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ABSTRACT A detection algorithm is often used to remedy tracking failures in a typical single-target visual
tracking algorithm. In practice, when a target is occluded for a long time, neither the tracking module nor
the detection module can accurately predict the position of the target. To accurately locate the target, we first
introduce the £1¢; loss function to reduce the sensitivity of correlation filter-based method to local occlusion.
To solve the instability of algorithms based on the single feature in complex scene, we use the histogram of
oriented gradient (HOG) features and color names (CN) features to train a filter respectively, and the fusion
weights are calculated according to the difference between the response value of each filter and the expected
response value. At the same time, we adaptively update the model online by calculating the sensitivity of
different filters. We follow the re-detection idea in long-term tracking, the peak to sidelobe ratio (PSR) is
used to judge the serious occlusion, and we use support vector machine (SVM) for re-detection after severe
occlusion or target out-of-view. In this paper, 34 sets of sequences are selected to evaluate the proposed
algorithm. The sufficient experimental results demonstrate that our algorithm has strong anti-occlusion
ability and robustness performance. We compare our proposal with several state-of-the-art algorithms under

all the sequences of OTB 100, and our algorithm yields highly competitive performance for tracking.

INDEX TERMS Correlation filter, re-detection, support vector machine, visual tracking.

I. INTRODUCTION

Visual tracking is one of the most basic problems in computer
vision. In brief, given the target information of the first frame,
the visual tracking task evaluates the target location in the
subsequent frames. It is used in wide-range scenarios, such as
vehicle navigation, human-computer interaction, automatic
surveillance, to name just a few.

Although visual tracking has been studied for a few
decades and great progress has been made, it is still a tough
task to design a robust and efficient tracker due to difficulties
for both foreground and background variations. Currently,
the mainstream method of visual tracking is the discrimi-
native correlation filter (DCF) method combined with deep
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learning [1]-[5]. But the tracking algorithms based on the
traditional correlation filter (CF) have achieved top-ranked
performance and drawn increasing attentions because of
their superior computation and fair robustness to photomet-
ric and geometric variations [6]-[8]. The CF-based trackers
convert the correlation operations in the spatial domain to
the element-wise multiplications in the frequency domain,
which substantially improve the complexity and the tracking
speed [9]-[12].

Some evidences show that occlusion and deforma-
tion are still the two most difficult problems in visual
tracking [13], [14]. When a slight and simple partial occlu-
sion happened to a target during the visual tracking, the tar-
get appearance changes slightly, which induces a small
error. In such scenes, robust tracking can be performed
by some spatially regularized methods or reliable patch
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model [9], [10], [15]. Nevertheless, a severe occlusion or tar-
get out-of-view occurs, the error caused by occlusion and
disocclusion tends to accumulate, which will be very large.
When the target is out of sight, the appearance of the tar-
get is completely invisible, which results in the inability to
obtain the appearance. The existing tracking methods cannot
achieve a good performance for intricacy local occlusion
challenge [15]-[17]. Some long-term tracking algorithms
introduced re-detection strategies to solve the problem of
the target out-of-view [18]-[20]. These methods use a global
search or re-detection strategy to retrieve the target. There-
fore, they also work well when a target is heavily occluded.

In this work, we follow the idea in long-term visual track-
ing and learn a support vector machine (SVM) detector based
on [21] for re-detection. Considering the sensitivity of the
conventional CF-based trackers to local occlusion, we intro-
duce the £1¢; loss function. We combine the histogram of ori-
ented gradient (HOG) feature and color names (CN) feature
with the CF method to train two different models, and weight
them based on the responses for a robust tracker. Meanwhile,
we develop an occlusion judgment strategy and an adaptive
online model update strategy for robust visual tracking, that
will be carefully discussed in Section III.

The contributions of this paper can be summarized in the
following three aspects:

1. Unlike other CF-based methods, we introduce £ £ loss
function to reduce the sensitivity to local occlusion,
which is a great challenge for object tracking.

