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ABSTRACT Interest in agricultural automation has increased considerably in recent decades due to
benefits such as improving productivity or reducing the labor force. However, there are some current
problems associated with unstructured environments make developing a robotic harvester a challenge. This
article presents a dual-arm aubergine harvesting robot consisting of two robotic arms configured in an
anthropomorphic manner to optimize the dual workspace. To detect and locate the aubergines automatically,
we implemented an algorithm based on a support vector machine (SVM) classifier and designed a planning
algorithm for scheduling efficient fruit harvesting that coordinates the two arms throughout the harvesting
process. Finally, we propose a novel algorithm for dealing with occlusions using the capabilities of the
dual-arm robot for coordinate work. Therefore, the main contribution of this study is the implementation
and validation of a dual-arm harvesting robot with planning and control algorithms, which, depending on the
locations of the fruits and the configuration of the arms, enables the following: (i) the simultaneous harvesting
of two aubergines; (ii) the harvesting of a single aubergine with a single arm; or (iii) a collaborative behavior
between the arms to solve occlusions. This cooperative operationmimics complex human harvestingmotions
such as using one arm to push leaves aside while the other arm picks the fruit. The performance of
the proposed harvester is evaluated through laboratory tests that simulate the most common real-world
scenarios. The results show that the robotic harvester has a success rate of 91.67% and an average cycle
time of 26 s/fruit.

INDEX TERMS Aubergines, dual-arm robot manipulation, eggplants, intelligent perception, machine
vision, occlusions, precision agriculture, robotic harvesting.

I. INTRODUCTION
In recent decades, there has been a growing interest in
automating the harvesting of fruits and vegetables. This inter-
est stems from the benefits that advanced agricultural automa-
tion can provide. Robotic harvesting can improve produc-
tivity many-fold by reducing manual labor and production
costs, increasing yield and quality, and enabling better control
over environmental implications. However, the complexity of
agricultural environments combined with the intensity of pro-
duction demands requires robust systems capable of adapting
to high crop variability. Two critical aspects for achieving a
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successful automation of harvesting tasks are detecting fruits
and vegetables in natural conditions and the proper grasping
and manipulation of the detected target products.

There are countless challenges associated with the ability
to process, analyze and interpret visual inputs in unstructured
environments. In agricultural settings, scenes exhibit a large
degree of uncertainty; they contain objects with various col-
ors, shapes, sizes, textures, and reflectance properties that
change continuously due to illumination and shadow condi-
tions [1], [2]. A broad overview of the development of vision
technology applied in precision agriculture applications was
compiled by [2]–[5]. Severe occlusion of fruits or vegetables,
which may be partially shadowed by other fruits, stems and
leaves, is another common problem in real-world scenarios.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121889

https://orcid.org/0000-0003-3920-9648
https://orcid.org/0000-0003-0552-5407
https://orcid.org/0000-0002-4314-4448
https://orcid.org/0000-0001-5462-8213
https://orcid.org/0000-0002-0219-3155
https://orcid.org/0000-0001-5255-5559


D. Sepúlveda et al.: Robotic Aubergine Harvesting Using Dual-Arm Manipulation

Several strategies have been proposed to address these occlu-
sions. One popular method is the circular Hough transform,
which is effective for round objects such as oranges, apples
and tomatoes [6]. However, the results show that this method
is not only prone to false positives produced by the contours
of other objects such as leaves, but is also computationally
time-consuming, which makes real-time applications chal-
lenging. Another strategy proposed the use of an air-blowing
device to avoid leaf occlusion and move adjacent fruits
aside [7]. However, this solution increases the weight of the
end-effector and may not be applicable to all types of crops.

After the 3D position of the fruit to be harvested has been
obtained, its coordinates can be further utilized to instruct
the movement of a robotic arm. Numerous harvesting robots
based on this approach have been proposed in the literature
for different kinds of crops [8], [9]. In [9], a 4 DoF manipula-
tor guided by a 3-D vision system was proposed for picking
cherries, while [8] proposed a single shot multibox detector
to discriminate apples and a stereo camera to determine their
three-dimensional positions. The arm harvests the apples by
twisting the hand axis. The experimental results showed that
this system detects more than 90.0% of the fruits and that the
robot could harvest a fruit in 16 s.

However, in recent years, harvester robots based on mul-
tiarm configurations have gained attention. The idea is to
improve the poor efficiency achievable with autonomous
one-arm robotic harvesters by mounting multiple manipula-
tors on a robotic platform and assigning a specific workspace
to each manipulator to harvest [10]. For instance, the stud-
ies presented in [11], [12] focused on improving harvesting
efficiency by developing algorithms that achieve the best
distribution of fruits among the arms. In [12], the authors
presented a four-armed kiwi harvester robot designed to
operate autonomously in pergola-like orchards. The vision
system uses deep neural networks and stereo matching to
detect and locate kiwifruit in real-world lighting conditions.
The proposal included a dynamic fruit scheduling system to
coordinate the arms throughout the harvesting process. The
performance evaluation results showed that the system was
capable of successfully harvesting 51.0%of the total kiwifruit
within the orchard with an average cycle time of 5 s/fruit.

In [13], the authors proposed a dual-armed cooperative
approach for a tomato harvesting robot using a binocu-
lar vision sensor. The tomato detection algorithm com-
bined the AdaBoost classifier and color analysis. The
three-dimensional scene reconstruction was obtained in a
simulation environment by using the point clouds acquired
from a stereo camera. The achieved harvest success rate
was 87.5%; meanwhile, the harvesting cycle time excluding
cruise time, was less than 30 s.

A robotic harvesting system that performed recognition,
approach, and picking tasks for aubergines was presented
in [14]. The proposed machine vision algorithm combined a
color segmentation process and a vertical dividing operation.
To actuate the manipulator, they designed a visual feedback
fuzzy control model that enables themanipulator end-effector

to approach the fruit from a distance of 0.3 m. The sys-
tem achieved a successful harvesting rate of 62.5% and an
aubergine-harvesting execution time of 64 s.

