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ABSTRACT Emotion recognition based on facial expressions is very important for effective interaction of
humans with artificial intelligence (AI) systems such as social robots. On the other hand, in real environment,
it is much harder to recognize facial micro-expressions (FMEs) than facial general-expressions having
rich emotions. In this paper, we propose a two-dimensional (2D) landmark feature map for effectively
recognizing such FMEs. The proposed 2D landmark feature map (LFM) is obtained by transforming
conventional coordinate-based landmark information into 2D image information. LFM is designed to have
an advantageous property independent of the intensity of facial expression change. Also, we propose an
LFM-based emotion recognition method that is an integrated framework of convolutional neural network
(CNN) and long short-term memory (LSTM). Experimental results show that the proposed method achieves
about 71% and 74% in the well-known micro-expression datasets, i.e., SMIC and CASME 11, respectively,
which outperforms the conventional methods. The performance of the proposed method was also verified
through experiments on composite micro-expression dataset, which consists of SMIC, CAMSE II and
SAMM, and cross-dataset validation using SMIC and CAMSE II. In addition, we prove that the proposed
method is independent of facial expression intensity through an experiment on CK+ dataset. Finally,
we demonstrate that the proposed method is valid even for the MAHNOB-HCI and MEVIEW datasets that
are produced to monitor actual and wild emotional responses.

INDEX TERMS 2D landmark feature map, emotion recognition, facial micro-expression.

I. INTRODUCTION

Recently, emotion recognition technology through facial
expression, action, and voice have been actively studied for
advanced human-robot interaction (HRI). Especially, stud-
ies on facial expression-based emotion recognition (FER)
are most active [1]-[6], [8]-[12], [33]-[35]. Conventional
FER methods are focusing on facial macro-expressions as
shown in Fig. 1 (a). In general, recognizing emotions cor-
responding to such macro-expressions is not a big deal.
However, in actual situations (see Fig. 1 (b)), people may
rarely express their emotions on the faces. In terms of sim-
ple facial expression metric (SFEM), i.e., one of the facial
expression intensity metrics (see Section IV), the intensities
of facial expression of Fig. 1 (a) and Fig. 1 (b) are 1.83 and
0.20, respectively, which indicate a big difference of about
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9 times. In other words, even the same emotions may show
significantly different quantitative values in terms of facial
expression. Thus, we need to handle even such a facial
micro-expression (FME) for ultimate emotion recognition.
Unfortunately, there are not so many previous studies on
recognition of FMEs. Also, the datasets for FER research pur-
pose are usually collected from broadcast contents or movies
where actors or actresses intentionally create their facial
expressions [1], [2].

We have proposed an algorithm for recognizing FMEs in
[16]. We presented a two-dimensional (2D) landmark fea-
ture map (LFM) robust to FME. LFM is defined by rep-
resenting relative distances between facial landmarks and
by properly normalizing them. We observed that LFMs of
the same emotion tend to have a unique pattern, regardless
of the intensity of facial expression, i.e., the intensity of
emotion. Then, we proposed an LFM-based FME recognition
algorithm which is based on CNN and LSTM. However,
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(b)
FIGURE 1. An example of change in facial expression for “happiness”
(S094_004 sequence of CK + dataset) (a) before/after for facial
macro-expression (SFEM: 1.83) (b) before/after for FME (SFEM: 0.20).
Here, SFEM is the expression intensity metric. The larger the value, the
stronger the facial expression.

LFM defined in [16] became burdensome to the network size
based on feature maps and parameters. Also, the LFM-based
network of [16] was not verified for actual FME datasets.

In order to reduce the network size without performance
degradation, this paper presents a more compact LFM
(CLFM) which is generated by appropriately sampling land-
mark points. In addition, we define a metric to evaluate the
intensity of facial expression based on CLFM and propose a
joint framework to select an appropriate method according to
the facial expression metric. The joint framework keeps high
emotion recognition accuracy even in a dataset with varying
facial expression intensities

Experimental results show that the LFM/CLFM-based
FER method provides high classification accuracy of about
71% and 74% for popular micro-expression datasets, SMIC
[24] and CASME 11 [25]. This is superior performance over
conventional FER techniques. We verified the superiority
of the proposed method even through the experiments on
composite micro-expression dataset and cross-dataset vali-
dation. For instance, the proposed method, which is trained
using CK+ dataset [1] consisting of facial macro- expres-
sion images, shows about 80% classification performance
for the FME test dataset. This is about 43% higher accu-
racy than a state-of-the-art (SOTA) scheme [11]. Finally,
we observed that the proposed method works well even for
actual (non-acting) and wild datasets, i.e., MAHNOB-HCI
[19] and MEVIEW [57]. Note that the parameter size of the
CLFM-based network amounts to only 8% of the LFM-based
network [16]. This advantage will be of great help to the
practical use of the proposed method.

The contribution points of this paper are organized as
follows.

o This paper proposes an LFM that can effectively

represent FMEs using landmark information and also
presents its compressed version, i.e., CLFM.
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e The proposed LFM/CLFM is robust to human
appearance and facial expression intensity, and is suit-
able for FME recognition because it exhibits a unique
pattern for each facial expression.

o When applying LFM/CLFM to conventional neural
networks, LFM/CLFM provides outstanding FME
recognition performance over SOTA.

The remainder of the paper is oargized as follows.
Section II reviews existing micro-expression recognition
methods. Section III details the proposed FER algorithm.
Section IV describes the joint framework of the proposed
method and a conventional emotion recognition technique,
and Section V shows the experimental results. Finally,
Section VI concludes.

Il. RELATED WORK

Previous studies on FME can be summarized as follows:
Pfister et al. proposed an FME recognition algorithm
using temporal interpolation model and random forest [3].
Ngo and Wang used a so-called motion magnification to
forcibly increase the intensity of FMEs [4], [5]. Then, they
classified emotions using local binary pattern (LBP) and sup-
port vector machine (SVM). Zong et al. proposed a hierarchi-
cal spatio-temporal descriptor that controls the feature weight
by searching the area where fine facial muscle movement
exists [28]. Wang et al. proposed a new color space model
to improve FME recognition performance [31], and recently
proposed a deep learning-based method called transferring
long-term convolutional neural network (TLCNN) [32].

Liu et al. proposed an FME recognition scheme using main
directional mean optical flow (MDMO) [29]. They extracted
the atomic feature representing the region of interest from the
optical flow information, and applied sparse coding, and then
classified the result using SVM. Peng et al. proposed a con-
solidated Eulerian frame that integrated independent motion
magnification and frame interpolation into a single process
[30]. Guo et al. proposed the extended local binary patterns
on three orthogonal planes (ELBPTOP) as feature descriptors
for recognizing FME [45]. In addition, Verma et al. proposed
the dynamic representation of micro-expressions to preserve
facial movement information in a single frame and also pro-
posed a Lateral Accretive Hybrid Network (LEARNet) to
capture micro-level features [15]. Esmaeili er al. proposed
a feature extractor called Cubic-LBP for FME recognition
[18]. Sun et al. proposed a knowledge distillation to transfer
knowledge from action unit [58].

On the other hand, for a few years, a micro-expression
grand challenge (MEGC) has been held to promote the com-
petitive development of FME recognition techniques [37].
In MEGC, many FER techniques are evaluated using micro-
expression-specific datasets such as SMIC [24], CASME
IT [25], SAMM [36], and their composite dataset. Here,
we introduce several FME recognition algorithms published
in MEGC 2019. Quang et al. employed capsule networks,
which have been successful in general object recognition, for
FME recognition [40]. Zhuo et al. proposed a two-stream
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FIGURE 2. Block diagram of the proposed FER algorithm.

two-block variant of the Inception network to learn a robust
feature representation from the horizontal and vertical com-
ponents of TV-L1 optical flow information [42]. Liong et al.
proposed a shallow 3D CNN which comprises of three
parallel streams, each with a different number of feature
maps to curb under-fitting. Liu et al. proposed a part- based
deep neural network approach with two domain adaptation
techniques—adversarial domain adaptation and motion mag-
nification and reduction, which help to enrich the available
training samples [44]. However, since the above-mentioned
studies were verified only for the micro-expression datasets
[6], [24], [25], [36], it has not been verified whether they
recognize facial expressions of various intensity including
FME.