2. A new visual tracking framework combined with
re-detection is proposed to perform robust tracking,
including a novel adaptive online model update strategy
based on feature fusion. It iteratively conducts adaptive
learning on a variety of features and can adapt to a
variety of challenging scenarios.

3. We carefully select 34 sets of video frame sequences
from the OTB dataset containing 11 interference fac-
tors, including the illumination variation (IV), scale
variation (SV), occlusion (OCC), etc., to prove the
advantage of our proposal. The sufficient results show
that the proposed algorithm has a satisfactory anti-
occlusion ability and robustness.

Il. RELATED WORK

In this work, we conduct our proposal based on the CF
method combining the HOG features and the CN features.
In this section, we revisit the related works, including: A) cor-
relation tracking, B) tracking-by-detection, and C) judgment
occlusion based on the peak to sidelobe ratio (PSR) [22].

A. CORRELATION TRACKING

Correlation filter originated from the field of signal process-
ing has been widely used in the field of target detection and
recognition. In visual tracking, given the datasets, a corre-
lation tracker trains a filter to recognize the target in the
subsequent frames. Bolme et al. [17] first introduced the cor-
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relation filter into visual tracking. Henriques et al. [23], [24]
further improved the performance of the CF-based track-
ing by using approximate dense sampling, ridge regression,
and kernel trick. Subsequently, Danelljan er al. [25] and
Dai et al. [10] respectively learned a specific regularization
term to punish the filter with respect to a large background
response and an adaptive spatial regularization to punish the
spatial constraints. Danelljan et al. [9] improved tracking
performance to a new level by learning continuous convo-
lution filters for visual tracking. To further deal with the
scale variation problem, three CF-based trackers, namely,
the SAMF [26], DSST [27] and RAJSSC [28], have achieved
good effects concerning the accuracy and real-time perfor-
mance. With the recent development of increasingly more
CF-based trackers [29]-[32], they have proved their good
abilities with respect to their robustness. However, for severe
occlusion and out-of-view challenges, these algorithms do
not achieve the ideal performance.

B. TRACKING-BY-DETECTION

To alleviate the stability-plasticity dilemma with respect to
online model update in visual tracking, Kalal et al. [33] pro-
posed the mechanism by combining the tracking and detec-
tion, which helps perform long-term tracking. Ma et al. [18]
decomposed the task of tracking into translation and scale
estimation of object, and they also trained an online ran-
dom fern classifier to re-detect objects in case of tracking
failure. Hua et al. [34] trained an additional redetector for
a significant geometric change of the object. As [35] stated,
the observation model and feature extractor place important
roles in visual tracking. Therefore, researchers have improved
the performance of the feature extractor by selecting fea-
tures [36], [37] and fusing the features [38]. Supancic and
Ramanan [39] used self-placed learning to select reliable
frames to extract additional training data as it progresses,
which is more effective than a strong motion model. Overall,
the tracking-by-detection mechanism is helpful for the long-
term occlusion as well as the significant appearance change.
In our proposal, we train an SVM detector based [21] to deal
with long-term occlusion as well as the significant appear-
ance changes.

C. JUDGMENT OCCLUSION BASED ON THE PSR

We use the PSR which is mainly proposed to evaluate the

compressed radar signal after compression to assist in detect-

ing occlusion [22], [40]. The PSR is calculated as follows:
pSp = M T K (1)

o

where max represents the maximum value of the main lobe
peak, u represents the mean value of the Gaussian response
map and o represents the standard deviation of the Gaussian
response value. When a target is occluded by the background,
the Gaussian response value of the target will have multiple
peaks that are exceeded by the other peaks, which will result
in tracking failure. The difference between the response map
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of two consecutive frames is very small, which implies that
the temporal information of the video frames can help the
tracker to more accurately locate the target. The temporal
information between video frame sequences can be repre-
sented by the sensitivity value of the PSR.