The aforementioned studies used more than one arm work-
ing independently; however, coordinating their behavior was
not among the considered objectives. To fill this gap in
robotic harvesting, this study proposes and validates planning
and control algorithms for a dual-arm aubergine harvesting
robot whose end-effectors operate cooperatively allowing it
to reproduce complex human movements during harvest-
ing tasks, e.g., with one arm pushing leave sideways while
the second arm picks the fruit.

Vegetables such as aubergines must be harvested care-
fully to avoid damage, which is important for maintain-
ing fresh-market quality and increasing product desirability.
In recent years, the production trend for aubergines has under-
gone a significant increase within the European Union; Spain
is the current leader in aubergine exports, although countries
such as China and India are also notable in aubergine cultiva-
tion [15]. This increase shows the importance of aubergines
agriculturally and economically. However, research studies
that address the development of robotic harvesting systems
targeting aubergines are scarce [14], [16]; the successful
harvesting performance rates are low, and the harvesting time
per fruit is high. These conditions motivated our interest in
selecting this crop and the future possibilities that aubergine
harvest automation can offer.

The remainder of this article is organized as follows.
Section 2 describes the materials and methods used for
the design and implementation of the proposed robotic
harvesting system. Section 3 presents the image segmen-
tation algorithm for detecting and localizing aubergines.
Section 4 explains the planning algorithm that calculates the
sequence of movements required to grasp and detach the
aubergines. Section 5 discusses the design and implementa-
tion of the proposed dual-arm manipulation strategy when a
fruit is occluded. Section 6 presents the results obtained from
the experimental tests, and finally, Section 7 summarizes the
main conclusions.

II. MATERIALS AND METHODS
This section describes the implemented dual-arm robotic
platform and the proposed algorithms that reproduce complex
human movements during harvesting tasks.

A. DUAL-ARM HARVESTER ROBOT
The hardware of the proposed harvester robot consists of a
dual-arm robotic system and a sensor rig. The selected robotic
arms are two Kinova MICOTM endowed with the Kinova
Gripper KG-3 [17]. These arms are lightweight and feature
low power consumption. Each robotic arm is composed of
six interlinked segments providing 6 DoF with a maximum
payload of 2.1 kg in mid-range continuous operation, which
is an adequate load capacity for the gripper and for harvesting
aubergines [18]. The grippers are underactuated with a set of
three flexible fingers. The opening and closing movements
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of the fingers are driven by three linear actuators, one for
each finger, allowing objects to be grasped with a force of
40 N. The upper parts of the grippers can be equipped with a
custom-made tool for cutting aubergine peduncles.

To exploit the capabilities of the dual-arm platform dur-
ing precision harvesting tasks, the torso of the robot fol-
lows an anthropomorphic design [19]. Moreover, to achieve
good robotic arm performances during dual manipulation,
they are configured with right and left-handed configurations
(see Fig. 1).

FIGURE 1. Prototype of the dual-arm harvester robot. a) lateral view
b) front view.

The vision system consists of two cameras, a Prosilica
GC2450C, which provides a high-resolution color image, and
a Mesa SwissRanger SR4000, which provides a point cloud
of the scene. The Prosilica GC2450C has a 5.0 megapixel
resolution, is GigE Vision compliant [20], and incorporates
a high quality sensor that provides superior image quality,
excellent sensitivity, low noise, and a full-resolution frame
rate of 32 fps. The Mesa SwissRanger SR4000 camera is a
measurement device that captures 3D data of infrared (IR)
light-reflective objects in the surrounding scene [21]. The dis-
tance measurement capability is based on the time-of-flight
(TOF) principle. In nominal operation mode, an absolute
accuracy of less than 0.01m is achievable within awork range
of 10 m at an acquisition rate of 50 frames per second.

Both cameras use a software triggeringmode, whichmeans
that they wait for an ‘‘acquire’’ command before starting
synchronized image capture. Both cameras communicate via
Ethernet.

The software architecture system is implemented in the
robot operating system (ROS) and formed by four modules,
which are responsible for (i) image acquisitions from both
cameras, (ii) detecting and localizing the aubergines in the
robot’s coordinate space, (iii) motion planning and (iv) con-
trol of the dual-arm robot [22]. At the heart of the architecture
is the ROSmaster running on localhost, whichmakes it possi-
ble for nodes to find each other and exchange data. Each node
has its own topics that can be used to publish or subscribe to
messages. A node publishes data in a common space under
a topic. Other nodes can use these data simultaneously by
subscribing to that topic. As shown in Fig. 2, the system has
six programmed nodes:
• Two nodes within the image acquisition module for
running both cameras (TOF and RGB) synchronously

FIGURE 2. Overview of the proposed software architecture.

and registering the color and range data in the same
reference frame.

• The MATLAB-ROS node of the spatial localization
module for recognizing the target objects, estimating
their centroid positions, and calculating the inverse kine-
matics of the robotic arms.

• The Move Group node of the simulation and planning
module, which is responsible for computing the neces-
sary control inputs and sending the corresponding com-
mands to the control module.

• Finally, the two PID nodes of the control module for run-
ning the joint of each arm according to the commanded
control inputs.

