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ABSTRACT Radial basis function neural networks (RBFs) are prime candidates for pattern classification
and regression and have been used extensively in classical machine learning applications. However, RBFs
have not been integrated into contemporary deep learning research and computer vision using conventional
convolutional neural networks (CNNs) due to their lack of adaptability with modern architectures. In this
paper, we adapt RBF networks as a classifier on top of CNNs by modifying the training process and
introducing a new activation function to train modern vision architectures end-to-end for image classification.
The specific architecture of RBFs enables the learning of a similarity distance metric to compare and find
similar and dissimilar images. Furthermore, we demonstrate that using an RBF classifier on top of any CNN
architecture provides new human-interpretable insights about the decision-making process of the models.
Finally, we successfully apply RBFs to a range of CNN architectures and evaluate the results on benchmark
computer vision datasets.

INDEX TERMS Radial basis function neural networks (RBFs), convolutional neural networks (CNNs),

CNN-RBFs, supervised learning, unsupervised learning, similarity distance metric.

I. INTRODUCTION
Inspired by the locally tuned response of biological neu-
rons, Broomhead and Lowe introduced radial basis function
neural networks (RBFs) in 1988 [1]. The modeling concept
behind RBFs is a combination of unsupervised and super-
vised learning for pattern classification and regression. How-
ever, RBFs have not been integrated into the contemporary
approaches to computer vision using convolutional neural
networks (CNNs) so far due to structural deficiencies. This
paper presents developments in a new area of research and
lays the foundation for using RBFs in deep learning and
computer vision by modifying their architecture and learning
process as well as providing open-source code!. The results
demonstrate that integrating RBFs into CNN models for com-
puter vision provides both a similarity distance metric as well
as an interpretable decision-making process.

This research is motivated by the unique opportunities the
RBF architectures introduce when used with CNN models.
A new training process introduced for RBFs in this paper
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provides the opportunity of using labeled and unlabeled data
by optimizing two loss functions combining supervised and
unsupervised learning. The training process of RBF architec-
tures employs a distance metric optimization that we propose
to use as a similarity distance metric to find similar and
dissimilar images. Additionally, this research proposes visu-
alization techniques to illustrate the clusters and activations
with training and test images to gain more insight into the
reasoning behind the decisions made by the networks, thus
improving interpretability. The contributions of this paper to
computer vision literature can be summarized as follows:

« Combining supervised and unsupervised learning.
o Learning a similarity distance metric to find similar
images.

« Improving the interpretability of decision-making.

Despite the advantages of combining RBFs to modern
CNN architectures, there are two factors in the architecture
and training process of RBFs hindering their integration into
CNNs. First, the nonlinear activations and computational
graphs of RBFs used in the literature prevent efficient gra-
dient flow. Secondly, RBFs assume that the training features
are fixed and the cluster centers are initialized accordingly.
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FIGURE 1. A visual summary of the paper: Figures on the top and bottom rows visualize the position of a test image in the unsupervised clusters. The
output of a CNN backbone is connected to the input of an RBF through a fully connected layer. The input features of the RBFs are referred to as
embeddings in this research work. The embeddings of each image are compared to cluster centers with a trainable similarity distance metric. The same
distance metric can be used to find images similar to a test sample amongst training images (visualized in the table in the middle row). The RBFs apply
an activation function to the distance of the training images from the cluster centers to compute activation values. The output layer of the RBF is
optimized for classification based on these activation values. We train the entire CNN-RBF architecture end-to-end.

Nonetheless, CNN architecture learns the embeddings, which
are used as features of RBFs. This paper tackles the limita-
tions of the original RBFs and presents the following contri-
butions to RBF literature:

« Introducing a quadratic activation function and a linear
computational graph for end-to-end learning.

o Adding an unsupervised loss term to update the cluster
centers in the training process with the learned embed-
dings.

o Applying the RBFs to computer vision in a first attempt
using deep CNN architectures.

The remainder of the paper covers the related works in
Section II followed by the theoretical background of RBFs
in Section III. We then present our original research and
contributions in Section IV with our proposed modifications
to RBFs followed by a visual explanation of the new pro-
posed training and decision-making process in Section V.
The experimental results of applying the proposed RBF-CNN
architectures using a range of CNN backbones on benchmark
datasets are presented in Section VI. The potential contribu-
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tions of our proposed similarity distance metric on the field of
computer vision to enhance the transparency of the decision
making process is demonstrated in Section VII. We finally
present our conclusions in VIII.

