s groups and intractability assumptions, are given
in Section II. Our main contributions, including an encod-
ing/decoding method, two encryption schemes, and security
reductions, are presented in Section III. Performance evalu-
ations and tests are provided in Section IV, and concluding
remarks are given in Section V.

II. RUBIK’S GROUPS AND INTRACTABILITY
ASSUMPTIONS
Let us take a 3 × 3 × 3 Rubik’s cube as an example. This
Rubik’s cube consists of 54 small facets, numbered from
1 to 54, located in 6 faces, labelled U, L, F, R, D and B,
representing the upper face, left face, front face, right face,
down face and back face, respectively (Figure 1). Each face
can rotate 90◦ clockwise or anti-clockwise each time.1 Each
rotation incurs a new rearrangement of the 54 facets in the
6 faces, and we call this a configuration (see Figure 2 for an
example).

FIGURE 1. Facet numbers and the original configuration.

Clearly, all the possible configurations of the Rubik’s cube
consist of a subgroup, denotedR, of the symmetric group S48
considering that the six center facets remain, although rotated,
at the center of the corresponding faces. In fact, the order of
R is [9] (cf. Page 93)

|R| = 227 · 314 · 53 · 72 · 11 ≈ 4.3× 1019 ≈ 265.

However, in this paper, we associate a finite generated group
to the Rubik’s cube in the following way (cf. Page 92 of [9]
for more details):

R =

〈
U ,L,F,R,D,B

∣∣∣∣ U4
= L4 = F4

=

R4 = D4 = B4 = 1

〉
, (1)

1To decide whether a rotation is clockwise or anti-clockwise, one should
pay attention to the view angles, which are marked as eye icons near by the
six face letters.

FIGURE 2. Configuration after rotating the face B.

where 1 is the identity that indicates an empty rotation or,
equivalently, doing nothing. That is, R takes each face rota-
tion as a generator, and the relations among the generators
come from the fact that 4 continuous rotations of a face
90◦ clockwise result in the original configuration of the
Rubik’s cube. Moreover, the reverse of each face rotation
(i.e., anti-clockwise 90◦ rotation), is equivalent to rotating the
same face 3 times continuously, and for convenience, we use
U ′,L ′,F ′,R′,D′,B′ to indicate the reverse rotations of the
corresponding faces. Apparently, R is a non-Abelian group,
and thus, the conjugator search problem, defined below, over
R is nontrivial.
Definition 1 (Conjugacy Decision Problem, CDP): Given

a group G and two elements x, y ∈ G, decide whether x and y
are conjugate to each other (i.e., ∃z ∈ G such that x = z−1yz).
Definition 2 (Conjugator Search Problem, CSP): Given a

group G and two elements x, y ∈ G that are conjugate, find
z ∈ G such that x = z−1yz.

Apparently, for any Abelian group G, both the CDP and
CSP are trivial, since every pair of two elements (x, y) ∈ G
are conjugated to each other and every element z ∈ G can
be viewed as a conjugator of the pair (x, y). However, for a
non-Abelian groupG, this problem is nontrivial. In fact, in the
generic group model, the CDP is unsolvable [15]. On the one
hand, we know that for the permutation group, the CDP has
no polynomial time methods [20] (cf. Page 53). On the other
hand, during the past two decades, based on the intractability
assumption of the CSP and CDP over braid groups, several
cryptographic schemes were proposed by using braid groups
[1], [6], [10], [11], [22]–[25]. Considering that the Rubik’s
group is a subgroup of the permutation group S48, which is in
turn a subgroup of the braid group B48 [7], this progress gives
us the confidence to lay the security of our new encryption
scheme on the intractability assumptions of the conjugacy
problems, including CDP and CSP, over the Rubik’s groups.

III. OUR PROPOSALS
The general architecture of our proposal is given below in
Figure 3, of which the encryption (resp. decryption)
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FIGURE 3. General architecture of the proposal.

algorithm consists of steps 1©, 2©, and 3© (resp. 4©, 5©, and
6©), respectively. The details of these steps are given in the
subsequent subsections.