B. METHOD
Fig. 3 summarizes the various steps of the designed
and implemented decision-making strategy for automatic
aubergine harvesting. Before starting, a reference model of
the aubergine variety to be harvested is defined that includes
the minimum size (minimum number of pixels in the image
plane) that the fruit must occupy to fulfill the desired quality
standards. Then, all the systems are initialized. The sensor rig
proceeds with the synchronized acquisition of data from the
effective field of view. The acquired color image and the point
cloud data are registered due to the different pixel resolutions
and the different camera fields of view. In this case, to reduce
the computational load, the color data are mapped into the
coordinate frame of the range data. Next, the registered color
image and the point cloud are used as input to an image
segmentation algorithm that detects aubergines based on four
aspects: (i) reflectance measurements in the scene, (ii) the
3D positions of the candidate pixels in space, (iii) the sizes
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FIGURE 3. Overview of the main steps involved in the proposed aubergine harvesting cycle.

of the regions of interest, and (iv) interactions with blocking
leaves. The point clouds of detected fruits that have a high
visibility percentage and that meet the standards required for
harvest are then used as input by a planning algorithm which,
based on theworkspace, determines the locations of the fruits,
the arm configurations, and the movements necessary to
grasp and detach aubergines. These movements may involve
the simultaneous harvesting of two pieces of fruits, or harvest-
ing with a single arm. In contrast, the point clouds of the fruits
that have a low visibility percentage are further processed by
the proposed occlusion algorithm, which plans collaborative
arm behaviors to solve occlusion problems and implement
dual-arm harvesting. The main algorithms involved in the
proposed decision-making strategy are described below in
more detail.

III. IMAGE SEGMENTATION
Image segmentation is a computer vision process that parti-
tions a digital image intomultiple regions to facilitate its anal-
ysis. Image segmentation is typically used to locate objects
and boundaries in images. This process is trivial for humans;
nevertheless, achieving robust image segmentation is still a
challenge in computer vision applications because noise, low
contrast, poor illumination and object boundary irregularities
can lead to inaccurate results [23], [24].

The techniques commonly used in image segmenta-
tion are thresholding-based, gradient-based, region-based,

edge-based, and classification-based [25]. Within the
classification-based techniques, machine learning and deep
learning algorithms play a relevant role by establishing
relationships among multiple features to improve system
efficiency. Each instance in every dataset used by the learn-
ing algorithms is represented by the same set of features.
If instances are provided with known labels that represent the
corresponding correct outputs, the learning process is called
supervised. In contrast, in unsupervised learning, the training
instances are unlabeled [26].

A number of surveys and reviews gathering the main
advances on semantic segmentation have been presented in
recent years. For instance, [27] provides an overview of
broad segmentation topics including unsupervised and fully
supervised methods as well as existing influential dataset
and evaluation metrics. In [28] the strengths, weaknesses and
major challenges of top image segmentation approaches are
described. Deep learning for semantic segmentation is com-
prehensively reviewed in [29]–[31]. In [32] three categories
ofmethods are reviewed and compared, including those based
on hand-engineered features, learned features and weakly
supervised learning. Last, weakly supervised image semantic
segmentation is also reviewed in [33], [34].

In this study, the inputs and the desired outputs of the
classification model are known; consequently, the selected
learning method is supervised. The first step in supervised
learning is to collect the dataset and determine which features
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are the most informative. In this study, the dataset consists
of 1, 753 aubergine samples acquired under different light-
ing conditions, and the feature used is the colors of the
different scene elements. Color is a popular visual cue in
machine vision tasks, and it is an appropriate choice for a
discriminative feature because vegetables tend to have differ-
ent reflectance properties than do the foliage and branches
around them.

However, instead of using the original R, G, and B values
directly, we introduce color transformations before applying
the segmentation algorithm to reduce its sensitivity to chang-
ing illumination conditions. These transformations quantify
the intensity differences between the red and green channels
(R-G) in the RGB color model and the hues in the HSV
(hue saturation value) color model [35]. These images are
then used as inputs for the segmentation process. The pro-
posed image segmentation algorithm consists of three parts:
a support vector machine (SVM) (which is a pixel-based
classifier), a watershed transformation and the corresponding
point cloud extraction.

To design the pixel-based classifier, and considering the
agricultural scenario of interest, we designed four classes:
aubergines, leaves, branches and the scene background.
We tested different algorithms to find the model that best
fits the data. A dataset was randomly selected for training
these algorithms. Table 1 lists the obtained results. Clearly,
the algorithm that best suits the data is the SVM cubic algo-
rithm, which achieved a success rate of 97.4%. Consequently,
this algorithm was selected for the segmentation process.

TABLE 1. Accuracy scores of some of the tested models.

SVM is a supervised machine learning algorithm widely
used in classification and pattern recognition tasks. An SVM
chooses the decision boundary that minimizes the general-
ization error by selecting the hyperplane that provides the
maximum separation or margin between the classes [36].

SVMs are well suited to learning tasks where the number
of features is large with respect to the number of training
instances, and they tend to performmuch better when dealing
with multiple dimensions and continuous features. Therefore,
a large sample size is required to train an SVM to achieve
its maximum prediction accuracy. SVMs also perform well
when multicollinearity is presented and when a nonlinear
relationship exists between the input and output features [26].

After the pixel classification (see Fig. 4), the aubergines
can be discriminated from the remaining elements in the
scene (leaves, branches and background). Next, to separate
adjacent aubergines that appear as a single blob, we apply a

procedure based on the watershed transform and the minima
imposition technique [37], [38]. The watershed transforma-
tion is an effective morphological tool that treats an image
as a topographic surface, providing catchment basins and
watershed ridge lines by assuming that objects are character-
ized by a homogeneous texture (and hence a weak gradient).
First, noise should be removed to eliminate small dots that
should be in the aubergine class. Then, the watershed trans-
form of the image is computed. The watershed transform is
known for its tendency to oversegment an image because each
local minimum becomes a catchment basin. One solution to
avoid this problem is to filter out tiny local minima and then
modify the distance transform: this process is called minima
imposition [39]. After these steps, the watershed transform is
computed again, and the resulting watershed ridge lines are
utilized to separate the adjacent aubergine blobs. Based on
these blobs, the point clouds of the detected aubergines are
extracted, and their corresponding centroids are estimated.