Il. RELATED WORKS

Research into optimizing RBF architectures has followed two
approaches. The first appraoch concentrates on the training
process and initialization of the networks while the second
approach aims to find better optimized activation functions.
This paper presents improvements to both approaches and
integrates the RBFs into contemporary vision models using
CNNEs.

RBFs were originally introduced as a supervised approach
for classification and regression tasks. Broomhead and Lowe
proposed to draw the cluster centers either from a uniform
distribution or randomly from the training samples and then
optimizing the output weights using a pseudo-inverse analytic
solution [1]. Initializing the cluster centers randomly and only
training the output weights is a one-phase training process for
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RBFs. Two-phase training for RBFs uses various methods
to initialize the cluster centers as well as optimizing the
output weights. Research since 1988 has used supervised
and unsupervised methods to initialize the centers. Moody
and Darken proposed an unsupervised algorithm to initialize
these cluster centers [2] while Schwenker et al. proposed
supervised vector quantization [3]. Decision trees were used
to find centers independently by [4] and [5] before training
the output weights. Finally, Schwenker et al. proposed a
third phase to optimize the entire RBF network end-to-end
including output weights, cluster center, and parameters of
activation functions using gradient descent [6].

All of these methods for cluster center initialization assume
a fixed feature space for the input layer. However, CNNs
learn the embeddings automatically and develop the feature
space of the images during the training process. Therefore,
we suggest optimizing an unsupervised learning loss during
the training to cope with this change in the feature space. This
work differs from previous research as it combines supervised
and unsupervised learning by optimizing two separate losses
using gradient descent.

Various applications and implementations have motivated
several activation functions presented in the literature of
RBFs [7]. The Gaussian function is the kernel encour-
aged by modeling the data through a multivariate Gaussian
distribution [1]. Other functions adopted in the RBF
architecture include linear kernels, thin-plate splines, logis-
tic functions, and multiquadratic functions [8]-[11]. Hardy’s
multiquadratic functions motivate an activation function for
RBFs used by Karimi ef al. [12] and Zhao et al. [13].
Du et al. proposed a kernel for digital signal processing (DSP)
units [7]. In this paper, we suggest a quadratic kernel to build
a linear computational graph for efficient gradient flow and
integrate RBFs for end-to-end training with CNN architec-
tures.

Besides the mature fundamental research, RBFs have been
applied to a broad range of applications for pattern clas-
sification and regression in recent years. Nicodemou et al.
used RBF networks for 3D hand pose estimation [14],
Dehghan and Mohammadi estimated a numerical solution
for Fokker-Planck differential equations with RBFs [15],
Li et al. used sparse multiscale RBFs for seizure detection
in EEG signals [16], and Zhao et al. predicted interfacial
interactions by training RBFs [13]. Furthermore, Geng et al.
introduced deep RBF networks and applied the method to
food safety inspection data. RBFs are used to train models
for classification and regression in discrete and continuous
pain quantification [17].

RBFs have been used for computer vision tasks and image
classification as well. Friedhelm et al. used raw images as
feature vectors to classify hand-written digits [6]. Er et al.
extracted the features from facial images using principle com-
ponent analysis (PCA) and processed these features using
Fisher’s linear discriminant (FLD) technique before classi-
fying the patterns using RBFs [18]. However, the success-
ful rise of the modern conventional neural networks, such
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as LeNet-5 [19] and AlexNet [20], led to a paradigm shift
from using hand-crafted features to automated deep con-
volutional feature and representation learning using CNNGs.
In recent years, most computer vision tasks, like facial recog-
nition [21], are dominated by modern CNN architectures
as they present superior performance compared to classical
methods for image processing. To the best of our knowledge,
this paper presents the first attempt to integrate RBFs into
modern CNN architectures for computer vision.

