
Received June 12, 2020, accepted June 22, 2020, date of publication July 3, 2020, date of current version July 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006773

An FPGA-Based Hardware Accelerator for
Real-Time Block-Matching and 3D Filtering
DONG WANG 1, (Member, IEEE), JIA XU 2, AND KE XU 2
1Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
2Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Dong Wang (wangdong@bjtu.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant 2020JBM020, and in part by
the Beijing Natural Science Foundation under Grant 4202063.

ABSTRACT Block-matching and 3D filtering (BM3D) denoising algorithm has been employed in many
application fields because of its superior image processing quality. Due to the huge computational workload,
real-time implementation of this algorithm is very challenging. Recently, studies on accelerating the BM3D
algorithm on GPU have presented impressive speed up over CPU-based implementations. However, GPU
devices are generally inefficient in energy dissipation and, thus, are not suitable for embedded application
scenarios. In this paper, we propose a dedicated hardware accelerator design to efficiently boost the BM3D
algorithm with reduced power consumption on FPGA device. The proposed design is based on a deeply
pipelined OpenCL kernel architecture that can efficiently speed up the compute-intensive procedures of the
denoising algorithm by exploiting the intrinsic parallelism and maximizing data reuse. The final design was
implemented on Intel’s Arria-10 GX1150 FPGA, and achieved an average 1.2× performance boost and an
outstanding 8.3× reduction in energy dissipation when compared to a state-of-the-art GPU-based software
design.

INDEX TERMS FPGA, BM3D, systolic array, image denoising.

I. INTRODUCTION
Image denoising plays an important role in image and video
processing and has become one of the most fundamental
technologies in many fields, such as digital camera [1], med-
ical image processing [2] and computer vision [3]. Tradi-
tional noise reduction algorithms can be divided into two
broad categories, i.e., spatial-domain and transform-domain
denoising. Spatial-domain schemes directly perform denois-
ing algorithms on the raw pixels of the image, while transform
domain-based methods operate on a sparse representation
of the image in the transform domain and manipulate the
transformed coefficients to reduce noise. Among the many
approaches presented in the literature, the block-matching
and 3D filtering (BM3D) algorithm [4] effectively com-
bines non-local filtering and transform domain filtering and
exhibits outstanding denoising performance, especially for
additive white Gaussian noise. It is still considered as one of
the state-of-the-art denoising method [9], [10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiangqiang Yuan .

However, BM3D is intrinsically compute-intensive, which
makes real-time implementation of the algorithm challeng-
ing. Therefore, studies on real-time acceleration of the BM3D
algorithm have received many attention in recent years.
In [7], the authors presented a multi-core CPU-based imple-
mentation, which utilizes OpenMP for parallelization. The
block-matching procedure was accelerated by an efficient
data reuse method applied to the whole image, while the 3D
transformation was accelerated by utilizing a fast software
FFTW library. Later on, the work of [8] proposed the first
open-source GPU-based implementation of the BM3D algo-
rithm by using both the OpenCL and CUDA frameworks.
The final design achieved 7.5× speed up compared to the
CPU-based design of [7]. One of the drawbacks of this work
was that it only supported grayscale images. Very recently,
the study of [9] presented a highly efficient GPU-based
software accelerator implemented in CUDA. The authors
proposed a more fine-grained partition of the algorithm com-
pared to [8] and optimized data caching and sharing schemes
for block-matching, which removed many redundant compu-
tations and thus significantly improved the image processing
speed. In [10], the authors targeted an GPU implementation

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121987

https://orcid.org/0000-0002-0068-8824
https://orcid.org/0000-0001-9621-2347
https://orcid.org/0000-0001-6266-4257
https://orcid.org/0000-0002-0571-4083

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

for VBM3D and focused on reducing the use of external
memory bandwidth, which is realized by regrouping all fil-
tering operations, including fetching the patch data, the data
transpositions, the 1D filtering and the thresholding, into
one kernel without requiring intermediate bufffer for patches
caching.

Unfortunately, GPU devices are generally energy
inefficient. For instance, a modern GPU device normally
consumes more than 250W power [11], which is infeasi-
ble for embedded application scenarios, such as robotics,
autonomous vehicles and surveillance systems. On the
other hand, field-programmable gate array devices (FPGAs),
which provide massive processing elements, reconfig-
urable interconnections and lower power dissipation, are
naturally suitable to implement compute-intensive image
processing algorithms [1], [12]–[15]. For instance, our
previous study of [17] has presented an FPGA-based
BM3D accelerator design which achieved 12× speed-up
over the OpenCL-based GPU implementation of [8]. How-
ever, the performance was still not comparable with the
CUDA-based GPU accelerator of [9] due to inefficient uti-
lization of the on-chip logic resource and external memory
bandwidth.