However, because this process is performed with the cam-
era provided data, a transformation must be performed from
the camera coordinate system to the robot base, as follows:

pixelcoord · T campixel · T
end
cam · T

base
end = pbase (1)

As shown in (1), first, the pixel coordinates (x, z) are
transformed into the camera coordinates, using the camera
projection matrix. After obtaining the planar projective coor-
dinates, the y axis distance provided by the TOF camera
is added. Using the camera-robot calibration proposed by
Taylor [40] the transformationmatrix between the camera and
the end-effector robot is extracted. Finally, by applying the
transformation of the end-effector robot to its base, the 3D
localization of each aubergine with respect to the end-effector
is procured.

At this point, the planning algorithm discards any
aubergine that is outside the workspace of both arms. Then,
a new decision criterion based on the average fruit size is
introduced into the process. It is well known that vegetables
must fulfill various requirements to reach the quality level
required by fresh markets. One such requirement is average
size. All aubergines should be approximately the same size
when harvested.

Because the cameras are fixed on the robot’s torso, the visi-
ble area of the aubergines is estimated by counting the number
of pixels in each separate blob. Nevertheless, the area of a
region in an image changes according to the distance from
the camera to the object. Consequently, we apply a correction
distance factor to all the aubergine blobs. This correction is
applied according to the field of view of the camera, which
is the part of the world visible to the camera at a particu-
lar spatial position and orientation. This view is most often
expressed as the angular size of the view cone, that is, as a
view angle. From its technical specifications, the TOF camera
has a field of view of 69◦ × 56◦ (see Fig.5-(a)).
Using the cone of the field of view and trigonometric rules,

the real area of each aubergine can be calculated indepen-
dently of its distance to the camera. To calculate the true
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FIGURE 4. Segmentation process: (a) captured image; (b) classification of all the scene elements; (c) aubergine classification; (d) leaf classification.

area, the length values of the major and minor axes of the
aubergine regions are also necessary. Then, the tangent of α
(see Fig. 5-(b)) is given by:

tan(α/2) =
H/2
dz

(2)

where α is the angle corresponding to the vertical field of
view (56◦); dz is the z-component of the distance from the
extracted object to the optical center of the TOF camera; and
H is the height of the complete image at that distance. The
latter term is an unknown value.

After calculating the height of the entire image (in meters),
the proportional factor between that height in meters and the
total height of the image in pixels (144 px) can be obtained.
Next, some manipulations are conducted. For simplification
purposes, the shapes of the aubergines are approximated to
an ellipse; this approach is beneficial because it requires
less processing time and well matches the overall aubergine
shape. In addition, it can be generalized that aubergines hang
upright due to their weight. Therefore, the major axis of the
ellipse corresponds to the length of the aubergine. Conse-
quently, by applying a proportional factor, the length of the
aubergine in meters can be calculated.

In addition, the width of the aubergine is needed to cal-
culate the area of the ellipse. Following the same process
described above for the height, but with the trigonometry
obtained from Fig. 5-(c), the width is obtained as follows:

tan(β/2) =
W/2
dz

(3)

After calculating the height and width, the real area of the
aubergine can be extracted using the equation of the area of
an ellipse; this result is independent of the distance.

As mentioned above, aubergines are harvested when they
have reached an optimal size. Because of this, the optimal size
is used to discriminate aubergines with the quality required
by fresh market, from those that do not fulfill the require-
ments. Thus, the estimated size of the detected aubergines is
compared with a predefined template to calculate the percent-
age of visibility of each fruit. Depending on the percentage
of visibility, the aubergines are categorized as either whole
or partially occluded (those whose visibility percentage is

FIGURE 5. Camera views: (a) camera field of view; (b) obtaining the
aubergine major axis; and (c) obtaining the aubergine minor axis.

below 80% of the template model), which imply different
manipulation strategies.

IV. PLANNING ALGORITHM
This section is devoted to the manipulation of aubergines that
lie within the dual-arm workspace and fulfill the visibility
criteria. Fig. 6 shows a visualization of the workspace of
both arms in 3D. The idea is that each robotic arm should
be assigned to specific aubergines to harvest them in a col-
laborative manner. The decision-making process is based on
the 3D position of the aubergine centroid, which is its center
of mass.

To fully exploit the capabilities of the dual-arm con-
figuration, the robot can grasp two aubergines using both
arms simultaneously. However, one of the objectives for this
robotic system is to achieve effective cooperation between
the arms to increase picking efficiency while avoiding arm
collisions. To solve this problem, a harvesting schedule is
calculated that minimizes the collision opportunities for the
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FIGURE 6. Workspace of the robotics arms (blue and red colors represent the workspaces for the left and right arms, respectively): (a) workspace in 3D
and; (b) workspace in the x-y-axes.

robotic arms. In the harvester, as illustrated in Fig. 6-(b),
based on the x axis, the picking area in the camera views is
divided equally into a right arm section (section 1, in red) and
a left arm section (section 2, in blue). Because the gripper is
designed to pick aubergines in parallel with the x − y plane
(see Fig. 6-(b)), one requirement is that the robot should pick
aubergines from the right to the left in section 1. In addition,
because the robot’s torso is designed following an anthropo-
morphic configuration, the arms should grasp the aubergines
in a human-like fashion. Therefore, the right gripper is given
a favorite orientation parallel to the y axis; if this orientation
cannot be reached for the aubergine position, the orientation
is changed according to variations of π/4 until it achieves
an orientation parallel to the x axis, where the right gripper
opening faces the positive direction. With every change in
orientation, the final position of the arm is recalculated until
a feasible position is found. The process is the same for the
left arm; however, in this case, the left arm will start picking
aubergines from the left part of section 2 to the right part, and
the final calculated orientation will be parallel to the x axis
but with the left gripper facing the negative direction.