S Z (PSR; — P,,)? 2

1 n

Py =~ Xi:PSR, 3)
where P, means the average PSR of the response maps of n
consecutive frames. Therefore, serious occlusion and partial
occlusion are separated by the PSRs, and the sensitivity of
the information of the temporal context is used to address
the visual tracking problems except for serious occlusion.
In this paper, we combine the judgment occlusion and the
re-detection strategy for severe occlusion.

lIl. THE TRACKING METHOD USING PSR-BASED
OCCLUSION JUDGMENT AND SVM RE-DETECTION

In this section, we will detail our method in four aspects:
A) €1€> loss function, B) occlusion judgment strategy,
C) re-detection strategy, and D) implementation details.

A. £,¢, LOSS FUNCTION

Given the feature map, a correlation tracker aims at learning
the filter weights to regress the Gaussian label. A classical
model based on a correlation filter solves ridge regression
problems as follows:

miny, Y (f (o) = yi)” + A Iwl | )

where f'(x;) is the regression function obtained by training the
mapping function ¢ (x;) of the feature space, y; € R"*" is
the desired Gaussian-shaped response, X is the regularization
term coefficient, and w is the filter template, || - || is the £;-
norm. The goal is to find a function f (x) = w! ®x, where ®
is the correlation operation, that minimizes the error between
the regressions to target y; and f(x).

When the target appearance significantly changes, the error
in some feature dimensions may be very large, that’s the rea-
son resulting in the instability of the mean square error. There-
fore, to improve the performance of the CF-based method
which is sensitive to local occlusion and allow large errors
to occur when the appearance significantly changes in filter
learning process, we replace the loss function in conventional
CF-based method using £1£>-loss function with an appropri-
ate sparsity [41]. Therefore, equation (4) is converted into the
following formula:

miny Y (F () +ei —y)> + Alwl3 + 7Y _Le)  (3)

where the A and t are the weight parameters. Equation (5)
can be split into two subproblems, both of which have glob-
ally optimal solutions. Therefore, the problem in (5) can be
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solved by alternately optimizing the two subproblems until
the objective function values converge. Where ¢; is the differ-
ence between the regression values and the expected response
value. Its calculation formula is as follows:

ei = E(—— F'G—a k) ©)

4421241
When we alternately optimize the two subproblems, we need
to use the dual space to minimize ||f (X) + e — | |%+A| [w| |%
according to w. We denote the dual conjugate of w as «,
such that w = ), ajp(x;). The problem with respect to «

=L F0)
. . . k1+)».

denotes the inverse Fourier transform, y is the expected
response in the Fourier domain, © is the Hadamard product,
k| denotes the first row? of the kernel matrix K and Eisa

shrinkage operator, defined as:

&(e, x) = sign(x)max(0, |x| — €) 7)

has a closed-form solution denoted as @ =

B. OCCLUSION JUDGMENT STRATEGY
In this paper, the PSR of the fusion response maps is used to
judge the occlusion or out-of-view condition of each frame.
Then, we process the frame according to the judgment result.
When the target is severely occluded, the target appearance
is mostly contaminated. At this moment, the PSR of the
response map obtained by the correlation operation using the
target appearance model is always low.
Over time, the target in Fig.1 (c) has been seriously
occluded by the environment, as reflected by the PSR =
5.957 in the 109th frame. At this point, the peak around the
target is prominent, even exceeding the target peak, which
causes the tracker’s prediction to finally contain a target
position error, and thus tracking failure occurs. Therefore,
the PSR can correctly reflect the state of the target and is
also an effective indicator for judging whether the target is
occluded.
Due to the large variation range of the PSR, in order to find
a better occlusion judgment criterion, this paper normalizes
the PSR of the Gaussian expected response of the first frame
of the video as a reference value, and the formula is as
follows:
PSR;
— <y
PSR

0, otherwise

flag = (8

where 7 is the similarity coefficient of the current frame’s
PSR and the reference PSR. When flag = 0, it is considered
that the target being tracked is not occluded or is partially
occluded; and when flag = 1, the target is severely occluded.
At this moment, it is necessary to judge whether the target
appears again and whether the model needs to be updated by
the re-detection method.