This research work relates to literature focusing on deep
metric learning since RBFs optimize a similarity distance
metric automatically during training based on their architec-
ture. Euclidean distance, Mahalanobis distance and cosine
similarity have been used to evaluate similarity between the
embeddings (extracted features from CNNs) of two images
in the literature [22]-[24]. Researchers have applied differ-
ent strategies and loss functions to optimize these similarity
metrics for same-class images while also maximizing the
distance of different-class images. The research in this area
concentrates on the training process and the design of a loss
function which brings similar images closer in the embedding
space based on a similarity measure. Hu et al. proposed to
minimize the inter-class scores and maximize the intra-class
scores based on Euclidian distances [25]. Hoffer and Ailon
suggested optimizing a similarity-based loss function defined
for selected triplets of images [22]. Song et al. used the
pairwise distances between images of an entire batch and
proposed a structured loss function for metric learning [26].
Similar research work aimed at optimizing angular distance,
cosine distance and large-margin Euclidean distance of simi-
lar and dissimilar samples [24], [27], [28].

This paper presents a method to retrieve a ranked list
of similar and dissimilar images, which leads to visually
appealing results for similarity metric learning. However,
the proposed similarity metric learned by the RBFs does not
require any complicated triplet sample section or loss design.
The presented results are obtained using a typical supervised
loss function for classification (softmax cross-entropy). Fur-
thermore, RBFs can not only optimize for Euclidean and
Mahalanobis distances, but also for the entire covariance
matrix.

IIl. RADIAL BASIS FUNCTION NETWORKS

In this section, we briefly review and explain the theoreti-
cal foundation of radial basis function networks. RBFs are
presented in the literature as a global approximation method
for learning a mapping F from a given feature space with
dimensionality d to label a space with dimensionality K
(F : IRY — IRX) [1]. In this paper, the function F of features
x approximates the one-hot encoded labels y. The features
used in this work to train the RBFs are the embeddings
of deep (CNNs) to predict the class labels using end-to-
end optimization. However, we use a fully connected layer
between CNN architectures and RBFs to provide compatibil-
ity between the two architectures and prevent overfitting. The
architecture of the RBF consists of an input layer, a single
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FIGURE 2. Activation functions for RBF networks. We used the following parameters for all of the kernels: 0 = 1, « = 1/2, and 8 = 1/2. The proposed
quadratic activation kernel is linear based on the r2. Consequently, the CNN goes through a completely linear forward path and thus computes the

gradient during backpropagation efficiently.

trainable hidden layer with C cluster centers (c;), and an
output layer.

During the evaluation, also termed inference in the deep
learning architecture, the RBF computes a distance between
embeddings of deep CNNs and the cluster centers and applies
an activation function to this distance. The network outputs
are then computed by multiplying the weights of the output
layer with the activation values. This evaluation process for-
mally defined as:

=X =i llg = & = ¢) Rilx — ¢)) M
C

Ve = Fr@) =) wich(l x* —¢j lIg) +woe  (2)
j=1

where r represents the distance, R; is the positive definite
covariance matrix (trainable distance), T denotes the matrix
transposition, wj; shows the weights of the output layers,
h is the activation function, and wy; are the biases. In these
equations, u, j, and k enumerate the number of samples, clus-
ter centers, and classes, respectively. Trainable parameters in
Equation 1 and 2 are the output weights, cluster centers, and
covariance matrix.

Optimizing the RBF networks with an identity covariance
matrix results in training in Euclidean space. It is possible to
optimize a Mahalanobis distance [29] by training the main
diagonal on the covariance matrix. Any arbitrary distance
metric can be trained by optimizing the entire covariance
matrix while projecting the matrix to the space of positive
definite matrices. The distance r computed in Equation 1 is
not only a measure of the proximity of an image to a cluster
center but can also be used to compare images and find similar
and dissimilar images in the embeddings space.

The linear and nonlinear activation functions used in RBFs
are as follows [9]-[11]:

Linear : h(ry=r 3)
Gaussian : h(r) = e 200 )
Thin-plate spline :  h(r) = r’lnr (@)
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In addition to the standard machine learning activation
kernels in equations 3-6, the kernel presented in Equation 7 is
derived from the generalized Hardy’s multiquadratic function
[8] and results in the same function for ¢ = 1/2. Du et al.
[7] proposed the kernel in Equation 9 because of its conve-
nience for implementation on DSP units. Various activation
functions for RBF are depicted in Figure 2.