IIl. LFM-BASED FACIAL EXPRESSION RECOGNITION

The proposed FER method consists of the LFM/CLFM
generation step and the deep learning-based classifier
(see Fig. 2). First, the point-wise distances between land-
marks (LMs) of two adjacent video frames are computed
and the computed distances are converted into a single 2D
image, i.e., LFM. Here, a compact LFM (CLFM) can be
generated. Note that LFM/CLFM is a sort of inter-frame dis-
tance. So, assuming a video sequence composed of N frames,
N-1 LFMs/CLFMs can be generated for the video sequence.
Second, an emotion corresponding to the video sequence
is determined via classification using the LFMs/CLFMs.
For this classification, we employ the CNN-LSTM-based
network with the LFMs/CLFMs as input. Note that the
CNN-LSTM network is a representative classifier for image
sequences. In this paper, we adopt a structure combining
VGG13 [13] and LSTM [7]. The CNN first transforms each
LFM/CLFM into a one-dimensional (1D) feature vector.
Then, if the consecutive 1D feature vectors pass through
LSTM, the emotion class of each input video is determined.
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A. GENERATION OF FRAME-BASED LFMs

First, take a look at the creation process of LFEM. Figure 3 (a)
is an example of 68 facial LMs. In this paper, we employed
Dong et al.’s method [17] for LM extraction. Note that tempo-
ral change of LMs in a video sequence becomes an important
clue to grasp the facial expression change. Also, LM has an
advantage that it is rarely influenced by personal characteris-
tics such as face shape, gender, age, and ambient illumination.
Based on these advantages, Jung et al. [11] and Zhang et al.
[12] proposed deep learning schemes that classify emotions
using LMs. They used CNN receiving video data as the main
network, and adopted recurrent NN (RNN) receiving the LM
positions as the auxiliary network.

In order to apply LM information (instead of huge amount
of pixel information) to CNN, we convert the LM information
into a 2D LM feature map (LFM). In detail, LFM is defined as
a time-varying pattern of distances between LMs of adjacent
frames as follows.

LEMy=|p (i,n)=p (. mla—llp G.n=T) —=p (.n—=T)ll,
ey

where p (i, n) denotes the coordinate of the i-th LM in the n-th
frame. LFM,, (i, j) shows how the distance between the i-th
LM and the j-th LM changes between the n-th frame and the
(n-T')-th frame. Assuming LM model consisting of 68 points,
LFM, becomes a 68 x 68 feature matrix. Since LFMs are
2D information, they can be learned by CNN. The experi-
mental result in Section V-B shows that LFMs are visually
distinguished according to emotions.

Next, we need to make LFM robust to the strength or
intensity of emotion. Assume two facial expressions with
the same emotion type but different emotion strengths.
Without loss of generality, we could observe that even though
the moving distances of the LMs are different each other,
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FIGURE 3. (a) 68 LMs extracted from a face with “disgust” emotion (S097_004 sequence of CK+ dataset) (b) LFM generated with the 68 LMs (c) CLFM

generated with 21 sampled LMs.

their directions and patterns are similar. Therefore, by nor-
malizing the LFM, i.e., dividing the LFM by the maximum
value or the minimum value of the LFM as shown in Eq.
(2), we make the same emotions have almost same LFMs
irrespective of the emotion strengths. Here max(LFM,) and
min(LFM,) indicate the farthest distance and the closest
distance between LMs, respectively.

LFM,, (i, j)
LFM (i, j) | . .
{m} + 127 lfLFMn(l,])>0
I MO.SIWZ'LFM"O
{ min(LFM,,) } + elseif LEM» (i.)) <
127 else

@

For instance, Fig. 3 (b) shows the result of transforming
the LMs extracted from the disgusting expression of
Fig. 3 (a) into an LFM according to Eq. (2). The red color
means that the distance between the LMs is getting closer,
and the blue color means that the distance is getting away.
We could observe that the positions of jaw, eyes, nose, and
mouth in the LFM are almost fixed due to the essential struc-
ture of human faces as in Fig. 3 (b). Thus, we can distinguish
different emotions through activated patterns of LFM.

On the other hand, LFM outputs a unique pattern regardless
of the strength of the facial expression thanks to the normal-
ization effect. So, facial expressions of the same emotion type
are characterized by similar LFMs. Using this characteristic,
we can improve the FME recognition performance.

1) GENERATION OF CLFM VIA SAMPLING OF LANDMARKS

The number of facial LMs can normally vary depending on
the LM extraction techniques. The most common method is
to extract 68 LMs, but 49, 21, and 5 LMs are also avail-
able [20]-[22]. Since LFM aims to produce a unique pattern
per emotion, it is enough to use only the LMs that can
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saliently represent the emotion change among all the LMs.
That is, we do not have to entirely adopt 68 LMs as in [16].
For example, since facial expressions generally depend on
changes in eyes, nose, mouth, eyebrows, etc., it is seldom
affected by the LMs near jaw with little change. Also, since
LMs are relatively densely distributed, a proper sampling of
LMs does not adversely affect the character of facial expres-
sions. Based on this philosophy, we sample only the minimum
number of LMs that can represent the movement of each
facial part. First, in the case of eyebrows, three LMs of both
sides and in the middle of each eyebrow are chosen. Also,
in order to sense behaviors such as eye closing or frowning,
four LMs are selected at both sides, up and down of each eye.
Then, four LMs are chosen to represent the mouth opening
and the movement of mouth corner. Finally, three LMs at
the bottom of the nose are selected, except for the vertical
LM with little movement. As a result, 21 (=3 x 2 + 4 %
2 + 4 + 3) LMs are sampled.

By sampling only 21 salient LMs among 68 LMs, we
generate 21 x 21 LFM. Experimental results of Section V
show that 21 x 21 LFM, i.e., CLFM has little difference in
performance from 68 x 68 LFM. The indices of the sampled
LMs among 68 LMs is [18], [20], [22], [23], [25], [27], [32],
[34], [36], [37], [39], [40], [41], [43], [44], [46], [48], [49],
[58] (see the green points in Fig. 3 (a)). Figure 3 (c) shows the
CLFM derived from Fig. 3 (a). Note that the spatial resolution
of Fig. 3 (c) is only 1/10 of Fig. 3 (b), but the main features are
preserved well in spite of sampling. Section V-A will prove
that CLFM can significantly decrease the parameter size as
well as computation of the classifier network with negligible
performance degradation.

B. CNN-LSTM-BASED CLASSIFIER

In order to classify the generated LFMs, we adopt a
CNN-LSTM-based network which has been widely used for
video classification. First, a network based on VGG13 [13]
produces a 1D spatial feature vector from LFM,, of Eq. (2).
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TABLE 1. The configuration of the CNN network based on LFM and CLFM.
Here C is the number of classes.

TABLE 2. Comparison in terms of the parameter amount.

Then, the feature vectors are sequentially applied to LSTM
[7] to extract spatio-temporal features, i.e., the hidden states
of LSTM. Finally, an emotion class is determined by softmax.

In this paper, CNN network and LSTM network are
learned separately. The former has a frame unit and the latter
has a video sequence unit. The CNN is first trained using
a pre-determined dataset, e.g., LFMs derived from target
dataset. Next, the LSTM is trained using the feature vectors
obtained from the CNN network. The details of each network
architecture are as follows.

1) CNN NETWORK

As mentioned above, the CNN network is based on
VGG13 model. As a CNN network that acts as an encoder
to extract 1D feature vectors from LFMs, this paper chose
VGG13, which has been widely used as a backbone or base-
line in various computer vision tasks. The CNN network is
trained with a target dataset, and the LFMs (or CLFMs) of all
frames in the dataset are input with the corresponding labels.
The detailed structure is shown in Table 1. The left and right
columns of Table 1 are CNN networks for LFMs and CLFMs,
respectively. Note that the 1D feature vectors from the fully
connected 1 (FC1) layer are input to the subsequent LSTM
network. In fact, the output of the last layer, i.e., FC2 layer can
be regarded as probability values of emotion classes. Also,
the goal of the CNN network is to analyze the spatial patterns
of LFMs and generate the compressed features. Therefore,
the intermediate features from FC1 layer are transferred to
the LSTM network.