Following this procedure prevents the grippers and arms
from touching or frommoving the central aubergines. During
the process of inputting the detected aubergines into the
algorithm, the first goal is to determine the picking sequence
for the arms to maximize the simultaneous picking period
and avoid possible collisions. The default picking sequence
for both arms flows from the extremes to the middle of the
workspace. However, when the number of aubergines in the
section 1 is equal to or less than in section 2, it is better for
both arms to pick aubergines simultaneously. With the excep-
tion of the aubergines that are in the dual-arm workspace,
in this section, it is necessary to check the distances among
the selected aubergines to avoid collision between the two
arms. To maintain a safe distance, the aubergines must be
at least 0.16 m apart. When aubergines are closer than this
safety distance, they will be picked only with one arm - the

arm for whichmore aubergines are available. If the number of
aubergines that can be picked simultaneously is equal for both
arms, the central aubergines can be harvested with either arm.
Algorithm 1 summarizes the different steps described above.

After an aubergine is collected, the arm must move to a
release position; therefore, the initial positions of the arms
are always the same.

Once the picking sequence is set, it is necessary to perform
the planning of the trajectories to avoid collisions. For this
purpose, a virtual scene is created, which is used to represent
the world around the robot, as well as the state of the robot
itself. In the scene, obstacles such as the structure of the robot
and the floor, are included and considered by the motion
planner to avoid collisions of the robotic arms with elements
in the real world. To keep the virtual scene as similar as
possible to the real world, aubergines are also introduced
by using the point cloud of their corresponding regions of
interest. Fig. 7 shows an example of a manipulation scene
captured during the experimental tests.

This planning scene is developed in MoveIt!, an open
source robotics manipulation platform [41], which works
with motion planners from multiple libraries through a plu-
gin interface. In this case, the motion planner is config-
ured using the Stochastic Trajectory Optimization for Motion
Planning (STOMP), which is a probabilistic optimization
framework [42]. STOMP produces smooth well-behaved col-
lision free paths within reasonable times. The motion plan-
ning generates noisy trajectories, which are then combined
to produce an updated trajectory with a lower cost. This cost
function combines the cost of the obstacles and the smooth-
ness and it is optimized in each iteration. The trajectory is
then generated in response to the motion plan request using
the robot’s current state and the target, but also checking
collisions with the obstacles, including self-collisions.

The resulting trajectory is formed by several waypoints and
each of them contains the position, velocity, and acceleration
for all of the joints of both arms, as well as the start time
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Algorithm 1 Algorithm to Address the Motion Planning for
the Arms
Input: List of the detected aubergine(s) det
Output: Lists of picking dualArm, leftArm, rightArm
1: for each aubergine i in det do
2: Extract the centroid Ci
3: if Ci(x) > 0 then
4: Aubergine added to leftArm
5: else
6: Aubergine added to rightArm
7: end if
8: end for
9: Sort leftArm acording to C(x) from major to minor

10: Sort rightArm acording to C(x) from minor to major
11: for i = 1 to min(size(leftArm), size(rightArm)) do
12: Pair (leftArmi, rightArmi) added to dualArms
13: Remove leftArmi from leftArm
14: Remove rightArmi from rightArm
15: end for
16: for each pair of aubergines ∩ dual-arm workspace in

dualArm do
17: if distance between them < safe distance then
18: if leftArm is empty then
19: Both aubergines added to rightArm
20: else
21: Both aubergines added to leftArm
22: end if
23: Remove pair of aubergines from dualArm
24: end if
25: end for
26: return dualArm, rightArm, leftArm

FIGURE 7. A virtual manipulation scene captured during the experimental
tests.

of the next trajectory waypoint. Finally, the waypoint posi-
tions of the trajectory are used for the proportional–integral–
derivative (PID) controllers to provide the motion execution
command to the robot

V. OCCLUSION ALGORITHM
If an aubergine is not marked as a candidate to be harvested,
the next step is to check whether it is occluded by leaves or
is too small to fulfil the area criteria.

To determinate whether an occlusion exists, the algorithm
checks whether leaves are located in a space that a ready-
to-harvest aubergine would occupy by constructing an over-
lapped area. To accomplish this task, the aubergine template
model is placed by matching its centroid with that of the
visible area extracted in the previous step. In addition, the ori-
entation is also considered for overlapping in the template
model.

After overlaying the aubergine template model, a new
image processing procedure begins. The next step is to cal-
culate the intersection between the template model and the
leaves within its area. This process is performed from the
2D image. The goal is to achieve a high compute speed.
Although cases exist in which overlapped leaves may be
located far from the aubergines, the algorithm still finds an
intersection with them. The solution for these cases is to
include the distance from the centroid of these intersections to
the camera. In this way, the algorithm can discriminate among
leaves that could be an occlusion source and those that are far
from the aubergine.

At this point, the target aubergine will be ignored by
the harvesting process if no leaf-aubergine intersection is
detected based on the idea that this aubergine does not meet
the criterion of area because it is too small to be harvested.

Some aubergines may have several sources of occlusion.
In this situation, the criterion used is that the larger intersec-
tion causes the biggest occlusion problem; therefore, it is the
occlusion addressed by the system.

The next problem that arises is to schedule the arms. The
robot’s bimanual capabilities can be employed to manage
leaves with one arm while the other grasps the aubergine.
Therefore, in this process, both arms are used in the same
workspace; the system functions only for occlusions localized
to the workspace area shared by both arms.

In addition, to avoid occlusions that may be generated
during movements of the arm assigned to move the leaves
aside, we have considered several possible conditions. First,
the direction of the vector that joins the centroid of the visible
part of the aubergine and the centroid of the intersection
must be calculated. The direction of this vector in the x axis
will determine the arm used to move the leaves. In this way,
the system ensures that the aubergine will not be occluded
by the arm. The final step is to calculate the distance that
the arm should move the leaves to obtain a clear view of the
entire aubergine. Thus, the algorithm calculates another point
along the line that joins these two points. This point must be
separated from the intersection centroid by at least 0.15 m to
ensure that the entire aubergine is visible and avoid gripper
occlusions.