The complete process of training RBFs was introduced by
Schwenker et al. [6] as three phase process:

Unsupervised Learning: This step is aimed at finding
cluster centers that are representative of the data. The
k-means [30] clustering algorithm is widely used for this
purpose. k-means iteratively finds a set of cluster centers and
minimizes the overall distance between cluster centers and
members over the entire dataset. The target of the k-means
algorithm can be written in the following form:

K
2
Lossunxupervised = Z Z ” xt — Cj || (10

Jj=1 xtev;

where x* € ¥; denotes the members of the j” cluster shown
by 0 -

Computing Weights: The output weights of an RBF net-
work can be computed using a closed-form solution. The
matrix of activation of the samples is defined from the train-
ing set (H) as follows:

H = h(| x" = ¢j Il Ju=1....M.j=1,...C (1n

Based on Equation 2, the matrix of output weights (W),
which estimates the matrix of labels (Y), is computed by the
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following equation:
Y~MW = W~M'Y (12)

where M1 is the Moore—Penrose pseudo-inverse matrix [31]
of H and is computed as:
H' = lim H'H +o)"'H" (13)
a—0t
End-to-End Optimization: After initializing the RBF
weights and cluster centers with a clustering algorithms such
as k-means, it is possible to optimize the network end-to-end
via backpropagation and gradient descent. Schwenker et al.
computed the gradients of the loss function for a Gaussian
activation function in [6].

IV. ADAPTING RBFs FOR CNNs

In this section, we propose using RBF classifiers on top of
CNNs as depicted in Figure 1. The deep embeddings are
computed using standard convolutional layers and incep-
tion blocks. The deep embedding of the CNNs are flat-
tened and fed to an RBF after using a fully connected
layer in the architecture. The network ends with an out-
put layer with softmax activation and is optimized end-
to-end. Integrating the RBFs into deep structures and
using them in conjunction with CNNs presents three
challenges:

Initialization: Training the RBFs from scratch with ran-
domly initialized weights using gradient descent is quite
inefficient due to inappropriate initial cluster centers. The
large initial distances in high dimensional spaces leads to
small activation values and the gradients attenuate consid-
erably after the RBF hidden layer during backpropagation.
Therefore, we use the k-means algorithm to initialize the
cluster centers before starting the training. Furthermore, com-
puting the weights from Equation 12 is not feasible at the
scale of computer vision problems such as ImageNet [32],
which has over 14 million images and 1000 classes. Hence,
we randomly initialize the output layer and optimize it using
gradient descent.

Dynamic Input Features: The input features of classical
RBFs are fixed, but this assumption is not valid with respect
to CNNs. As the embeddings of CNNs develop during the
training process, the cluster centers initialized by the k-means
algorithm are no longer optimal after a few epochs of training.
We propose to optimize the k-means algorithm target with the
unsupervised loss defined in Equation 10 during the training
process.

Activation: The nonlinear computational graph drawn by
computing the distance in Equation 1 and applying the acti-
vations in equations 3-9 leads to inefficient gradient flow.
We target this challenge by introducing a new activation
function.

A. INTRODUCING UNSUPERVISED LEARNING LOSS

In this section, we explain two modifications to classical
RBFs to make them suitable for deep CNNs. First, we intro-
duce an additional loss term to the RBF hidden layer. This
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term is based on the target function of the k-means algorithm
defined in Equation 10 and continues in the unsupervised
learning process during the development of embeddings.
Secondly, we introduce a new quadratic kernel to build a
linear computational graph for efficient optimization using
backpropagation.

The embeddings of CNNs change during the training pro-
cess and necessitates updating the cluster centers with an
unsupervised loss. We introduce an additional term to the
networks loss function based on the unsupervised target in
Section IIT to optimize the cluster centers during training
using the k-means loss in Equation 10.

The final loss of a CNN with RBFs as the classifier
(CNN-RBFs) is computed as

Lossibr = LosSsupervised + A X LOSSunsupervised (14)

where the classification loss LosSclassification 1S any arbitrary
loss function, for instance categorical cross entropy.

It is conventional to use clustering algorithms such as the
k-means or expectation-maximization (EM) algorithms to
initialize the cluster centers. The loss function in Equation 14
is optimized using gradient descent by minimizing the dis-
tance of the embeddings for each sample from its nearest
cluster center regardless of the class labels. The distance
from the nearest cluster center is computed from the distance
metric R; defined in Equation 1.