2) LSTM NETWORK
While CNN is used to extract the frame unit features, LSTM,
that is a sort of RNN, is used to extract the sequence
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CNN LSTM Total
LFM CLFM LFM 7,351,223 1,838,855 9,190,078
Operation Featu!'e Operation Featul.‘e CLFM 520,375 198,023 718,398
dimension dimension
Input(filter size) 224x224x1 Input(filter size) 21x21x1 .
Conv1(3x3x16) | 224x224x16 | Conv1(3x3x16) 21x21x16 Video sequence
Conv2(3x3x16) 224x224x16 Conv2(3x3x16) 21x21x16 l
MaxPool1(2x2) 112x112x16 MaxPool1(2x2) 10x10x16 | : |
Conv3(3x3x32) 112x112x32 Conv3(3x3x32) 10x10x32 Landmarkl extraction
Conv4(3x3x32) 112x112x32 Conv4(3x3x32) 10x10x32 v
MaxPool2(2x2) | 56x56x32_| MaxPool2(2x2) 5x5x32 | Computation of SFEM |
Conv5(3x3x64) 56x56x64 Conv5(3x3x64) 5x5x64
Conv6(3x3x64) 56x56x64 Conv6(3x3x64) 5x5x64 Yes No
Conv7(3x3x64) 56x56x64 Conv7(3x3x64) 5x5x64
MaxPool3(2x2) 28x28x64 Flatten 1x1600 @
Conv8(3x3x128) | 28x28x128 | FCI(1600x256) 1x256 LEM-FER | | I-FER |&
Conv9(3x3x128) 28x28x128 FC2(256xC) 1xC l ‘
Conv10(3x3x128) | 28x28x128 Softmax 1xC v
MaxPool4(2x2) 14x14x128 Label output
Conv11(3x3x128) | 14x14x128
Convi2(3x3x128) | 14x14x128 FIGURE 4. A generic framework that adaptively employs LFM-FER and
Conv13(3x3x128) | 14x14x128 I-FER according to SFEM. Here, SFEM is a metric to indicate expression
MaxPool5(2x2) 7x7x128 intensity.
Flatten 1x6272
FC1(6272x1024) 1x1024
FC2(1024xC) 1xC unit features. The LSTM receives the 1D feature vector from
Softmax 1xC each cell, and then outputs the hidden state and cell state

of 128 dimensions. If the hidden state of the last data of each
video sequence passes through the FC layer and softmax,
a final score vector is output as in Fig. 2.

3) ANALYSIS OF NETWORK ARCHITECTURE

In [16], a 68 x 68 LFM was resized to 224 x224 size, and
a feature vector of 1024 length was output from the CNN
network. In this paper, if CLFMs are input to the CNN net-
work, they are not resized and a single layer LSTM is adopted.
Therefore, the parameter size of the entire network is drasti-
cally reduced. Table 2 compares the number of parameters of
CLFM-based network with that of LFM-based network. Note
that the parameter size of CLFM-based network amounts
to only about 8% of LFM-based network. Section V shows
that despite the reduced parameter size, the performance
degradation is negligible.

IV. FACIAL EXPRESSION RECOGNITION

USING IMAGE AND LFM

Since the LFM-based FER (LFM-FER) proposed in
Section III was originally designed to recognize FMEs, its
performance may be lower than that of traditional image-
based FER (I-FER) to be designed for recognizing gen-
eral macro-expressions (refer to Section V). Therefore,
this section presents an adaptive framework that selects
LFM-FER and I-FER according to the facial expression
strength (see Fig. 4). In other words, if an input is determined
as FME, LFM-FER is applied. Otherwise, the existing FER
algorithm (I-FER) is applied.

A. A SIMPLE METRIC OF FACIAL EXPRESSION INTENSITY

In order to realize the framework of Fig. 4, a specific metric
to measure the emotion intensities in the facial expressions
is required. Several metrics have been proposed [8], [9].
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However, since the existing metrics are computationally
intensive, Eq. (3) is given as a simple facial expression metric
(SFEM).

Yo Y M ILFM, (. )]
lp(1,n) —p (17,0, - lIp (28, n) — p (34, n)|l,
3)

where N is the number of frames in the sequence and M is
the number of LMs. The numerator in Eq. (3) is the sum
of distances between LMs in the video sequence, and the
denominator indicates the approximate face size around eyes
and nose. Assuming 68 LMs as shown in Fig. 3 (a), LM
1 and LM 17 are located near both ears, and LM 28 and
LM 34 are located at the top and bottom of the nose, respec-
tively. Since these LMs are generally insensitive to emotion
changes, the product of the two distances in the denominator
can be assumed to be the relative size of a given face for
normalization. So, SFEM can estimate the intensity of face
expression irrespective of human identity and emotion class.
In an example of Fig. 1, SFEM for a macro-expression was
1.83 and that of a micro-expression was 0.20. Therefore, we
could empirically find that the SEFM is proportional to the
expression intensity.

SFEM =

B. A GENERIC FRAMEWORK THAT ADAPTIVELY EMPLOYS
LFM-FER AND I-FER ACCORDING TO SFEM

As in Fig. 4, if SFEM is first computed for each input
video, it is compared with a pre-determined threshold t.
Through experiments on various videos, we set t to 0.35 in
this paper. Unlike straightforward ensemble methods which
require inferencing two or more networks, this selective
method chooses an appropriate processing type before infer-
encing. Thus, the proposed framework has an advantage of
reducing overall computational cost since only one network
is inferenced.

V. EXPERIMENTS

The following four kinds of experiments were performed
to evaluate the performance of the proposed method. First,
Section V-A verifies the FME recognition performance of
the proposed method. To do this, we adopted SMIC [24],
CASME 1I [25], SAMM [36], which are representative
micro-expression datasets. In Section V-B, the characteristics
of LFMs (or CLFMs) are analyzed. For this analysis, another
micro-expression dataset is synthesized from CK+ dataset
[1], and it is used together with CK+ itself. Performance
verification of the proposed method for macro-expression
datasets as well as micro-expression datasets given in Section
V-C. Finally, Section V-D shows the results for the actual and
wild emotional response.

A. EXPERIMENTAL RESULT ON MICRO-EXPRESSION
DATASETS

The SMIC dataset consists of video sequences having
micro-expressions. Each video sequence has a resolution
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of 640 x 480@100Hz. There are 164 video sequences for
16 subjects, and each sequence is labeled with three emo-
tional classes such as ‘negative’, ‘positive’, and ‘surprise’.
The average number of frames in each sequence is 33.7.
Each video sequence of CASME II dataset has a resolution
of 640x480@200Hz. There are 246 sequences for 26 sub-
jects. CASME 1II consists of five emotional labels such as
‘disgust’, ‘happiness’, ‘others’, ‘repression’, and ‘surprise’.
The average number of frames in each sequence is 67.2.
Finally, the SAMM dataset consists of video sequences of
2040 x 1080@200Hz. There are 159 sequences for 29 sub-
jects. SAMM consists of eight emotional labels such as
‘anger’, ‘contempt’, ‘disgust’, ‘fear’, ‘happiness’, ‘others’,
‘sadness’, and ‘surprise’. The average number of frames per
video is 74.3.

For fair evaluation, we wused a protocol called
leave-one-subject-out cross validation (LOSO) in the same
way as the conventional methods [26]-[30]. In LOSO, sam-
ples for one subject are used as test data, and samples for the
remaining subjects are adopted as training data.

The frame interval 7 in Eq. (1) was set to 4 for SMIC
and 8 for CASME II and SAMM. This is to match the
general video frame rate of 25Hz. In addition, the length of
the LFM sequence input to the CNN-LSTM classifier was
fixed to 24 frames. Basically, 24 frames in the middle of each
sequence are extracted. If the length of a particular sequence
is shorter than 24 frames, repetitive padding is applied to
both ends of the sequence to forcibly set the frame length to
24 frames.