The different steps of the proposed algorithm are visualized
in Fig. 8 and summarized in Algorithm 2. In Fig. 8, the cyan
irregular line shows the contour of the detected aubergine
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FIGURE 8. Image processing performed for aubergines that do not fulfill
the area criteria; (a) Overlay of the standard aubergine (red) using the
centroid and orientation of the partially occluded aubergine (cyan);
(b) calculating the intersection area between the standard aubergine and
the leaves block (yellow); (c) calculating the vector that joins the centroid
of the aubergine with the intersection (cyan); (d) calculating the final
position where the arm pushes the leaves to move them apart (green).

blob; the red asterisk represents the centroid estimated from
the detected aubergine blob; the white irregular lines corre-
spond to the contours of the detected leave blobs; the red
ellipse corresponds to the model template overlapping over
the occluded blob; and the green line represents the direction
vector along which the robotic armmoves to sweep the leaves
aside and remove the occlusion.

Another consideration is the orientation of the arm that will
move the leaves. In an experimental phase, we determined
that the best way to move the leaves is to proceed with
the arm parallel to the y axis and with the gripper closed.
Consequently, the arm simply pushes the leaves away. In this
way, the system avoids having to grasp the leaves with the
gripper, which reduces the complexity of the movement.

After displacing the leaves, a new centroid is calculated for
the entire aubergine so that the peduncle can be cut correctly
to prevent damage to the vegetable.

Finally, it is important to note that the proposed strategy
is the same in all cases with occlusions because the point
of contact with the aubergine is the same, regardless of the
distance with the block of leaves. Therefore, since only a
displacement of the leaves is performed and the aubergines
are not manipulated in the process, they are not damaged.
In addition, the fingertips of robot grippers have a deformable

Algorithm 2 Algorithm to Address Possible Occlusions
Input: List of the aubergine(s) that not fulfil the area criteria

oc, list of all the leaves block l
Output: The displacement vector dir
1: for each aubergine i in oc do
2: Extract the centroid Ci
3: Extract the orientation Oi
4: Standard aubergine overlapping Si, with the same Ci

and Oi
5: for each leaves block j in l do
6: if ∃ Si ∩ lj and lj(z) < Ci(z) then
7: Occlusion of oci with lj
8: Calculate the area of Si ∩ lj, Aij
9: else
10: Classify oci as discarded aubergine
11: break
12: end if
13: end for
14: Extract the centroid Cij of max(Aij)
15: Calculate dir = Ci(x)− Cij(x)
16: end for
17: return dir

rubber that prevents possible damage to the aubergines during
contact events.

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The experiments were conducted under laboratory conditions
at the Centre for Automation and Robotics using the dual-arm
robotic platform and the software architecture described in
Section II. Aubergines (Solanum melongena) of the vari-
ety named ‘‘Thelma’’ distributed over a plant model were
selected for the experimental tests. These aubergines were
sourced from a greenhouse in Almería, Spain.’’

To validate the different algorithms that comprise the pro-
posed decision-making strategy, we conducted 90 experi-
ments to demonstrate the performance of the robotic harvester
in the most common real-world situations. The experimental
results provide valuable information on the advantages of the
system and on the challenges we face in improving the robotic
harvester. To perform an exhaustive analysis of the extracted
data, the results are separated into the achievements of the
sensor rig, the bimanual capacities of the robot provided by
the planning algorithm and the results of the novel occlu-
sion algorithm presented in this article. Finally, we present
achievements of the complete system.

B. EVALUATION OF THE IMAGE SEGMENTATION
ALGORITHM
To evaluate the output of the image segmentation algorithm,
the ground-truth data were carefully produced by manually
labeling the pixels that belonged to the visible areas of the
aubergines. Then, the aubergines detected by the algorithm
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were compared with the ground truth data, and the detection
performance was evaluated at the pixel level in terms of
the true-positive rate (TPR), false-positive rate (FPR) and
false-negative rate (FNR) [35]. The mean values obtained
from all the analyzed scenes as well as the minimum and
maximum values are presented in Table 2.

TABLE 2. Performance assessment at the pixel level of the proposed
detection algorithm.

The performance evaluation results at the pixel level show
that the proposed detection algorithm exhibits a high hit
rate of 85.32%, a low FPR of 0.05% and an acceptable
FNR of 14.68%. The poor FNR values generally occur at the
edges of the aubergines; the system identifies these pixels as
a different class due to the high contrast between the color of
the aubergines and the background.

In addition, the proposed detection algorithm is evaluated
at the aubergine level in terms of recall, precision and F-score
(the weighted harmonic mean of the test’s precision and
recall). In this case, instead of counting pixels, the aubergines
are counted as units. The results of this analysis can be seen
in Table 3.

TABLE 3. Performance evaluation at the aubergine level.

At the fruit level, the TPR of aubergines detected (Recall)
by the proposed algorithm is 88.10%, which indicates that
the algorithm fails to detect only a small number of targets.
From the results, most of the errors in undetected aubergines
are caused by the watershed transformation, which in some
cases does not separate the blobs into a correct number of
available aubergines due to lighting conditions. In addition,
the average precision provided by the detection algorithm
was 88.35%,which indicates a slightly higher number of false
positives compared to the number of false negatives. Such
misclassifications typically occur due to shadows produced
by the leaves.

Furthermore, the proposed algorithm achieves an F-score
of 0.878, which is a competitive value compared with meth-
ods used for harvesting other fruits. For example, [43] pre-
sented a system for detecting mangoes and obtained an
F-score of 0.881, while [44] achieved an F-score of 0.838
when detecting sweet peppers and rock melons. Considering
these scores, the F-score obtained by the proposed algo-
rithm for aubergine detection has a competitive advantage
over the other promising approaches; the competitors require
more computation but do not differ substantially in terms of
accuracy.

In the following, we present two tests that illustrate the
operation of the image segmentation algorithm.