A. ENCODING/DECODING METHODS AND
VISUALIZATION
With the purpose of encrypting messages by using the
Rubik’s cube, we first need to design a method for encoding
messages on the Rubik’s cube. Different from the traditional
method of describing message letters directly on the Rubik’s
facets, we introduce the following encoding and decoding
method:

• Encode. We can use two bits to indicate four arrows
with different directions, i.e.↑,→,↓ and←. Nowwith-
out loss of generality, we assume that each message is a
108-bit string2 and eachmessage can be described on the
54 Rubik’s facets as a string of arrows. That is, to encode
a message m = (m1m2 · · ·m108)2 on a 3×3×3 Rubik’s
cube, we use the following steps:

– Let fi = α(m2i−1m2i) for i = 1, · · · , 54, where
α(·) maps a 2-bit string to an arrow, i.e., α(00) =↑,
α(01) =→, α(10) =↓ and α(11) =←, while fi
indicates the arrow assigned to the i-th facet.

– Assign the 54 facets (i.e. f1, · · · , f54) to the six
faces of the Rubik’s cube as if it were the original
configuration3.

• Decode. The reverse process of encoding: Given a
configuration, not necessarily the original one, of a
3 × 3 × 3 Rubik’s cube with each facet assigned an
arrow outputs a 108-bit string m = (m1m2 · · ·m108)2 as
follows:

– Regard the configuration as if it were original and
then number the 54 facets on the six faces from
1 to 54 (ref. Figure 1.(a)). Then, assign fi as the
arrow on the i-th facet for i = 1, · · · , 54.

– Let m2i−1m2i = α−1(fi) for i = 1, · · · , 54, where
α−1(·) indicates the reverse process for transform-

2Padding necessary 0 in the left if not.
3This means not rotating the Rubik’s cube to the original configuration.

ing an arrow into a 2-bit string, i.e., α−1(↑) = 00,
α−1(→) = 01, α−1(↓) = 10 and α−1(←) = 11.

For further illustrations, the message

m = 111001100011000011010111110000001001

001001111001011000011010111000000111

011010001111101100011110010010110100 (2)

can be assigned as the arrows depicted in Figure 2. (a), while
after rotating face B, the original configuration of Figure 2.
(a) becomes a new configuration depicted in Figure 2. (b),
which corresponds to the following message:

m′ = 001110100011000011000111010000101001

000100111100101100001110011101000010

000110100011001011111101001010100100. (3)

FIGURE 4. Encoding/decoding with arrows.

Remark 1: To further enhance the density of message
embedding, the following encoding patterns might be useful:

• Assign more directions, for example, 360◦, to an arrow.
• Arrange more arrows on a facet. For example, take a
facet as the face of a watch with three hands – the second
hand, minute hand and hour hand. Then, a combination
of three hands at different angles is used to express a
message.

VOLUME 8, 2020 122253



P. Pan et al.: Provably Secure Encryption Schemes With Zero Setup and Linear Speed by Using Rubik’s Cubes

B. ENCRYPTION/DECRYPTION ALGORITHMS
Our secret key encryption scheme, denoted S1, consists of
the following three steps:
• Setup. Over a 3 × 3 × 3 Rubik’s cube, the message
space and the ciphertext space are set as

M = {0, 1}108, and C =M×R (4)

respectively.
• KeyGen. A random rotating sequence k ∈ R with the
proper4 word length can be used as a secret key.

• Encrypt. Upon input of a secret key k ∈ R and a
108-bit message m, perform the following steps:
– Choose a random rotation sequence r ∈ R;
– Encode the message m to the 54 facets of the

Rubik’s cube;
– Perform rotation k ′ (i.e. the reverse rotation of k);
– Perform rotation r ;
– Perform rotation k;
– Decode the arrows on the 54 facets of the Rubik’s

cube to a 108-bit string m′;
– Output c = (m′, r).

• Decrypt. Upon input of a secret key k ∈ R and a
ciphertext c = (m′, r), perform the following steps:
– Check whether m′ is a 108-bit string: If not, return
⊥, which indicates that c is an invalid ciphertext;
otherwise, continue;

– Check whether r is a valid rotating sequence: If not,
return ⊥; otherwise, continue;

– Encode m′ to the 54 facets of the Rubik’s cube;
– Perform rotation k ′;
– Perform rotation r ′;
– Perform rotation k;
– Decode the arrows on the 54 facets of the Rubik’s

cube to a 108-bit message m;
– Output m.

Remark 2: Note that scheme S1 does not work in the
following two cases:
• k or r lies in the center ofR. However, considering that
the center ofR is negligibly small compared to the order
of the Rubik’s group, we do not need to worry about these
cases. In fact, the center of R consists of only 2 elements
[9](cf. Page 99).