C. REDECTETION STRATEGY

When the target is severely occluded or even fully occluded,
the appearance information of the target is difficult to obtain.
In this situation, it is not very reliable to use the tracker to
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(a) no occlusion

20 T T T

(b) partial occlusion

(c) full occlusion

19

L
o 10 20 30 40 50

60 70 80 90 100 1
The number of frames

(d) The PSR of the Girl2 Sequence

FIGURE 1. In (a), the target is not occluded, and the PSR is always in a range of larger values, such as in the 77th frame when the
PSR = 13.98. In (b) the target is partially occluded by the background, and the PSR = 9.859 in frame 106. Here, the peak of the
response map begins to weaken, and there is a multi-peak situation, but the target peak has not been exceeded. Over time, in (c),
the target has been seriously occluded by the background information, and the PSR = 5.957 in the 109th frame. In (d), the curve

denotes the variation of the PSR through the girl2 sequence.

predict the position of the target. When the target appears
again, the re-detection strategy can help tracker to detect the
position where the target appears, that is, the object detection
algorithm can determine whether the target is occluded, and
can also obtain the candidate target position. The SVM is
essentially a classifier that distinguishes between a target and
the environment. Therefore, this paper uses an SVM classifier
to judge if the target has reappeared in view and determine the
candidate position of the target, which is very helpful for the
subsequent tracking of the target occlusion.

D. IMPLEMENTATION DETAILS

The algorithm is mainly improved using LCT algorithm [18]
and the Struck algorithm [21]. Here, the (xo, yo) is the target
initial position; farget,, denotes the target scale; X; is the
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target status, which includes the position (x;, y;) and scale
5¢ at time t; CF; is the appearance model; CF is the scale
model; ® is the correlation operator; * is the multiplication
operation; and HSvm denotes the SVM classifier. The whole
algorithm consists of three parts: the prediction of the position
of correlation filter model, the scale correlation filter model,
and the SVM classifier.

The correlation filter model for the prediction of the target
position uses different features for training and updating.
The HOG features and the CN features of the target are
first extracted and denoted as feats, which are used to train
two correlation filters, then we get two response maps using
different filters CF;(i = 1, 2). And we fuse them as follows:

n
o= Zi:l miri ©
r; = feats; ® CFj (10)
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where r; denotes the final fusion response map; r; is the
response maps obtained by the correlation operations of the
two features and corresponding filters; feat; denotes i fea-
ture and CFj is the corresponding model; m; is the weight of
ri, calculated as follows:

d,
m; =1—2—l (11)
> dj
j=1
di = |lr —ri® Al (12)

To get m;, we calculate the d; in (12), which is the difference
between the expected response value and real response value
of the i filter; & represents the shift operator; A denotes
that translating the peak of r; to the center of response map.
We use the same method to get the weights calculated by the
sensitivity method of the PSR are used to adaptively update
the template. To obtain a more robust model, we use adaptive
learning rate y for per frame, such as follows:

Vi = Yi—1m; (13)

In this way, we can get a robust model. Subsequently, we get
the accurate position prediction in the sequences. At the same
time, the scale correlation filter is similar to the position
correlation model, but the training of the model uses only
the HOG features of the target. The number of scale pyramid
layers is 33 layers, which is used to predict the scale of the tar-
get. The SVM detector is specifically designed to address the
problem when the target is severely occluded. We minimize
the convex objective to learn re-detector:

N
N
min 3wl +C§s,» (14)
S VI VU A 1 < w, 8Di(t) >> 8(ti, 1) — & (15)
Vi, £20 (16)

where @ is the kernel map; §®;(t) = & (feats;, ;) —
d(feats;, t); (feats;, t;) specifies the correct transformation of
the object; w is the weight vector learned by the SVM; C is
the coefficient of &;, following the Struck [21], we set C =
100; & denotes the slack variable in SVM. As a matter of
fact, the HSvm learns amap f : F x T — R, F is the
feature space, T is the transformation space. In our HSvm
re-detector, the feats; are features sampled from the reliable
location for re-detection. The procedure of re-detection is
as follows: First, the occlusion is judged by the PSR of the
response map of the target in the current frame. Then, we get
the candidate position of the target through the SVM detector.
Finally, the response value of the optimal position detected by
the SVM detector is compared with the response value of the
position predicted by the correlation filter, which then deter-
mines whether the target is out of occlusion, if it is, we will
locate the position. Therefore, the model obtained through
iterative online incremental training has better robustness.
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Algorithm 1 The Proposed Algorithm
1 Imput:(xo, yo), target,.
2 Output: X;=(x;, y;, 5;), CF;, CF, HSvm.
3 Repeat:
4 Extract the feats (HOG, CN) from (x;—1, y;—1) in
the last frame.
5 Yield response map:
ri=feat; @ CF;,i=1,2;
6 Calculate the sensitivity S of the PSR by (2), the final
position (x;, y;) and final response value 7; by (9);
7 Obtain the target size:
§ = featsy, y, ® CFy, s, = targety; * §;
8 if flag then:

9 1j, (Xi, yi) = HSvm(feats);

10 I'maxs (Xmax, Ymax) = max (rj, (Xi, yi)) ;
11 if rpax > 1 then:

12 Update CF;;

13 else:

14 (Xt, Yo) =(X¢e—1, Yt—1);

15 end

16 end

17 Update CFs and HSvm;
18 Until end of video frame sequence;

IV. EXPERIMENT RESULTS AND ANALYSIS

To prove the robustness and real-time performance of our
proposed algorithm in the case of severe occlusion, we select
six sets of video frame sequences with severe occlusion in
the experimental verification of our algorithm. The results are
compared and analyzed with those of two long-term tracking
algorithms (TLD: tracking learning detection algorithms, and
LCT: long-term correction tracking) and the Struck (struc-
tured output tracking with kernels) algorithm. The six test
video frame sequences are coke, tiger2, girl, basketball, lem-
ming, and liquor, which are 640 x 480, 640 x 480, 128 x 96,
576 x 432, 640 x 480, and 640 x 480 pixels, respectively.
The number of frames is 4,958. The proposed algorithm is
implemented using MATLAB on a winl0 x64 computer with
a 3.60 GHz i7 processor and 8GB of memory.

A. EXPERIMENTAL RESULTS

Experiment 1: This experiment provides the results of differ-
ent algorithms when the moving target is occluded. To verify
the tracking performance of the algorithm when the moving
target is occluded, the standard test video frame sequence
“coke” is used for testing. The results of each algorithm
are shown in Fig.2. The TLD, Struck, and LCT algorithms
and ours can correctly predict the position of the target
in Fig.2 (a) in which the target is not occluded. In Fig.2 (b),
the moving target is severely occluded by the leaves. The
TLD algorithm experiences a tracking failure, and the detec-
tion module scans the entire image via a cascade classifier
consisting of a variance classifier, a random fern classifier,
and a KNN classifier. Since the target is mostly occluded by
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---Ours ---TLD
(b) 39 frame

(a)10*" frame

---Struck --LCT

(c) 42" frame

FIGURE 2. (a) shows the state of the target when it is not occluded by the environment. The TLD, Struck, LCT and proposed algorithms
can correctly predict the position of the target. In (b), the moving target is severely occluded by the leaf. Since the target is mostly
occluded by the environment, and the detection time is long, the confidence of the target position is low. In (c), both the TLD and LCT

drift, and the Struck algorithm and Ours can locate the target well.