1) EXPERIMENTS ON SINGLE DATASETS

This section evaluates the performance of the proposed
method for SMIC and CASME 1I datasets, and then com-
pares it with SOTA techniques. As the SOTA techniques for
benchmarking, we chose Wang et al.’s [26], Li et al.’s [27],
Zong et al’s [28], Liu et al’s [29], Peng et al’s
[30] Guo et al.’s [45], and Sun et al.’s [58]. LOSO validation
was applied to all techniques. 16-fold validation was used for
SMIC and 26-fold validation for CASME II as in conven-
tional techniques. Quantitative evaluation was done in terms
of classification accuracy and F1-score.

Table 3 compares the proposed method with the SOTA
methods. The numerical values of each SOTA are taken
as they are in the papers, and Fl-scores of some meth-
ods are available. We can find that the proposed method
provides the best accuracy and Fl-score on average for
both datasets. In case of SMIC, [26] provides the best
performance among SOTAs, which is the same accuracy
as the proposed method. However, note that the proposed
LFM-based network has an improvement of about 8.6%
over [26] for CASME II. For CASME 11, [45] is the best
among SOTAs. However, the proposed method shows about
0.04% higher accuracy than [45]. In case of SMIC, the pro-
posed method provides higher accuracy of 2.28% than [45].
Although [45] uses three types of LBPs, which are much
more complicated than the LFM of the proposed method,
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TABLE 3. Performance comparison for SMIC and CASME Il datasets. Red
and blue mean the first and second places, respectively.

SMIC CASME II
Accuracy | Fl-score | Accuracy | Fl-score
bCa;(zlsii/i]E:Zg] N/A N/A 63.41% | NA
Wang etal.’s [26] | 71.34% N/A 65.43% N/A
Li et al.’s [27] 68.29% N/A 6721% N/A
Zongetal’s[28] | 66.46% | 06577 | 65.18% | 0.6254
Livetal’s[29] | 70.51% | 0.7041 66.95% | 0.6911
Pengetal’s[30] | 68.90% N/A 70.85% N/A
Guoetal’s [45] | 69.06% N/A 73.94% 0.69
Sun et al’s [58] N/A N/A 72.61% 0.67
(Ig;‘ 1‘:&':‘;;‘4‘) 7134% | 07134 | 73.98% | 0.7165
%fxllj;;‘,’l‘; 71.34% | 07134 | 71.54% | 0.7026

TABLE 4. Confusion matrices for SMIC dataset (a) LFM (b) CLFM.

Neg. Pos. Sur.
Neg. 75.7 15.7 8.6
Pos. 29.4 68.6 2.0
Sur. 23.3 9.35 67.4
(a)
Neg. Pos. Sur.
Neg. 74.3 17.1 8.6
Pos. 353 60.8 39
Sur. 14.0 7.0 79.0

(b)

it is encouraging that the proposed method performs better
than [45].

On the other hand, in case of SMIC, there is no difference in
performance between CLFM-based network and LFM-based
network, whereas for CASME II, CLFM is about 2.4%
less accurate than LFM. This is due to the difference in
the number of emotion classes between the two datasets.
SMIC has only three emotion classes: ‘negative’, ‘positive’,
and ‘surprise’, but CASME II consists of five classes. So,
in SMIC with a small number of classes, there is almost
no performance degradation due to CLFM, which is slightly
less discriminating than LFM. However, in CASME 1II with
a large number of classes, the performance degradation due
to the low discrimination power of CLFM becomes visible.
In order to examine this, Table 4 and Table 5 compare the
confusion matrices for the two datasets. Looking at Table 4
for SMIC, LFM and CLFM show opposite results in the
two classes, but on average they show similar performance.
However, in Table 5, CLFM is inferior to LFM in 3 out
of 5 classes. So, in CASME II, CLFM is on average lower
than LFM.
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TABLE 5. Confusion matrices for CASME Il dataset (a) LFM (b) CLFM.

Dis. Hap. Oth. Rep. Sur.
Dis. 74.6 1.6 19.0 32 1.6
Hap. 12.5 53.1 12.5 15.6 6.3
Oth. 9.1 2.0 84.8 3.0 1.0
Rep. 3.7 3.7 222 70.4 0.0
Sur. 0.0 4.1 36.0 0.0 60.0
(a)
Dis. Hap. Oth. Rep. Sur.
Dis. 71.4 4.8 22.2 1.6 0.0
Hap. 12.5 43.8 344 6.3 3.1
Oth. 7.1 2.0 88.9 2.0 0.0
Rep. 7.4 14.8 37.0 40.7 0.0
Sur. 4.0 0.0 20.0 4.0 72.0
(b)

Figure 3 (a) shows that CLFM has a higher LM density
in eyes and eyebrows than LFM. In the case of ‘surprise’,
the movements of eyes and eyebrows are dominant informa-
tion. Since CLFM has a relatively large density for such a
region, it is superior to LFM for ‘surprise’ emotion. In the
case of ’positive’, the information around the mouth is dom-
inantly important. So, CLFM has a relatively low perfor-
mance because its LM density around mouth is lower than
LFM’s. We experimentally chose the LMs of CLFM such
that the average accuracy is maximized for various emo-
tions. That is, the number of LMs in CLFM, i.e., 21 was
an experimental minimum that maximizes the average accu-
racy in FME recognition. As a result, CLFM provides better
FME performance than SOTAs as in Table 3, while CLFM
provides significantly lower network complexity than LFM
with negligible performance degradation as in Table 2 and
Table 3.

2) EXPERIMENTS ON A COMPOSITE DATASET

This section shows the experimental results for a composite
dataset combining SMIC, CASME 1I, and SAMM. This
experiment followed the protocol of MEGC 2019 [37].
In order to unify the classes of three different datasets, only
three classes of ‘negative’, ‘positive’, and ‘surprise’ were
used. In CASME 11, ‘disgust’ and ‘repression” were merged
into a single ‘negative’ class. In SAMM, ‘anger’, ‘contempt’,
‘disgust’, ‘fear’, and ‘sadness’ were all integrated into a
single ‘negative’ class. As a result, the composite dataset
consists of 442 sequences obtained from a total of 68 subjects.
We adopted LOSO validation and analyzed performance in
terms of unweighted F1-score (UF1) and unweighted average
recall (UAR).

Figure 5 shows some examples of LFM and CLFM for
three micro-expression datasets. We can observe that LFMs
and CLFMs of the same class tend to have similar patterns
even if the datasets are different each other. Therefore, we can
find that the proposed LFM/CLFM can extract robust features
regardless of gender or race.

Table 6 gives quantitative experimental results. EMR [44]
shows the best performance in composite dataset, SMIC,
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FIGURE 5. Examples of the proposed LFM and CLFM for micro-expression
datasets. (a) SMIC, (b) CASME II, (c) SAMM dataset.

and SAMM datasets, but in CASME 1I it is inferior to the
proposed method. ELBPTOP [45] gives the best performance
in CASME 1I, but is inferior to the proposed method for
the other datasets. Note that the proposed method shows
good performance evenly in all datasets. For instance, LFM
and CLFM provide only 0.02 and 0.04 less UF1 than EMR
for the composite dataset. This is a very marginal degrada-
tion in performance. It is noteworthy that EMR addition-
ally used CK+ dataset for training and adopted domain
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adaptation technique, whereas the proposed method
employed a typical training technique without domain adap-
tation. Nevertheless, the good performance of LMF and
CLMF demonstrates that they are effectively extracting key
information about FME.

3) EXPERIMENTS ON CROSS-DATASET VALIDATION

This section describes the experimental results for
cross-dataset validation using SMIC and CASME II. The
experiment was performed as follows. After setting one
dataset as the source dataset, a given model is trained
and the performance of the trained model is tested with
another dataset. We followed the protocol of [46], which
preceded the cross-dataset validation of FER algorithms for
FME recognition. In [46], all combinations of four datasets,
ie.,, SMIC (SMIC-HS), SMIC-VIS, SMIC-NIR, and
CASME I, were verified. This paper performed experiments
on cross-dataset validation between SMIC (SMIC-HS) and
CASME 1I datasets, i.e., ‘SMIC (source) — CASME II
(target)’ and ‘CASME 1I (source) — SMIC (target)’. For
efficiency of this experiment, the classes of the two datasets
were adjusted into three classes: ‘positive’, ‘negative’, and
‘surprise’. 164 data from SMIC and 130 data from CASME 11
were used in this experiment. The performance of each
algorithm was evaluated in terms of the mean F1-score and
accuracy.