• k and r commutes, i.e., kr = rk. On the one hand, this
can be easily tested for during the encryption process
and avoided by choosing another properly random rota-
tion sequence r. On the other hand, if both k and r are
chosen to be sufficiently random and sufficiently long,
this case occurs only with a negligible probability.

Theorem 1 (Correctness.): If the above encryption scheme
S1 is correct, i.e., for a given secret key k ∈ R and any

4Here, the adjective word proper has two aspects. First, the sequence
should be long enough to resist guessing attacks. Second, we should take
into consideration the so-called equivalent key problem. That is, two words
in R with different word lengths might express the same value according to
R’s generating relations.

message m ∈M, we have

Decrypt(k,Encrypt(k,m)) = m.
Proof: To see the correctness, it is enough to notice

that after the encryption process, the ciphertext c = (m′, r)
consists of a random rotation r and a transformed message
m′ that is encoded in the configuration k ′ · r · k . Thus, after
the decryption process, we obtain the confirmation

(k ′ · r · k) · (k ′ · r ′ · k) = 1

which is just the original configuration for encoding message
m during the encryption process. �
Example 1: Supposing that the secret key is k =

FBUURFLLD and r = RLFBUDRFBU, the message given
by (2) is encrypted as

c = (111111001011110000011110111001001111

101101100011001011011000010111000011

100101111001101110011010101001000100,

RLFBUDRFBU ). (5)

See Figure 5.(a). The decryption view is also given in
Figure 5. (b).

FIGURE 5. Encryption and decryption views.

Remark 3: Note that although the message is always
encoded in the original configuration, God’s algorithm and
other Rubik’s solvers do not threaten the security of the above
encryption scheme. In fact, without knowing the secret key k,
we can view the encryption algorithm as a black box that
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takes as input a message m ∈ M and outputs a ciphertext
c = (m′, r) ∈M ×R, where r is selected at random and is
thus totally independent of k. That is, the ciphertext does not
output the final configuration k ′ · r · k. Thus, no one, except
the decryption, knows which configuration is used for calling
Rubik’s solvers. A more rigorous security proof is presented
in the following theorem.
Theorem 2 (IND-CPA): The above encryption scheme S1

is indistinguishable against a chosen plaintext attack (IND-
CPA), assuming that the CDP problem is intractable over the
Rubik’s groupR. More specifically, if there is a probabilistic
polynomial time adversary A that can, within time t, break
the IND-CPA security of this scheme with a non-negligible
advantage ε, then there is a probabilistic polynomial time
algorithm B that can, within time t ′, solve the CDP problem
overR with a non-negligible advantage ε′ such that t ′ ≈ t +
tenc and ε′ = ε, where tenc indicates the time for performing
one encryption.

Proof: Suppose thatB’s CDP challenge instance is given
by (x, y) ∈ R. Without loss of generality, assume that the
word length of x is less than that of y. Then, upon receiving
two equal-length challenge messages m0 and m1 from adver-
sary A, B performs the following steps:

• Choose a random bit b ∈ {0, 1};
• Encode the message mb in the 54 facets of the Rubik’s
cube;

• Perform rotation y;
• Decode the arrows on the 54 facets of the Rubik’s cube
to a 108-bit string m′;

• Output the challenge ciphertext c∗ = (m′, x).

Now, it is A’s duty to output a bit b′, i.e., a guess for b,
based on the decision of which of the two challenge messages
m0 and m1 is concealed in c∗. Upon receiving b′ from A, B
judges whether b′ = b: If so, B outputs 1, which indicates
that the given CDP challenge is an Yes-instance; otherwise,
B randomly outputs 1 or 0.
To proceed, let us determine B’s advantages and running

time for solving the CDP challenge. Apparently, only if (x, y)
is a conjugate pair, i.e., y = z′xz for some z ∈ R, c∗ is a valid
ciphertext of the message mb. In this case, A’s advantage in
breaking the IND-CPA security of the scheme (i.e. guessing
correctly b′ = b) is equally transferred to B’s advantage in
making correct decisions regarding whether x and y are con-
jugated to each other. On the other hand, wheneverA’s guess
is incorrect, B makes a random decision by outputting 1 or
0 randomly. In this case, B has no advantage in solving the
given CDP challenge. This suggests that ε′ = ε. In addition
to calling A, B’s extra running time for the above reduction
process is similar to performing one-time encryption, consid-
ering that the rotation y is similar to rotating z′, x and z one-
by-one, for some possible and unknown z such that y = z′xz.
Therefore, t ′ ≈ t + tenc. �
Remark 4: Enlightened by the so-called FO technique [8],

the security of the above encryption scheme can be further

improved. The enhanced scheme, denotedS2, consists of the
following core points:

• Employ a cryptographic hash function H : M × R →
M and redefine the ciphertext space as C =M2

× R;
• Encrypt2.Upon input of a secret key k and amessage
m, perform the following steps:

– Choose a random rotation sequence r ∈ R;
– Compute h = H (m, r);
– (m′, r) ← Encryptk (m; r), i.e., encrypt m with
secret key k and random rotation r;

– (h′, r) ← Encryptk (h; r), i.e., encrypt h with
secret key k and random rotation r;

– Output c = (m′, h′, r).

• Decrypt2. Upon input of a secret key k and a cipher-
text c = (m′, h′, r), perform the following steps:

– m← Decryptk (m′, r);
– h← Decryptk (h′, r);
– Check whether h = H (m, r) holds: If not, abort;
otherwise, continue;

– Output m.

• Now, the security of S2 is given by the following
theorem:
Theorem 3 (IND-CCA2): The above enhanced encryp-
tion scheme S2 is indistinguishable against adaptively
chosen ciphertext attack (IND-CCA2), assuming that
the hash function H is a random oracle, and the CDP
problem is intractable over the Rubik’s group R.
Proof: This is a corollary of Theorem 12 of [8] and

our Theorem 1 established above. �
• Compared to the standard diagram given in [8], a slight
variation in S2 is to let the verification code h =
H (m, r) be encrypted as another ciphertext component
h′ instead of directly outputting h explicitly. This is cru-
cial for the security ofS2 since otherwise an adversary
A in the IND-CPA or IND-CCA2 game can always
output a correct decision by checking whether h =
H (mb, r) holds, where mb (b = 0, 1) is the challenge
message chosen by A itself.

IV. PERFORMANCE EVALUATION
Let us proceed to evaluate the performance of our proposal
based on the asymptotic complexity, as well as the running
time.

Asymptotically, the performance of the above schemes
is determined mainly by the word length of the involved
rotations. Without loss of generality, we assume that both
the secret key rotation sequence and the random rotation
sequence used for encryption should be sufficiently long
to resist brute force attack. Now, suppose that we want to
ensure λ-bit entropy in the involved random rotations by
using random rotations that are as long as ` basic rotations.
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Then, we have5

12` ≥ 2λ. (6)

Thus, it is enough to set ` ≈ 0.28λ. That is, a random
rotation sequence that consists of 28 random basic rotations
contains 100-bit entropy. Now, the asymptotical performance
with respect to the system security parameter λ is summarized
in Table 1. This suggests that our proposal has the following
two remarkable merits:
• Zero setup. In the Setup algorithm, we just need to
reach agreement on the definitions of the message space
M, the ciphertext space C, and the involved hash func-
tion H for SchemeS2. That is, for real implementation,
we do not need to perform any computations in this step,
and the hash function H can be instantiated with any
secure cryptographic hashes, such as SHA256 and SM3.

• Linear encryption/decryption speed. In practice, we can
implement the basic rotations within the time com-
plexity O(1) by using a precomputed table. Thus, it is
easy to see that, for an 108-bit message, both the
encryption and the decryption can be finished linearly
with the word length of the involved random rotations.
For long messages, we can divide them into several
blocks and then encrypting/decryptiong them one-by-
one. Recall those cryptosystems with provable security
reductions, such as RSA-based ones (with modulus n)
and ECC-based ones (with modulus q = pm), the best
computational complexities of encryption/decryption
algorithms that we can expected are O(log2 n log log n)
and O(log2 q log log q), respectively.6 That is, they are
quadratic or even higher with respect to the length of the
modulus – the system security parameters. This compar-
ison says that in a theoretical perspective, the proposed
schemes are considerably fast.

TABLE 1. Asymptotic performance.

In practical, to test the real running time of our proposal,
we implement the basic rotations by using the following
software/hardware environments:
• OS: Windows 10, Visual Studio 2017, Microsoft Visual
C++ (Compiler: cl)

• CPU: Intel Core I&-6700K, 8 Cores, 4.0

5Here, the base is 12 instead of 6 since the random rotation sequence can
be viewed as a sentence defined over an alphabet with size 12.