B. QUADRATIC KERNEL

The kernels used for classical RBFs are nonlinear, increasing
model complexity. The architectures proposed in Figure 1
profit from utilizing the state-of-the-art in representation
learning, i.e. CNNs, as a backbone. Therefore, CNN-RBF
architectures can be trained with simpler linear models to
improve the gradient flow during backpropagation. The pro-
posed quadratic activation function is linear in the space of >
and is defined as follows:

h(ry=1-r*/c? (15)

where o is the parameter that determines the width of the
kernel. The proposed kernel is depicted in Figure 2 along with
the conventional activation kernels. Our proposed quadratic
kernel reduces the nonlinearity of the CNN-RBF computa-
tional graph for backpropagation. The squares of the dis-
tances between cluster centers and samples are computed by
linear matrix multiplication in Equation 1 and applying the
proposed activation, which is linear for r2. Thus, the gradi-
ents of the deep embeddings propagate backwards through
a distance computation with matrix multiplication and linear
activations.

V. VISUALIZATION OF TRAINING PROCESS

In this section, we visualize the performance of the RBFs
on top of CNNs on a simple dataset. The experiments are
conducted on the modified national institute of standards
and technology dataset (MNIST) [34], which is a dataset of
hand-written digits including 10 classes. Learning the dataset
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FIGURE 3. The location of data samples compared to the cluster centers during the training process. The centers of the clusters are in the middle of the
figures. The training samples are located by a random angle and their distance from the center of the cluster. The vertical and horizontal axes show the

normalized distances.

is considered a simple task in computer vision. The simplicity
of the dataset and learning task provides us with the opportu-
nity to visualize the training process at a fine level of detail.
We chose the same number of cluster centers as classes (10) in
the dataset to depict the training process of a CNN-RBF. The
network architecture in this section consists of a four-layer
CNN and the output of these layers is connected to the RBF
after a global average pooling layer and a fully connected
layer.

Figure 3 demonstrates the evolution of a representation
around the cluster center during the training process. The data
samples in this figure are placed according to their distance
from the center and at a random angle. The samples are shown
with a number denoting their class and are additionally color
code accordingly in Figure 3. To reduce the overlap of similar
samples, we add random uniformly distributed noise at an
amplitude of 0.1 to the distance of the samples from the
cluster centers.

Minimizing the unsupervised loss in Equation 10 reduces
the distance of the data samples from the cluster centers.
Furthermore, the supervised loss enforces the samples of
the same class to maintain the same distance from cluster
centers, as the activations are the only information for the
final decision of the network. The circles with samples of the
same class around the cluster centers demonstrate the effect of
supervised loss in training. It should be noted that the clusters
presented in Figure 3 are selected to optimally illustrate the
concepts underlying training CNN-RBFs. Figure 4 illustrates
the two-dimensional mapping of the CNN embeddings (top
row) and RBF activations (bottom row) using t-SNE [33]. The
effect of both supervised and unsupervised loss from Equa-
tion 14 is also visible in this figure. The data samples split into
clusters regardless of their class labels in the embedding space
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of CNN due to the unsupervised loss (top row in Figure 4).
The activation values divide into clusters corresponding to the
class labels, a process encouraged by the supervised loss.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results that reinforce
the applicability of RBFs to CNNs. We use several stan-
dard computer vision benchmark datasets and investigate the
effect of tweaking various hyperparameters of the CNN-RBF
architectures in the training phase and generalization to
test data. We used three convolutional backbones: those of
EfficientNet-BO [35], InceptionV2 [36], and ResNet50 [37].
A list of the benchmark computer vision datasets is presented
in Table 1.

TABLE 1. Computer vision benchmark datasets used to evaluate the
performance of CNN-RBFs.

Dataset Train Size  Test Size  # Classes
CIFAR-10 [38] 50 000 10 000 10
CIFAR-100 [38] 50 000 10 000 100
Oxford-IIIT Pets [39] 3680 3369 37
Oxford Flowers [40] 1020 6 140 102
FGVC Aircraft [41] 6 667 3333 100
Caltech Birds [42] 5996 5794 200

Figure 5 shows the hyperparameter search results for object
classification on two benchmark computer vision datasets:
CIFAR-10 and CIFAR-100. The backbone CNN model in this
experiment is EfficientNet-BO with RBFs on top of this back-
bone for classification. The image preprocessing pipeline,
called AutoAugment [43], consists of a set of optimal and
automatically searched augmentation policies for the Ima-
geNet [32] dataset. The CNN-RBF architecture demonstrated
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FIGURE 4. The two-dimensional representation of the training process. The figure presents the embeddings of the convolutional backbone (top row) and
the activations of the RBFs (bottom row) and then maps them to a two-dimensional space using t-SNE [33]. The vertical and horizontal axes depict the

normalized values; however, the unit value is the same in all sub-figures.