The domain adaptation (DA) with respect to the
SVM-based technique [47] was applied to all benchmarking
methods [46], [48]-[56]. During the DA process, the label
information of the target dataset was not used, but the feature
information of the input was used. Meanwhile, the LFM- and
CLFM-based techniques did not use the target dataset infor-
mation in the learning process. That is, the model was trained
using only the source dataset, and the performance of the
trained model was evaluated for the target dataset.

Table 7 shows the experimental results. In the
‘CASME II — SMIC’ experiment, the LFM-based
method provides the best performance with mean F1-score
of 0.5876 and accuracy of 58.54, and the CLFM-based
method has an accuracy of 55.49, which is the second highest
accuracy. Next, in case of ‘SMIC — CASME II’ experiment,
the LFM-based method shows mean F1-score of 0.6066 and
accuracy of 63.57, which is the second best performance.
The CLFM-based method shows the third highest mean F1-
score and the fourth highest accuracy. Given that DA was
not applied to the proposed method, such a performance
improvement is very encouraging. This experimental result
indirectly proves that the LFM and CLFM features not only
have very robust characteristics in the dataset acquisition
environment, but also extract unique features according to
emotions.

B. ANALYSIS OF LANDMARK-BASED FEATURE MAP

This section demonstrates experimentally that LFM/CLFM
has robust properties to macro-expressions as well as
micro-expressions. For this experiment, we employ two
kinds of datasets. The first dataset is a famous CK+
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TABLE 6. Experimental results on SMIC, CASME Il, SAMM, and their composite datasets. Red and blue mean the first and second places, respectively.

Method Composite SMIC CASME II SAMM
UF1 UAR UF1 UAR UF1 UAR UF1 UAR
LBPTOP][38] 0.59 0.58 0.20 0.53 0.70 0.74 0.40 0.41
Bi-WOOF[39] 0.63 0.62 0.57 0.58 0.75 0.80 0.52 0.51
CapsuleNet[40] 0.65 0.65 0.58 0.59 0.71 0.70 0.62 0.60
OFF-ApexNet[41] 0.72 0.71 0.68 0.67 0.88 0.87 0.54 0.54
Dual-Inception Network[42] 0.73 0.73 0.66 0.67 0.86 0.86 0.59 0.57
STSTNet[43] 0.74 0.76 0.68 0.70 0.84 0.87 0.66 0.68
EMR with Adv. Training[44] 0.79 0.78 0.75 0.75 0.83 0.82 0.78 0.72
ELBPTOP[45] 0.71 0.69 0.65 066 0.89 0.88 0.49 0.49
LFM-based (68x68 LFM) 0.77 0.75 0.72 0.71 0.87 0.84 0.67 0.60
CLFM-based (21x21 LFM) 0.75 0.72 0.71 0.71 0.72 0.77 0.65 0.51
LFM
CLFM
Facial
image

Angry

Contempt

FIGURE 6. LFMs and CLFMs for seven emotions. (1st row) LFM [16] (2nd row) CLFM.

TABLE 7. Results of cross dataset experiment for SMIC and CASME Il
datasets (mean F1-score / accuracy). Here, domain adaptation (DA)
technique was applied to all the techniques except SVM and the proposed
method. Red and Blue mean the first and second places, respectively.

Method CASME II > SMIC | SMIC > CASME II

SVM (w/o DA) [47] 0.3697 /45.12% 0.3245 / 48.46%
IW-SVM [48] 0.3541/41.46% 0.5429/62.31%
TCA [49] 0.4637 / 46.34% 0.4870 / 53.08%
GFK [50] 0.4126 / 46.95% 0.4776 / 50.77%
SA [51] 0.4302 / 47.56% 0.5447 / 62.31%
STM [52, 53] 0.3640 /43.90% 0.6115/ 63.85%
TKL [54] 0.4582 /46.95% 0.4657 / 45.38%
TSRG [55] 0.5042 /51.83% 0.5171/60.77%
DRFS-T [56] 0.4524 /46.95% 0.5460 / 60.00%
DRLS [56] 0.4924 / 53.05% 0.5267 / 59.23%
RSTR [46] 0.5297 /54.27% 0.5622 /60.77%
LFM-based

0.5876 / 58.54% 0.6066 / 63.57%
(68x68 LFM, w/o DA)
CLFM-based

0.4978 / 55.49% 0.5779 / 62.79%
(21x21 LFM, w/o DA)

dataset [1] which is usually employed for evaluating facial
general-expression (FGE), i.e., macro-expression recog-
nition performance. CK+ consists of 327 sequences
which are labeled with seven emotion classes. Generally,
FME/FGE do not exist simultaneously for the same person.
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Therefore, to generate FME as well as FGE for the same
person, we artificially synthesized FME sequences from
FGE sequences of CK+ dataset. This becomes the second
dataset. Although the synthesized FME may differ from
the real one, we assumed that they are similar each other.
The FME synthesis process is as follows. The first frame
in which a facial expression starts in each sequence of the
CK+ is detected, and three consecutive frames from that
frame are selected. Since the starting points of the facial
expressions usually vary from sequence to sequence, the start-
ing point of each sequence is found manually in this paper.
Since the movements of LMs is small at the beginning of
emotional expression, we consider these selected frames as
FME sequences without loss of generality. Next, each FME
sequence is four times interpolated through Simony’s method
[14]. In other words, three-frame sequence having a specific
FME is converted into a sequence of twelve frames having
the same FME. The synthesized FME dataset is available at
https://github.com/pride0723/LFM2D. The mean SFEM of
the FME dataset is 0.32, which amounts to 13.2% of the FGE
dataset.

1) VISUAL ANALYSIS OF LFM PATTERN ACCORDING

TO EMOTION CLASS

In this section, we visually investigate LFM patterns
according to facial expressions. First, Fig. 6 shows LFMs
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FIGURE 7. T-SNE comparison for FGE and FME datasets (a) Facial images for FGE dataset, (b) facial images for FME
dataset, (c) LFMs for FGE dataset, (d) LFMs for FME dataset, (e) CLFMs for FGE dataset, (f) CLFMs for FME dataset.

generated according to seven emotions of FGE dataset,
i.e., the first dataset. We can observe that the CLFM (the sec-
ond row) as well as the LFM (the first row) shows a unique

pattern depending on the emotion class.

Second, we adopted t-SNE [23] to examine the similarity
between emotion classes. Figure 7 are the t-SNEs of facial
images, LFMs, and CLFMs for both FGE and FME datasets.

Figure 7 (a) shows the t-SNE distribution of facial images of

the FGE dataset. Here, facial images were cropped as shown
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in the 3rd row of Fig. 6 and were resized to 128 x 128. We can
find that the distribution of ‘surprise’ class has some con-
centration, but is not properly separated. Figure 7 (b) shows
an example for FME dataset. We cannot observe any con-
centration according to emotion class. The distribution of
some data may be crowded because different emotions for the
same person have very high correlation. On the other hand,
Fig. 7 (¢) to (f) show t-SNEs of LFM and CLFM. We can see
that the data of the same emotion class is properly clustered
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t=7

FIGURE 8. The facial images and CLFMs for “happiness” (S097_004 sequence in CK+ dataset) (a) CLFMs for FGE, (b) CLFMs for FME.

in case of FME as well as FGE. Since even different people
have statistically similar movements of LMs, LFM shows a
unique pattern depending on the emotion. As a result, unlike
the facial images, LFMs have an advantage of eliminating
redundant personal characteristics such as age and gender.
In other words, the data distributions of Fig. 7 (c)-(f) are
much less difficult in classification compared to those of
Fig. 7 (a) and (b). Thus, the proposed method provides better
performance.