---Ours ---TLD

(2)10th frame

---Struck ---LCT
(b) 19" frame

(c) 42™ frame

FIGURE 3. Comparative test of the deformed target is occluded. (a) shows the state of the target when it is not occluded by the
environment. In (b), the target is deformed due to the posture change. In (c), the tracking target appears again, and the tracker treats the
wrong moving object as the tracking target, resulting in a target tracking drift.

the environment and the detection time is so long, the confi-
dence of the target position is very low. The Struck algorithm
uses the prediction function learned by the online structure
output SVM to predict the change of the target position and
avoids the intermediate classification phase. The LCT algo-
rithm sets a fixed threshold according to the response value
of the target appearance model should determine whether
the target is occluded and whether the target appearance
model is to be updated. In this section, our algorithm uses
the PSR of the current frame of the response map to judge
whether the target is severely occluded for re-detection. The
model judges whether the target is partially occluded prior
to adaptive update according to the peak value of the current
frame. In Fig.2 (c), both the TLD and LCT algorithms drift,
and the Struck algorithm and ours can locate the target well.

Experiment 2: The target with deformation is occluded.
To verify the performance of the proposed algorithm when the
moving target is deformed, the video frame sequence “‘bas-
ketball” is used for testing. Fig.3 (a) shows the state of the
target when it is not occluded by the environment. The TLD,
Struck, LCT, and proposed algorithms can correctly locate
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the target. When the target is in the 19th frame, the target
is deformed due to the pose change. Besides, it is severely
occluded by another player’s body. The TLD algorithm uses
the pyramid optical flow algorithm to track the object to
predict the target’s motion direction. Due to the interference
of the occluded object’s motion, when the target appears
in Fig.3 (c) again, the tracker treats the wrong moving object
as the tracking target, resulting in a target tracking drift. The
Struck algorithm uses the prediction function to predict the
change of the target position between the current frame and
the previous frame. Since the target is severely occluded,
when the target reappears in Fig.3 (c), the accumulation of the
position change error causes the tracker to no longer adapt to
subsequent tracking, eventually resulting in tracking failure.
The LCT algorithm utilizes the spatial-temporal context, and
the model tracks the target. Therefore, when in Fig.3 (c) 42"
frame is reached, both the LCT algorithm and ours can accu-
rately track the target.

Experiment 3: The stationary target is occluded. To verify
the performance of the proposed algorithm when the station-
ary target is occluded, the test video frame sequence ““liquor”
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W =

---Ours ---TLD

(a)720" frame

---Struck
(b) 728™ frame

—LCT
(c) 733 frame

FIGURE 4. Contrast test when the stationary target is occluded. In (a), the 720th frame shows that the target is not occluded by the
environment. In (b), the target to be tracked is completely occluded by the background information, eventually losing the features
associated with the tracker, causing the tracker to fail to find the target. The target is out of occlusion in (c).

is used for the test. The results of each algorithm are shown
in Fig.4. (a) show that the target is not occluded by the
environment. The TLD, Struck, LCT, and our proposal can
correctly track the target. When tracking in the 728th frame
in (b), the target to be tracked is completely occluded by
the background information, eventually losing the features
associated with the tracker, and causing the tracker to fail to
find the target. The TLD and the Struck algorithms have not
yet determined that the target is occluded, and so the occluded
object is mistakenly regarded as the tracking target. Con-
versely, the LCT and the proposed algorithms successfully
determine that the tracking target is occluded. In the 733th
frame (the target is out of occlusion), the TLD and the Struck
algorithms continue to erroneously track the wrong object,
causing severe drift, which eventually leads to a tracking
failure. The LCT algorithm and our algorithm can accurately
track the target again.

B. COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS
To better illustrate the superiority of the proposed algorithm,
we compare it with related algorithms. The proposed algo-
rithm, TLD, Struck, and LCT are tested using 6 different
video frame sequences, and then we compare the results of
the different algorithms for each sequence of video frames.
We do not make any modifications to the parameters of
the existing algorithms. The overlap precision (OP) and the
distance precision (DP) of the above four different algorithms
are shown in Table 1.