FIGURE 5. Hyperparameter search results from CIFAR-10 (top) and
CIFAR-100 (bottom). The top five performing sets of hyperparameters for
each dataset are highlighted in yellow.

in Figure 1 has two further hyperparameters: the number of
cluster centers and the input dimensions of the RBF network.
The models are optimized using an AdamW [44] optimizer
with learning rate and weight decay as hyperparameters. The
loss constant A from Equation 14, dropout rate, and batch size
are the other hyperparameters.

The hyperparameter searches in Figure 5 are conducted
using the hyperband [45] algorithm with 4 agents run-
ning in parallel on two Quadro T2000 graphic processing
units (GPUs) for approximately 10 days. It should be noted
that dropout is only applied after the CNN backbone and
before the fully connected layer in Figure 1. The output of
the fully connected layer, without any activation function,
is used as the input feature of the RBFs. The results in Figure 5
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shows that training CNN-RBF architectures leads to high
performances with a wide range of hyperparameters. How-
ever, achieving good test performance with a high dropout
rate and a large input dimension is challenging. CNN-RBF
architectures show a better performance without dropout and
rectified linear unit (ReLU) activations in the input layer
of RBFs. Thus, we neglect the dropout for further hyperpa-
rameter searches conducted on the datasets in Table 1. The
list of optimal hyperparameters for all datasets is presented
in Table 2.

We also applied CNN-RBFs to several other computer
vision datasets with various backbone architectures. The
experimental results of applying the CNN-RBFs to the com-
puter vision benchmark datasets with the standard train and
test splits are presented in Table 3. CNN-RBFs show the
capacity to learn the entire dataset in all of the cases. There is,
however, a small gap between the best reported performances
in computer vision literature and CNN-RBF architectures.
Using dropout with CNN-RBFs for regularization does not
lead to desirable results and reducing the number of param-
eters of the RBFs, while limiting the input size, is the best
regularization strategy that we found for RBFs besides data
augmentation. Developing regularization methods for RBFs
to improve generalization is an open research topic for reduc-
ing the gap between our current results and those of state-of-
the-art computer vision models.

VII. SIMILARITY METRIC LEARNING AND
INTERPRETABILITY OF CNN-RBFs

Using a different approximation strategy compared with fully
connected layers provides CNN-RBFs with the chance to
probe the decision-making process based on these visual
clues:
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;1

Test image Similar and dissimilar images

FIGURE 6. Similar and dissimilar training images for given test images based on the similarity metric compute in Equation 16 and 17.
The Figure depicts the top 7 most similar and dissimilar training images for a given test image in every two rows. The images shown
in every two consecutive rows belong to one of the datasets in Table 1 with the same order.
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Test image | Similar images from training set in the embedding space

Learned metric

Euclidean distance

Cosine distance

FIGURE 8. The Figure illustrates the clusters contributing to the correct class (top row) and the wrong class (bottom row) of the CNN-RBF network. The
test sample is the larger image with red boarded in each cluster representation. Red circles show the distance of the samples to the cluster center,
and the background is proportional to the activation values of the cluster. The brighter the activation value, the larger it is and the maximum

activation at the cluster center is equal to one.

o Similar images as measured by the similarity distance
metric of RBFs trained on CNN embeddings
« Visualizing the clusters with higher contribution to the
network’s decision and distance of the samples from the
centers of these clusters
The embeddings of CNN are evaluated by their learned dis-
tance metric from cluster centers in RBFs. The same distance
can be used to measure the distance between a test image
and similar images from training data. Figure 6 shows the
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similar images found in the training dataset for a given test
sample by the similarity distance metric in Equation 1. The
most similar and dissimilar images are computed using the
following criteria:

: 2
Xsimilar = argmin || xﬁam — Xest g (16)
Xtrain
2
Xdissimilar = argmax || x;j;'ain — Xrest g (7
Xtrain
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TABLE 2. List of the final hyperparameters used for each computer vision
benchmark dataset to achieve the performance of CNN-RBF architectures.