6Since we need to perform at least one time exponential operation modulo
n or q.

Over 106 random tests, the average running time for each
basic rotation is approximately 0.015 microseconds (or
equivalently, 15 nanoseconds). Thus, with the suggested
parameter settings, i.e., ` = 28 for ensuring 100-bit entropy
in involved random rotations, the main workload of encryp-
tion/decryption of our scheme S1 (resp. S2) can be finished
within 1.26 (resp. 2.52) microseconds.

The comparisons between our proposal and other 19 typ-
ical cryptosystems — divided into 7 categories according to
whether and what hardness assumptions are based on — are
listed in Table 2. Note that since the message block sizes of
different cryptosystems are always different, a fair compari-
son way is to use the amortized 1-bit encryption/decryption
speed. That is, if the claimed encryption/decryption speed is
x milliseconds for messages with block size L bits, then the
amortized 1-bit encryption/decryption speed is x × 1000/L
microseconds.10 In particular, for image encryption, we view
themessage block size as the total bit-length of the image. For
instance, Lian et al.’s chaos-based image encryption scheme
can encrypt the Lena image of size 3× 512× 512 in 349 ms
[2], then the amortized 1-bit encryption speed is 349×1000

3×512×512 ≈

0.444µs. From this table, we can see that the amortized 1-bit
encryption/decryption speed of our proposal is considerably
fast. More specifically, the performance advantages of our
proposal can be summarized as follows:

• Nearly 3 (resp. 2) times faster than in encryption than
the symmetric schemeDES/CRT (resp. AES/CBC-256),
of which assembly language routines were used for
speed optimization [4].

• Over 3 times faster in encryption than the scheme RSA-
2048, which is even implemented with a small encryp-
tion exponential e = 17 [4] (and thus suffering from the
so-called small exponential attack).

• Nearly 1000 times faster in encryption than the ECC
type scheme ECIES over the finite filed GF(p) with a
256-bit prime p.

• Over 10 times faster in encryption than the lattice-based
schemes such as NTRU-743 [3]and LAC-128 [13].

• Significantly faster in encryption than other chaos-based
encryption schemes and Rubik-based schemes:

– For chaos-based image encryption, since the
decryption does not required to exactly recover
every bit, instead of using provable security mod-
els such as CPA and CCA, we always discuss its
security in a heuristic manner by using the metrics
such as the number of pixels changing rate (NPCR),
the unified average changing intensity (UACI) and
so on, the encryption can be made even fast. Even
so, our provable CPA-secure scheme S1 is still 3,
10, and 30 times faster than the schemes Faraja
(2013), Wong (2008) and Liao (2005), respectively.

10Informally, 1-bit amortized speed is anti-proportional to the so-called
throughput: 1-bit amortized speed v (in microseconds) means nothing but
the throughput 1/vMbps.
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TABLE 2. Comparisons on amortized 1-bit encryption/decryption speeds.

– For chaos-based data encryption, our provable
CCA-secure schemeS2 is nearly 150 and 300 times
faster than the schemes Liao (2010) and Li (2018),
respectively.

– For Rubik-based image encryption, our schemeS1
is nearly 150 times faster than the scheme Loukha
(2012).

– For Rubik-based data encryption, our schemeS2 is
over 3 times faster than the scheme Dhanda (2018).

To further illustrate our idea even clearly, the processes
of encoding/encryption and decryption/decoding are demon-
strated graphically with Unity (Ver: 2019.3.2f1), a well-
known real-time 3D development platform. The source
codes for these tests and illustrations are available at
https://github.com/flowerlet/RubikEnc.

V. CONCLUSIONS
It is interesting to couple the mainstream techniques of mod-
ern cryptography and the well-known Rubik’s cube. Indeed,
with proper message mapping methods, Rubik’s rotations
are not only permutations but also substitutions. Thus, any
n × n × n(n ≥ 3) Rubik’s cube can be viewed as a com-
pact physical transformation device for modern cryptography
and is suitable for the proposed method. The larger n is,
the denser the message embedding achieved, although set-
ting n to 3 is sufficiently secure and efficient. Most existing
Rubik’s cryptographic proposals lack of provable security
reductions, while in this paper, we bridge this gap by laying
the security of our proposals within falsifiable intractability
assumptions: the conjugacy decision problem over Rubik’s

groups. In addition, there are two remarkable merits in our
proposal: zero setup and linear encryption/decryption speed.
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