We follow the common tracking and judging criteria
according to the target. 1) Success rate: First, the overlap
rate (score) is calculated according to each frame’s predicted
area (ROI;) and manually labeled area (ROlgy).

score = m (17)

ROI; | JROI,,
Then, after setting different overlapping thresholds, the suc-
cess rate under the different overlapping thresholds is statis-
tically calculated. Finally, the final success rate (the mean) is
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TABLE 1. Success rate and accuracy. The first column is the sequence of
the video frames and the total number of frames. The following columns
are the success rate and accuracy of the different algorithms in different
video frame sequences, where red represents the best result, and blue is
the SECOND-BEST result. “~" indicates that the algorithm’s result in the
video frame sequence is too bad, and so the data will be ignored during
the statistical analysis to avoid any adverse effects on the overall results.

VIDEO FRAME TLD _ STRUCK __LCT _ OURS
oP 399 6.5 651 709
CORE@)  pp 563 75.4 797 89
op 27 543 618 69
TRIGER2(356)  pp 41 60.5 685 664
OP 566 73.4 663 998
GIRL (500) DP 805 04 89 100
BASKETBALL  OP - 206 751 703
(725) DP - 2.4 900 992
LEMMING oP 529 478 711 803
(1336) DP 751 541 787 801
oP 514 403 574 564
LIQUORA741)  pp 546 375 691 704

obtained by calculating the area under the curve or area under
curve (AUC). 2) Accuracy: First, calculate the weighted aver-
age of the distance between the prediction center position and
the ground truth position, which is the center location error
(CLE). Then, calculate the accuracy according to the different
error thresholds. Finally, the position error being no greater
than 20 pixels is taken as the final precision of the precision
map. Table 1 shows that the overall tracking performances
of the TLD and the Struck algorithms are not so good, and
the proposed algorithm’s tracking performance is the best,
followed by LCT. In the 6 video frame sequences, the TLD
algorithm performs well only in the girl sequence because the
other 5 video frame sequences are also affected by different
factors such as deformation, illumination, scale, etc. The TLD
algorithm uses the pyramid optical flow method that cannot
conduct accurate visual tracking in complex scenes, and so
the robustness is not so good. The Struck algorithm uses only
Haar to calculate the integral map of the feature, and cannot
stably predict the position of the target under the influence of
various factors, especially when the target is occluded. Struck
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still takes the predicted value with the highest probability as
the correct location, and the accumulation of wrong tracking
information eventually leads to errors. The LCT algorithm
judges the occlusion of the target through the response value
of the target appearance model, which can avoid the wrong
learning of the model to some extent. Therefore, it can stably
track the target in a long target tracking time. However, since
the LCT uses only the gray feature of the target and its
illumination invariant gray feature to train, when the target
pose changes or there is similar object interference (such as
in the tiger2 and liquor video frame sequences), the tracking
performance is not ideal. Our approach uses the idea of LCT
to train using multiple features fusion and uses the SVM re-
detection strategy to track the target in a complex scene with
occlusion. Compared with LCT, the comprehensive perfor-
mance has a certain improvement, which is mainly due to the
selection of the target features and the PSP-based occlusion
judgment strategy in the model training process.

TABLE 2. Center location error and FPS. The proposed algorithm has the
smallest center position error in the “coke”, “tiger2”, “girl", “basketball”,
and “lemming” video frame sequences, and the effect for the “liquor”
sequence is worse than that of the LCT algorithm. However, the average
center position error is the smallest at 11.91 pixels. In “tiger2”, the FPS is
the largest at 13 FPS. In “coke” and “basketball”, the FPS of the LCT
algorithm is the largest, and it is followed by the proposed algorithm.

In “girl”, “lemming”, and “liquor”, the FPS of TLD is the largest, and the
proposed algorithm of this paper is second. the LCT has the largest
average frame rate at 19.84 fps, and our algorithm in this paper is the
second at 16.68 fps. Therefore, the comprehensive performance of the
proposed algorithm is the best.