The first test represents a simple case in which the
scene is composed of isolated aubergines without no occlu-
sions. Fig. 9 shows (a) the registered RGB image, (b) the
pixel-based classification map provided by the algorithm,
(c) the ground truth image and (d) the detected aubergines.
The output of the segmentation algorithm is quite similar
to the ground truth image; the correct classifications of the
four aubergines are visible in the image along with some
inaccuracies in the pixels at the edges of the aubergines.

In the second test (see Fig. 10), we tested the ability of the
system to address a common situation in image segmentation:
two overlapping targets. The overlapping aubergines may be
at the same distance or one may be in front of the other,
causing them to appear connected in the image. As explained
above, to address this type of situation, the system incorpo-
rates the watershed transformation to separate the blobs of
different aubergines. Fig. 10-(d) shows a correct performance
of the proposed algorithm, which is capable of separating the
detected blobs and thus discriminating between two different
aubergines.

C. EVALUATION OF THE PLANNING ALGORITHM
To assess the performance of single and dual-arm harvesting,
three cases are studied in this subsection. First, harvesting
with a single arm, which grasps the only aubergine available
in the scene. Second, harvesting by capitalizing on the move-
ment capabilities of both arms to pick two aubergines using
both arms simultaneously. The final case involves harvesting
two aubergines with the same arm. Table 4 lists the collected
times for these three cases. These results were obtained by
executing the image-processing algorithm and the inverse
kinematic calculations in MATLAB and using MoveIt! to
plan the trajectories and the execution of the real movements
of the robot. The computer used was equipped with an Intel
i7-4790 processor running at a clock speed of 3.6 GHz and
8 GB of RAM. The times shown were the averages of exe-
cuting ten trials for each case.

The image processing time includes the time spent to regis-
ter the RGB image, obtain the pixel-based classification map,
segment the aubergines that appear in the scene, and obtain
their locations in 3D space, as well as the time dedicated
to arm allocation in the dual-arm manipulation case. The
inverse kinematic was calculated using the Robotics System
Toolbox in MATLAB. Finally, the action time includes the
time required for robot movements; this also includes the
time for calculating the trajectories. The motion sequence
involves four actions: movement to the pregrasp position,
grasping, postgrasping and release to place the aubergines in
the collection box.

The results in Table 4 show that the time dedicated to image
processing is similar in all three cases. Nevertheless, in cases
where there are two aubergines, the time is longer because
the planning algorithm must assign the correct arm for each
aubergine.
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FIGURE 9. Experimental result - isolated aubergine scene: (a) registered RGB image (b) pixel-based classification map (c) pixel labeling (d) output of the
aubergine class.

FIGURE 10. Experimental result - connected aubergine scene: (a) registered RGB image (b) pixel-based classification map (c) pixel labeling (d) output of
the aubergine class.

TABLE 4. Comparison of one arm and dual-arm performance.

Now, focusing on the time corresponding to the compu-
tation of the inverse kinematics, this is clearly highest in
the two-aubergine cases, approximately double that of the
single-aubergine cases. This outcome is logical because these
cases require two different positions of the end-effector to be
calculated.

Finally, considering the time spent on the movement of the
harvester robot, which includes the trajectory planning using
the STOMP method [42], it can be found that an increase
occurs for the dual-arm manipulation compared to the single
arm manipulation for one aubergine. This is because the
system needs to calculate two paths to produce a cooperative
movement and check for possible collisions between the
two arms. These conditions increase the complexity of the
trajectory estimations, resulting in a greater computational
load. However, because the proposed algorithm avoids col-
lision by dividing the workspace for each arm at the middle,
the time spent checking for collisions is essentially negligible.
This minimal time increase is noteworthy because the robot’s
productivity is doubled when using both arms for picking.

Moreover, in comparison to the time required by a single
arm to pick two aubergines, the results are plainly more
advantageous for dual-arm manipulation.

Overall, the dual-arm configuration represents a signifi-
cant improvement to the system that increases productivity
because it can collect a larger number of fruits in a shorter
period compared using only a single arm.

D. EVALUATION OF THE OCCLUSION ALGORITHM
This section is considered the most important aspect of this
study because it assesses the performance of the algorithm
that enables the dual-arm robot to reproduce complex human
movements during harvesting tasks.

For the occlusion algorithm to perform correctly, image
segmentation is a significant step. The results obtained from
the image segmentation algorithm for the aubergine and leaf
classes are presented below.

The assessment is performed at the pixel level by
comparing the images obtained from the segmentation algo-
rithm with the ground truth data produced by the manu-
ally labeled pixels. To analyze this case, the labeling of the
leaves for the ground truth data correspond to those respon-
sible for generating the occlusion and the leaves adjacent to
the occluded aubergine; an example of the segmentation is
shown in Fig. 11. The metrics used to evaluate the detection
algorithm performance include TPR, FPR and FNR. The
mean, minimum and maximum values obtained from 16 ana-
lyzed scenes containing one occluded aubergine are presented
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FIGURE 11. Experimental results - occluded aubergine scene:
(a) registered RGB image (b) pixel-based classification map (c) pixel
labeling of the aubergines (ground truth data) (d) output of the aubergine
class (e) pixel labeling of the leaves (ground truth data) (f) output of the
leaf class.

in Table 5 for the aubergine class and in Table 6 for the leaf
class.

TABLE 5. Performance assessment at the pixel level of the proposed
detection algorithm for occluded aubergines.

The average TPR obtained for the aubergines is quite
satisfactory, considering that only occluded aubergines were
considered in the estimations. Generally, these occluded
aubergines are affected the most by shadows. The TPR for
leaves is high because the leaves are more visible than are
the aubergines in these cases. Therefore, the detection rates
obtained are sufficient for the proposed algorithm to operate
correctly.

From the execution times presented in Table 7, it can be
observed that the time spent on the occlusion algorithm is
small compared to the rest of the times. In contrast, the time
dedicated to calculating the inverse kinematics is greater
because the systemmust perform the calculations required for
the movements that enable the robot to move the leaves aside

TABLE 6. Performance assessment at the pixel level of the proposed
detection algorithm for leaves that create occlusion.