2) LFM COMPARISON ACCORDING TO FACIAL

EXPRESSION STRENGTH

In this section, we examine whether different LFMs of
the same emotion show similar patterns regardless of the
emotion intensity. For this experiment, we extracted CLFMs
as shown in Fig. 8 (a) by selecting a video clip of ‘happiness’
(see Fig. 1 (a)) from CK+ dataset. This corresponds to FGE.
On the other hand, CLFMs of the corresponding synthe-
sized FME are shown in Fig. 8 (b). Similar to Fig. 8 (a),
we can observe the emotion-specific pattern even in Fig. 8
(b). Therefore, LFM/CLFM works well not only for FGEs
but also for FMEs because it can generate similar patterns for
the same emotion regardless of the emotion intensity.

C. PERFORMANCE EVALUATION OF MICRO-EXPRESSION
AND MACRO-EXPRESSION

In this section, the performance of the proposed method is
verified for the FGE and FME datasets. The classifier net-
work was trained only with FGE dataset. Using the same
trained model, the test for FGE was performed with the
original CK+ dataset, but the test for FME was performed
with the synthesized FME dataset. Additionally, we made
‘mixed expression’ dataset which were randomly sampled
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TABLE 8. Performance comparison of FER algorithms according to facial
expression strength in CK+ dataset. Here, the parenthesis of DTAGN
indicates the value published in [11].

Test dataset
FGE FME Mixed
dataset dataset dataset
93.88% o o
DTAGN [11] (9725%) 43.34% 70.95%
LFM-based (68x68 LFM) 92.66% 77.98% 87.46%
CLFM-based (21x21 LFM) 88.78% 78.60% 85.63%
LFM and DTGAN [11] o
(adaptive method) N/A N/A 88.69%
CLFM and DTGAN [11] o
(adaptive method) N/A- N/A 89.30%

in 50:50 from FGE and FME datasets, and tested the proposed
method even for the mixed expression dataset. For all the
datasets, we employed the most popular 10-fold validation
protocol. That is to say, nine subsets were used for training the
networks, and the remaining subset was used for validation.
The proposed method was compared with DTAGN [11].
The code released by the authors was used and the
augmentation was applied to the training data of DTAGN.
To our knowledge, [11] is the only FER method whose source
code is available. Table 8 shows emotion classification result
for both FGE and FME. For FGE dataset, LFM and CLFM
provide the accuracies of about 93% and 89%, respectively.
The performance of LFM-based network is close to that
of DTAGN. CLFM-based network shows about 4% lower
accuracy than LFM-based one. This performance degradation
is caused by LM sampling as mentioned in Section V-A.
However, note that as shown in Table 2, the number of
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FIGURE 9. T-SNE map of 21 x 21 2D LMFs extracted from the CK+ FME, MAHNOB-HCI and MEVIEW dataset.

TABLE 9. Confusion matrix for FGE in case of the 68 x 68 LMF (a) LFM
and (b) CLFM.

An. Co. Di. Fe. Ha. Sa. Su.
An. 86.7 0.0 44 2.2 0.0 6.7 0.0
Co. 5.6 77.8 0.0 0.0 11.1 0.0 5.6
Di. 1.7 0.0 96.6 1.7 1.7 0.0 0.0
Fe. 0.0 0.0 4.0 84.0 8.0 0.0 4.0
Ha. 0.0 0.0 2.9 0.0 97.1 0.0 0.0
Sa. 10.7 3.6 0.0 0.0 0.0 82.1 3.6
Su. 0.0 1.2 0.0 0.0 0.0 0.0 98.8

An. Co. Di. Fe. Ha. Sa. Su.
An. 84.4 0.0 11.1 22 0.0 22 0.0
Co. 5.6 55.6 5.6 0.0 22.2 5.6 5.6
Di. 34 0.0 94.9 0.0 1.7 0.0 0.0
Fe. 0.0 0.0 0.0 60.0 0.0 16.0 24.0
Ha. 0.0 0.0 0.0 0.0 98.6 0.0 14
Sa. 17.9 0.0 0.0 14.3 0.0 64.3 3.6
Su. 0.0 1.2 0.0 0.0 0.0 0.0 98.8

(b)

parameters of CLFM is only 1/12 of LFM. In case of FME,
LFM and CLFM provide the accuracies of about 78% and
78.6%, respectively. Here, their performances become similar
each other. Note that CLFM is superior to DTAGN by about
35%. Also, CLFM shows about 15% higher performance than
DTAGN even for mixed dataset. Finally, the joint framework
of CLFM and DTAGN as shown in Section IV-B shows a
performance improvement of about 3.7% over CLFM alone
for the mixed dataset. This is because DTAGN maintains rea-
sonable performance in the general macro-expression section
of the mixed expression sequence.

Table 9 shows the confusion matrices for the FGE dataset.
The recognition performance of CLFM (Table 9 (b)) is
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lowered in ‘contempt’, ‘fear’ and ‘sad’ compared to LFM
(Table IX (a)). Seeing facial images in the 3rd row of
Fig. 6, we can find that the movements around the mouth are
dominant information for those emotions. As mentioned in
Section V-A, the LM density of CLFM decreases around the
mouth and thus the recognition performance of the related
emotions deteriorates. Similarly, Table 10 shows the confu-
sion matrices for the FME dataset. In case of CLFM, the
accuracies of ‘contempt’, ‘fear’ and ‘sad’ emotions somewhat
decrease. However, the performance of CLFM improves for
‘disgust’ emotion where eyes and eyebrows become domi-
nant information. As a result, the FME accuracy of CLFM
is better than that of LFM by 0.62% on average as shown
in Table 8.

D. RESULTS FOR REAL EMOTIONAL DATASET

The CK+ dataset consists of acted emotional images. So, this
section shows the qualitative experimental result for actual
and wild datasets, i.e., MAHNOB-HCI [19] and MEVIEW
[57]. Each data of MAHNOB-HCI was produced by sensing
the faces and bio-signals generated while the subjects are
watching the emotional stimulus contents, and it was anno-
tated in the continuous domain of arousal and valance. On the
other hand, unlike the datasets such as SMIC and CASME 11,
MEVIEW dataset was produced by focusing on FME in wild
conditions. Each content of MEVIEW dataset was mostly
captured from poker games and TV interviews.

Figure 9 shows the t-SNE map which displays CLFMs
extracted from the CK+ FME, MAHNOB-HCI and
MEVIEW dataset. We can observe that images having the
same emotion are mapped to similar positions (compare the
displayed images). In addition, Fig. 10 shows the examples
of CLFMs obtained from video clips from three datasets.
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TABLE 10. Confusion matrices for FME dataset (a) LFM and (b) CLFM.

An. Co. Di. Fe. Ha. Sa. Su.
An. 77.8 0 11.1 4.4 0 4.4 2.2
Co. 0.0 72.2 0 0 11.1 5.6 1.1
Di. 8.5 0 79.7 0 10.1 1.7 0
Fe. 12.0 0 8.0 48.0 12.0 8.0 12.0
Ha. 14 0 43 5.8 81.2 1.5 5.8
Sa. 10.7 3.6 3.6 10.7 0 71.4 0
Su. 1.2 3.61 24 1.2 0 4.8 86.7
(@)
An. Co. Di. Fe. Ha. Sa. Su.
An. 75.6 0 17.8 44 0 2.2 0
Co. 11.1 50.0 5.6 0 222 0 11.1
Di. 1.7 1.7 89.8 0 34 1.7 1.7
Fe. 4.0 0 0 36.0 16.0 8.0 36.0
Ha. 2.9 4.4 1.5 0 87.0 0 4.4
Sa. 10.7 0 3.6 3.6 3.6 67.7 10.7
Su. 4.8 2.4 0 1.2 0 3.6 88.0
(b)

FIGURE 10. Facial images and their CLFMs for some video clips. (a) Index:
MAHNOB_HCI 01_04, (b) index: MAHNOB_HCI 06_02. (c) MEVIEW 07_09,
(d) MEVIEW 16_02, Here, left, center, and right columns indicate the 1st
frame, the last frame of the sequence, and CLFM, respectively.