Loss Learning  Embeddings ~ Batch ~ Number of ~ Weight
Dataset constant rate dimensions size centers decay
CIFAR-10 0.1141 2.355e-5 64 32 20 1.090e-7
CIFAR-100 0.8557 1.873e-4 32 64 50 5.369e-7
Oxford-IIIT Pets 1.067 7.487e-5 64 16 50 1.150e-7
Oxford Flowers 1.562 1.076e-4 16 64 100 3.843¢-6
FGVC Aircraft 0.5471 1.103e-4 8 8 50 1.222e-6
Caltech Birds 0.5156 2.603e-4 32 32 50 1.416e-8

TABLE 3. Comparing the performance of various CNN-RBF architectures
with pretraining and augmentation on benchmark computer vision
datasets. The best results column is the top performance of the current
state-of-the-art architecture on the benchmark dataset.

Dataset CNN-RBFs Best
atase Backbone EfficientNet-BO  InceptionV2  ResNet50 | result
No-Augment 0.966 0.963 0.969 0.993

CIFAR-10 ‘ Auto-Augment 0.975 0.977 0.942 ‘
No-Augment 0.797 0.752 0.693 0.936

CIFAR-100 ‘ Auto-Augment 0.822 0.805 0.778 ‘

3 No-Augment 0.840 0.804 0.622 0.967
Oxford-IIT Pets | 4 1o Augment 0.887 0.820 0.829 ‘
Oxford Flowers No-Augment 0.609 0.659 0.595 0.997

i Auto-Augment 0.828 0.757 0.667
. No-Augment 0.723 0.717 0.665 0.945
FGVC Aireraft ‘ Auto-Augment 0.842 0.843 0.828 ‘
o No-Augment 0.613 0.428 0281 | 0.904
Caltech Birds | 5 1t Augment 0.618 0.587 0.503 ‘

where x5 presents the input of RBFs for a given test image,
xt’jm.n shows the input vector for training samples, and w
enumerates the training samples from 1 to N. Xgjuiiqr and
X gissimliar TEpresent the most similar and dissimilar images to
the given test image (X ) respectively. We can use the same
similarity metrics in Equation 16 and 17 to create a ranked
list of similar and dissimilar images for a given test sample.

Figure 7 compares the performance of the similar sample
selection for a given test images. The figure suggests that
the learned metric and Euclidean distances outperform the
cosine distance for similar sample selection. Furthermore the
learned metric slightly outperforms the Euclidean distance in
this specific case.

The active clusters for every sample provide the reasoning
behind the final decision of a CNN-RBF. The clusters can
be described by the distance of images from their centers.
Figure 8 depicts training samples and their distances from
the cluster centers against a test sample. The product of
activations and output weights determines the final decision
of an RBF. Thus, the importance of clusters for a decision
can be determined by sorting the product of activations and
class weights. Figure 8 depicts the clusters with the highest
contributions to the correct class (ground truth) and the wrong
class based on this multiplication product. The wrong class
here refers to the class with the second-highest level of con-
fidence.

VIil. CONCLUSION

The research work presents fundamental architectural mod-
ifications that are applied to RBFs to integrate them with
CNNs for computer vision. The experimental results indi-
cate that the integration of RBFs on top of CNNs achieves
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competitive performances in benchmark computer vision
datasets by combining supervised and unsupervised learning.
The proposed activation and training process is compatible
with any arbitrary state-of-the-art CNN architecture, includ-
ing inception blocks and residual connections. The small gap
between the CNN-RBFs performance and best CNN models
is a subject for future research to find optimal regularization
methods for RBF networks. Using RBF architecture with
CNN s introduces two unique and network-specific opportu-
nities for learning a similarity distance metric and interpret-
ing the decision-making process in more detail. Similar and
dissimilar images found using a similarity distance metric
trained by RBFs are interpretable by humans. The cluster
representations are currently only used to trace the decision
making process as in the current research, the distribution
of images around clusters are not visually conclusive due
to being optimized in an unsupervised manner regardless of
ground-truth labels.
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