TABLE 7. Average times for scenes with occlusions.

and pick the exposed aubergines. However, to reduce the time
dedicated to these calculations, we limited the ranges of the
joint angles to find solutions most similar to those imple-
mented by humans during harvesting. Therefore, notably,
the computing time of the inverse kinematics is similar to that
required for the dual-arm manipulation.

In this case, because the robot manipulates the leaves,
we divided the success rates into the correct harvesting of an
aubergine and the correct movement to move the leaves aside.
The success rate for harvesting an aubergine is 93.75%, while
the success rate for moving the leaves aside is 81.25%. After
studying various scenes, most of the leaf-movement failures
occur due to the inability of the gripper to contact them
appropriately, causing the leaves to return to their original
positions. Other errors stemmed from incorrect scheduling of
the arms, producing a similar failure, in which the leaves slide
off the gripper. This is because the image detection system
does not consider the point where the leaves are attached to
the aubergine plant. Consequently, the leaves are scheduled
to be moved with one arm to eliminate the occlusion but that
movement is not sufficient to keep the leaves from occluding
the aubergine. Therefore, this problem can be addressed by
improving the image segmentation algorithm.

E. COMPLETE SYSTEM EVALUATION
To evaluate the performance of the complete system, we
executed 10 complete scenarios with the different cases pre-
sented above. Fig. 12 shows a scenario containing three iso-
lated aubergines that must be grasped with one arm, and a
partially occluded aubergine that uses the dual-arm manip-
ulation capabilities. In addition, the scenario includes one
aubergine that is not ready to be harvested due to its size. The
twomain metrics were used to test the harvester robot include
the success rate and the picking cycle time; these represent
the harvesting accuracy and speed, respectively. Failure cases
were recorded and analyzed to identify challenges to be
addressed in future versions of the system.

Table 8 shows the harvesting success rates for the three
types of proposed manipulations. The average success rate
is 91.67%. The table shows that cases with more unpicked
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FIGURE 12. Experimental results - Test 4: a) registered RGB image; b) pixel-based classification map; c) ground truth data; d) output of the aubergine
class. The red asterisks represent the centroids estimated from the detected aubergine blobs, the irregular colored lines show the contours of the
detected aubergine blobs, the white irregular lines correspond to the contours of the detected leaf blobs, the red ellipse indicates the model template
superimposed over the occluded blob, and the green line represents the direction vector that the robotic arm follows to brush the leaves aside and
remove the occlusion.

TABLE 8. Success rate of the harvesting robot.

aubergines correspond to the scenarios with occlusions. The
failure cases are caused by the vision system, which does
not recognize some aubergines due to the low visibility

percentages they present. The success rate for isolated
aubergines is very high; only one failure case occurred when
the gripper grasped the aubergine only with the fingertips,
and the fruit fell to the ground before the arm reached the
release position. A special case in these scenes is the treat-
ment of small aubergines. These aubergines were identified
as occluded in two events because they were surrounded by
leaves. This problem can be addressed by taking a second
image after the leaves have been moved aside. To evalu-
ate the cycle picking time, we carried out a review using
time measurements that other agricultural research studies
have included; we found different configurations were used
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depending on the considered crop. For example, [45] focused
on strawberry harvesting and divided the cycle into percep-
tion time and harvesting time but without including in the
latter the manipulator configuration time required to drop the
individual fruits. Others, dedicated to collecting tomatoes,
included the complete working procedure, including the time
required to place the fruit into the collection box [46], [47].
For our system, the cycle picking time includes the release
time because due to the weight of the aubergines, the arm
must deposit grasped aubergines into a collection box before
starting a new grasping motion.

Most of our harvesting robot’s time is spent in the manipu-
lation process. The average time for the perception process is
0.81 s, including image registration, segmentation, 3D loca-
tion, planning algorithm and dealing with occlusions. This
time can vary depending on the number of targets included
in the captured image as well as on the scene complexity.
The harvesting time, including the time required for the arm
to travel to the aubergine, the picking time and the release
time, is 26.2 s on average. This time was obtained in a scene
containing five aubergines with the characteristics previously
discussed.

This average harvest time is considered satisfactory; to the
best of the authors’ knowledge, this study is the first time
that a harvesting process has been proposed that uses two
arms cooperatively in an unstructured environment similar to
a human being.

VII. CONCLUSION
This article presented a dual-arm robotic system and pro-
posed a decision-making strategy designed and implemented
for automatic aubergine harvesting in unstructured environ-
ments. The proposed strategy combines an image segmen-
tation algorithm with a dynamic planning algorithm and an
occlusion algorithm, which increases the picking success rate
of the harvester. The image segmentation algorithm (based on
an SVM pixel classifier, a watershed transform and a point
cloud registration) is responsible for detecting and localizing
aubergines. Depending on the workspace, the locations of
the fruits, and the arm configurations, the planning algorithm
determines the movement sequence needed to grasp and
detach the aubergines. These movements may involve either
the simultaneous harvesting of two pieces of fruit or harvest-
ing a single fruit with a single arm. Finally, the occlusion
algorithm addresses aubergines that have low visibility due to
leaf occlusions by planning a collaborative behavior between
the arms to solve the occlusion and proceed with dual-arm
harvesting. This cooperative operation mimics the complex
human harvesting motion of using one arm to push leaves
aside while the other arm picks the fruit.

The efficiency of the harvester was confirmed through lab-
oratory tests. The experimental results show that the harvester
can pick 91.67% of the total number of aubergines in the pro-
posed common scenarios. Therefore, the robotic aubergine
harvesting system shows a substantial level of validity.
Moreover, we analyzed the failed scenarios and obtained

interesting findings; for example, most of the failures were
related to changing lighting conditions. Thus, future work to
enhance the harvester robot should prioritize improvements
to image acquisition.
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