Figure 10 (a) corresponds to ‘happy’ emotion in discrete
domain view. The CLFM obtained here is very similar to
the ‘happy’ emotional pattern in Fig. 5. Also, the CLFM of
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Fig. 10 (b) corresponding to ‘sad’ emotion is similar to the
pattern corresponding to ’sad’ of Fig. 6. On the other hand,
Fig. 10 (c) for the MEVIEW dataset is similar to the pattern
of ‘angry’ in Fig. 6, and Fig. 10 (d) is similar to the pattern
of ‘happy’. Therefore, we can qualitatively find that the
proposed method is effective not only on the facial expression
dataset in the artificial environment such as CK+ dataset, but
also on the micro-expressions existing in the natural emo-
tional response dataset, i.e., MAHNOB-HCI and MEVIEW
datasets. This shows that the proposed LFM achieves
effective emotion recognition by extracting robust features
irrespective of the characteristics of the facial datasets.

VI. CONCLUDING REMARKS

The proposed LFM generates a unique pattern according
to emotion class regardless of the strength of facial
emotion, thus enabling effective emotion recognition. For
micro-expression datasets such as SMIC and CASME II,
the proposed method showed superiority in accuracy and
F1-score over SOTAs. Even in the experiments on compos-
ite dataset and cross dataset validation, we proved that the
proposed method outperforms the conventional techniques.
Also, even if the proposed method is learned with the FGE
training set, it can cope with the test set such as FME. We also
proposed a compact LFM (CLFM) that consists only of LM
points that have a major effect on emotion. Compared with
our previous work [16], CLFM reduces the classifier cost
to only 8% and concurrently minimizes the performance
degradation. In the case of FME, the proposed method shows
a performance gain of more than 35% over the conventional
method [11]. In addition, the adaptive scheme that can selec-
tively choose between the proposed method and [11] shows
an accuracy improvement of about 18% over [11] for the
mixed expression dataset.

REFERENCES

[1] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
“The extended Cohn-Kanade dataset (CK+): A complete dataset for
action unit and emotion-specified expression,” in Proc. IEEE Com-

put. Soc. Conf. Comput. Vis. Pattern Recognit.-Workshops, Jun. 2010,

pp. 94-101.

A. Dhall, R. Goecke, S. Lucey, and T. Gedeon, ‘““Collecting large, richly

annotated facial-expression databases from movies,” IEEE Multimedia-

Mag., vol. 19, no. 3, pp. 3441, Jul. 2012.

T. Pfister, X. Li, G. Zhao, and M. Pietikainen, ‘“Recognising spontaneous

facial micro-expressions,” in Proc. Int. Conf. Comput. Vis., Nov. 2011,

pp. 1449-1456.

[4] A. C. Le Ngo, Y-H. Oh, R. C.-W. Phan, and J. See, ‘“Eulerian
emotion magnification for subtle expression recognition,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2016,
pp. 1243-1247.

[5] Y. Wang, J. See, Y.-H. Oh, R. C.-W. Phan, Y. Rahulamathavan, H.-C. Ling,
S.-W. Tan, and X. Li, “Effective recognition of facial micro-expressions
with video motion magnification,” Multimedia Tools Appl., vol. 76, no. 20,
pp. 21665-21690, Oct. 2017.

[6] W.-J. Yan, Q. Wu, Y.-J. Liu, S.-J. Wang, and X. Fu, “CASME database:
A dataset of spontaneous micro-expressions collected from neutralized
faces,” in Proc. 10th IEEE Int. Conf. Workshops Autom. Face Gesture
Recognit. (FG), Apr. 2013, pp. 1-7.

[7]1 S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

2

—

3

[l

121561



IEEE Access

D. Y. Choi, B. C. Song: FME Recognition Using 2D LFMs

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. Zhao, Q. Gan, S. Wang, and Q. Ji, ““Facial expression intensity estima-
tion using ordinal information,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 3466-3474.

K. Keung Lee and Y. Xu, “Real-time estimation of facial expression
intensity,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Sep. 2003,
pp. 2567-2572.

T. F. Cootes, G. J. Edwards, and C. J. Taylor, ““Active appearance models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 681-685,
Jun. 2001.

H. Jung, S. Lee, J. Yim, S. Park, and J. Kim, “Joint fine-tuning in deep
neural networks for facial expression recognition,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 2983-2991.

K. Zhang, Y. Huang, Y. Du, and L. Wang, “‘Facial expression recognition
based on deep evolutional spatial-temporal networks,” IEEE Trans. Image
Process., vol. 26, no. 9, pp. 4193-4203, Sep. 2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
separable convolution,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 261-270.

M. Verma, S. K. Vipparthi, G. Singh, and S. Murala, “LEARNet: Dynamic
imaging network for micro expression recognition,” IEEE Trans. Image
Process., vol. 29, pp. 1618-1627, 2020.

D. Y. Choi, D. H. Kim, and B. C. Song, “Recognizing fine facial micro-
expressions using two-dimensional landmark feature,” in Proc. 25th IEEE
Int. Conf. Image Process. (ICIP), Oct. 2018, pp. 1962-1966.

X. Dong, S.-I. Yu, X. Weng, S.-E. Wei, Y. Yang, and Y. Sheikh,
“Supervision-by-registration: An unsupervised approach to improve the
precision of facial landmark detectors,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 360-368.

V. Esmaeili and S. O. Shahdi, “Automatic micro-expression apex spotting
using cubic-LBP,” Multimedia Tools Appl., pp. 1-19, Apr. 2020.

M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal
database for affect recognition and implicit tagging,” IEEE Trans. Affect.
Comput., vol. 3, no. 1, pp. 42-55, Jan. 2012.

A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Incremental face align-
ment in the wild,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 1859-1866.

M. Kostinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated facial
landmarks in the wild: A large-scale, real-world database for facial land-
mark localization,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops
(ICCV Workshops), Nov. 2011, pp. 2144-2151.

W.-T. Chu and Y.-H. Liu, “Thermal facial landmark detection by deep
multi-task learning,” in Proc. IEEE 21st Int. Workshop Multimedia Signal
Process. (MMSP), Sep. 2019, pp. 94-108.

L. Maaten and G. Hinton, ‘“Visualizing data using t-SNE,” J. Mach. Learn.
Res., vol. 9, pp. 2579-2605, Nov. 2008.

X. Li, T. Pfister, X. Huang, G. Zhao, and M. Pietikainen, ‘A spontaneous
micro-expression database: Inducement, collection and baseline,” in Proc.
10th IEEE Int. Conf. Workshops Autom. Face Gesture Recognit. (FG),
Apr. 2013, pp. 1-6.

W.-J. Yan, X. Li, S.-J. Wang, G. Zhao, Y.-J. Liu, Y.-H. Chen, and X.
Fu, “CASME II: An improved spontaneous micro-expression database
and the baseline evaluation,” PLoS ONE, vol. 9, no. 1, Jan. 2014,
Art. no. e86041.

S.J. Wang, W. J. Yan, G. Zhao, X. Fu, and C. G. Zhou, “Micro-expression
recognition using robust principal component analysis and local spatiotem-
poral directional features,” in Proc Eur. Conf. Comput. Vis. (ECCV), 2014,
pp. 325-338.

X. Li, X. Hong, A. Moilanen, X. Huang, T. Pfister, G. Zhao, and
M. Pietikainen, “Towards reading hidden emotions: A comparative study
of spontaneous micro-expression spotting and recognition methods,” IEEE
Trans. Affect. Comput., vol. 9, no. 4, pp. 563-577, Oct. 2018.

Y. Zong, X. Huang, W. Zheng, Z. Cui, and G. Zhao, “Learning from
hierarchical spatiotemporal descriptors for micro-expression recognition,”
IEEE Trans. Multimedia, vol. 20, no. 11, pp. 3160-3172, Nov. 2018.

Y.-J. Liu, B.-J. Li, and Y.-K. Lai, “Sparse MDMO: Learning a
discriminative feature for spontaneous micro-expression recognition,”
IEEE Trans. Affect. Comput., early access, Jul. 9, 2018, doi: 10.1109/
TAFFC.2018.2854166.