VIDEO FRAME TLD STRUCK LCT OURS
COKE s Tido 1 a0m 1o
(
R VR T Y
2.5

GIRL s 05 9ol dose 19

BASKETBALL g Tog1 73 3res 2020
LEMMING o log 735 &1 om
:

LQUOR s 513 s e 2060
MEAN s oo ws%  osi lees

Table 2 compares the CLE and the FPS (Frames Per Sec-
ond) of four different algorithms. (The real-time performance
of the algorithm is calculated using the total time consump-
tion of the tracking algorithm and the total number of frames
of the video sequences). The larger the FPS is, the higher
the real-time performance of the algorithm. The first column
of Table 2 represents different video frame sequences, the
other columns represent the CLE and the FPS of the different
algorithms, and last row represents the average CLE and
average FPS of the different algorithms. The best result for
each line is marked in red, and the second-best result is
marked in blue. Table 2 provides the qualitative analysis of
the TLD, Struck, and LCT algorithms, and ours.
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FIGURE 5. Success and accuracy maps for TLD, Struck, LCT, and Ours
(HC_4) on 34 selected sequences.

To better illustrate the tracking performance of the
proposed algorithm in various complex scenarios, this
paper quantitatively analyzes the selected 34 video frame
sequences. The experimental results are shown in Fig.5.
In Fig.5, we can see that compared with other tracking
algorithms, the success rate and accuracy of the proposed
algorithm are the highest at 0.625 and 0.764, respectively;
therefore, the robustness of the proposed algorithm is the best.

C. STATE-OF-THE-ART COMPARISON ON OTB100

To be more persuasive, we compare our algorithm with
other state-of-the-art methods related to this paper on all
sequences in OTB100. It has 100 video test sequences, which
contain 11 challenges, including illumination variance, scale
variation, occlusion, deformation, motion blur, fast motion,
in-plane rotation, out-of-plane rotation, out-of-view, back-
ground clutter and low resolution. We follow the two criteria,
the success rate and the precision, which are described in
detail in Section IV.B. To evaluate the performance, we com-
pare our algorithm with 7 state-of-the-art tracking methods
relevant to our proposal, including LMCF [42], SRDCF
[25], Staple [7], STAPLE_CA [43], Struck [21], TLD [33],
LCT [18]. In general, the precision and success rate of our
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FIGURE 6. Comparison of the performance of Ours (HC_4) with other
algorithms under all sequences of OTB100. The top is the precision plot
and the bottom is the success rate plot.

algorithm are 1.8% and 0.7% higher than those of the second
best algorithms in terms of the two indices. In the compar-
ison with Struck, our algorithm achieves 17% and 16.1%
improvements in precision and success rate, respectively.
Compared with LCT, we can see that our algorithm obtained
2.2% and 0.7% improvements in precision and success rate,
respectively. As shown in Fig.6, our method is superior to the
compared algorithms in both precision and success rate under
all sequences of OTB100, which demonstrates the highly
competitive performance of our proposal.

V. CONCLUSION

In this paper, we propose an occlusion judgment tracker
based on the CF framework. To solve the instability of the
algorithms based on the single feature in complex scenes,
we extract the HOG and CN features to train the model and
track the target. Therefore, our algorithm has the advantage
that the traditional method does not have before and after
occlusion. Furthermore, we introduce the £{£; loss func-
tion to reduce the sensitivity of CF-based methods to local
occlusion. Next, we propose an adaptive online model update
strategy based on the sensitivity value S of the PSR to get
a robust appearance model. As a complement of the target

122780

out-of-view, the PSR is used to determine whether the target
is severely occluded, and then detect the disocclusion by
the SVM. According to the experimental results, compared
with the existing related algorithms, our algorithm has certain
advantages and robust performance. However, with respect
to deep learning-based tracking algorithms, the accuracy of
our algorithm needs to be improved. This is mainly because
the traditional features are not comprehensive enough in the
training and learning of the model.
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