W. Peng, X. Hong, Y. Xu, and G. Zhao, “A boost in revealing subtle facial
expressions: A consolidated Eulerian framework,” in Proc. 14th IEEE Int.
Conf. Autom. Face Gesture Recognit. (FG), May 2019, pp. 1-5.

121562

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

(52]

S.-J. Wang, W.-J. Yan, X. Li, G. Zhao, C.-G. Zhou, X. Fu, M. Yang, and
J. Tao, “Micro-expression recognition using color spaces,” IEEE Trans.
Image Process., vol. 24, no. 12, pp. 6034-6047, Dec. 2015.

S.-J. Wang, B.-J. Li, Y.-J. Liu, W.-J. Yan, X. Ou, X. Huang, F. Xu, and
X. Fu, “Micro-expression recognition with small sample size by transfer-
ring long-term convolutional neural network,” Neurocomputing, vol. 312,
pp. 251-262, Oct. 2018.

S. Xie and H. Hu, “Facial expression recognition using hierarchical fea-
tures with deep comprehensive multipatches aggregation convolutional
neural networks,” IEEE Trans. Multimedia, vol. 21, no. 1, pp. 211-220,
Jan. 2019.

T. Zhang, W. Zheng, Z. Cui, Y. Zong, J. Yan, and K. Yan, “A deep neural
network-driven feature learning method for multi-view facial expression
recognition,” IEEE Trans. Multimedia, vol. 18, no. 12, pp. 2528-2536,
Dec. 2016.

G. Zen, L. Porzi, E. Sangineto, E. Ricci, and N. Sebe, “‘Learning personal-
ized models for facial expression analysis and gesture recognition,” IEEE
Trans. Multimedia, vol. 18, no. 4, pp. 775-788, Apr. 2016.

A. K. Davison, C. Lansley, N. Costen, K. Tan, and M. H. Yap, “SAMM:
A spontaneous micro-facial movement dataset,” IEEE Trans. Affect. Com-
put., vol. 9, no. 1, pp. 116-129, Jan. 2018.

J. See, M. H. Yap, J. Li, X. Hong, and S.-J. Wang, “MEGC
2019—The second facial micro-expressions grand challenge,” in Proc.
14th IEEE Int. Conf. Autom. Face Gesture Recognit. (FG), May 2019,
pp. 1-5.

G. Zhao and M. Pietikainen, “Dynamic texture recognition using local
binary patterns with an application to facial expressions,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 915-928, Jun. 2007.

S.-T. Liong, J. See, K. Wong, and R. C.-W. Phan, “Less is more: Micro-
expression recognition from video using apex frame,” Signal Process.,
Image Commun., vol. 62, pp. 82-92, Mar. 2018.

N. V. Quang, J. Chun, and T. Tokuyama, ““CapsuleNet for micro-expression
recognition,” in Proc. 14th IEEE Int. Conf. Autom. Face Gesture Recognit.
(FG), May 2019, pp. 1-7.

Y. S. Gan, S.-T. Liong, W.-C. Yau, Y.-C. Huang, and L.-K. Tan,
“OFF-ApexNet on micro-expression recognition system,” Signal Pro-
cess., Image Commun., vol. 74, pp. 129-139, May 2019.

L. Zhou, Q. Mao, and L. Xue, “Dual-inception network for cross-database
micro-expression recognition,” in Proc. 14th IEEE Int. Conf. Autom. Face
Gesture Recognit. (FG), May 2019, pp. 1-5.

S.-T. Liong, Y. S. Gan, J. See, H.-Q. Khor, and Y.-C. Huang, “Shallow
triple stream three-dimensional CNN (STSTNet) for micro-expression
recognition,” in Proc. 14th IEEE Int. Conf. Autom. Face Gesture Recognit.
(FG), May 2019, pp. 1-5.

Y. Liu, H. Du, L. Zheng, and T. Gedeon, “A neural micro-expression
recognizer,” in Proc. 14th IEEE Int. Conf. Autom. Face Gesture Recognit.
(FG), May 2019, pp. 1-4.

C. Guo, J. Liang, G. Zhan, Z. Liu, M. Pietikainen, and L. Liu,
“Extended local binary patterns for efficient and robust spontaneous facial
micro-expression recognition,” IEEE Access, vol. 7, pp. 174517-174530,
2019.

T. Zhang, Y. Zong, W. Zheng, C. L. P. Chen, X. Hong, C. Tang, Z. Cui,
and G. Zhao, “Cross-database micro-expression recognition: A bench-
mark,” IEEE Trans. Knowl. Data Eng., early access, Apr. 6, 2020, doi: 10.
1109/TKDE.2020.2985365.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1-27:27,
2011.

A. Hassan, R. Damper, and M. Niranjan, “On acoustic emotion recog-
nition: Compensating for covariate shift,” IEEE Trans. Audio, Speech,
Language Process., vol. 21, no. 7, pp. 1458-1468, Jul. 2013.

S.J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199-210, Feb. 2011.

B. Gong, Y. Shi, F. Sha, and K. Grauman, ““Geodesic flow kernel for unsu-
pervised domain adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 2066-2073.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised
visual domain adaptation using subspace alignment,” in Proc. IEEE Int.
Conf. Comput. Vis., Dec. 2013, pp. 2960-2967.

W.-S. Chu, F. De la Torre, and J. F. Cohn, “Selective transfer machine for
personalized facial action unit detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2013, pp. 3515-3522.

VOLUME 8, 2020


http://dx.doi.org/10.1109/TAFFC.2018.2854166
http://dx.doi.org/10.1109/TAFFC.2018.2854166
http://dx.doi.org/10.1109/TKDE.2020.2985365
http://dx.doi.org/10.1109/TKDE.2020.2985365

D.Y.

Choi, B. C. Song: FME Recognition Using 2D LFMs

IEEE Access

[53]

[54]

[55]

[56]

[57]

[58]

W.-S. Chu, F. De la Torre, and J. F. Cohn, ““Selective transfer machine for
personalized facial expression analysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 3, pp. 529-545, Mar. 2017.

M. Long, J. Wang, J. Sun, and P. S. Yu, “Domain invariant transfer kernel
learning,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 6, pp. 1519-1532,
Jun. 2015.

Y. Zong, X. Huang, W. Zheng, Z. Cui, and G. Zhao, “Learning a target
sample re-generator for cross-database micro-expression recognition,” in
Proc. ACM Multimedia Conf. (MM), 2017, pp. 872-880.

Y. Zong, W. Zheng, X. Huang, J. Shi, Z. Cui, and G. Zhao, ‘““Domain regen-
eration for cross-database micro-expression recognition,” [EEE Trans.
Image Process., vol. 27, no. 5, pp. 2484-2498, May 2018.

P. Husdk, J. Cech, and J. Matas, “Spotting facial micro-expressions ‘in
the wild,”” in Proc. 22nd Comput. Vis. Winter Workshop (Retz), 2017,
pp. 1-9.

B. Sun, S. Cao, D. Li, J. He, and L. Yu, “Dynamic micro-expression
recognition using knowledge distillation,” IEEE Trans. Affect. Comput.,
early access, Apr. 13, 2020, doi: 10.1109/TAFFC.2020.2986962.

DONG YOON CHOI (Graduate Student Member,
IEEE) received the B.S. and M.S. degrees
in electronic engineering from Inha University,
Incheon, South Korea, in 2014 and 2016, respec-
tively, where he is currently pursuing the Ph.D.
degree in electronic engineering. His research
interests include image processing, computer
vision, semi-supervised learning, and multimodal
deep-learning.

VOLUME 8, 2020

KN

Inha University, Incheon, South Korea, where he is currently is a Professor.
His research interests include image processing and computer vision.

ha

BYUNG CHEOL SONG (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 1994, 1996, and 2001,
respectively. From 2001 to 2008, he was a
Senior Engineer with Digital Media Research and
Development Center, Samsung Electronics Com-
pany Ltd., Suwon, South Korea. In March 2008, he
joined the Department of Electronic Engineering,

121563


http://dx.doi.org/10.1109/TAFFC.2020.2986962