In this paper, we propose an performance improved
FPGA accelerator design for real-time processing of the
block-matching and 3D filtering algorithm based on our
previous study of [17]. The detailed contribution of this
study includes: (1) we present a quantitative analysis of the
complexity of each functions of the BM3D algorithm and
propose a accelerator architecture based on deeply-pipelined
OpenCL kernels to implement the partitioned sub-algorithms;
(2) A dedicated systolic-like array architecture for par-
allel block-matching is developed to efficiently exploit
fine-grained data-level parallelism of the algorithm through
pipelining, and at the same time, save large amount of hard-
ware resources by avoiding using very wide data-buses to
support high throughput computation; (3) A parallel line-
buffer-based on-chip data caching scheme is also intro-
duced such that data reuse is maximized and the demand
on external memory bandwidth is greatly reduced; (4) We
have implemented the proposed design on Intel’s Arria-
10 GX1150 FPGA device, and experiment results showed
that our design gained more than 20% performance improve-
ment and in the meantime achieved a significant 8.3× advan-
tage in power consumption over state-of-the-art GPU-based
design.

The rest of this paper is organized as follows. Section II
and III briefly review the OpenCL framework and the BM3D
algorithm, respectively. Section III also highlights the hard-
ware design challenges that this study has faced in design-
ing the FPGA accelerator. Section IV describes the detailed
design of the proposed FPGA accelerator. Section V presents
the hardware implementation results and compares our results
with two GPU-based designs. Section VI concludes this
paper.

FIGURE 1. The OpenCL framework for FPGA-based accelerator
development.

II. OpenCL FRAMEWORK
In this section, we briefly review the OpenCL program-
ming framework with special focus on the methodology
and basic architecture-level abstractions for FPGA-based
hardware accelerator design. Our target platform is Intel’s
Arria-10 FPGA Development Kit and the design goal is
to accelerate the most time-consuming parts of the BM3D
algorithm in dedicated hardware circuits on FPGA to achieve
improved real-time image processing performance.

A. DESIGN FLOW
There is a growing trend among the research community to
utilize High Level Synthesis (HLS) tools to design and imple-
ment customized circuits on FPGAs [18], [19]. Compared
with traditional methodology, the HLS tools provide faster
hardware development cycle by automatically synthesizing
an algorithm in high-level languages (e.g. C/C++) to RTL
codes, which is then compiled into FPGA circuits. Fig. 1
summarizes the OpenCL-based FPGA accelerator develop-
ment flow adopted by this work. Hardware circuits, which
accelerate compute-intensive algorithms, are modeled in a
high-level abstraction form as OpenCL kernel functions and
executed in parallel on the FPGA fabric. A C/C++ code
executing on the CPU side provides vendor specific appli-
cation programming interface (API) to communicate with
and control the implemented kernels. This work uses the
Intel OpenCL SDK toolset [22] for compiling and imple-
menting the OpenCL codes on FPGAs. Profiling function
of the SDK is also used to analyze the performance and
resource utilization of the final design. We have defined a
set of OpenCL kernels, each of which implements one of the
core functions of the BM3D algorithm, e.g. block-matching,
3D transform/inverse transform, aggregation, etc. The host
program initiates and launches the hardware kernels in a
pipelined manner implementing the whole image filtering
process.

121988 VOLUME 8, 2020

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

FIGURE 2. The basic processing flowchart of the BM3D algorithm. The block marked with ‘‘R’’ represents the reference block.

B. ACCELERATOR ARCHITECTURE ABSTRACTIONS
The OpenCL framework defines a high-level representation
of a parallel hardware architecture on which the OpenCL ker-
nel programs are accelerated. As shown in Fig. 1, the OpenCL
device is divided into multiple compute units (CUs), each of
which consists of one or more processing elements (PEs).
For FPGA-based accelerator design, the OpenCL kernels are
directly implemented as dedicated hardware units, i.e. CUs,
which can be executed concurrently in parallel. The CUs
normally utilize the massive on-chip DSP blocks as the main
PEs to speed up the target application.

C. PROGRAMMING MODEL
There are two basic executing models for OpenCL ker-
nel programs. The first one is called N-Dimensioned
Range (NDrange) kernel. After being launched by the host,
an instance of the NDRange kernel executes one point of the
problem index space that is created by the OpenCL runtime
system. Each instance of the executing kernel is referred to as
a work-item or thread, and multiple thread can be launched
concurrently to exploit coarse-grain task-level parallelism.
Scheduling of the parallel tasks are normally conducted by
the OpenCL runtime, however, designer has to explicitly
map the computation problem onto this N-dimensional space.
The NDrange programming model is generally useful for
GPU-based software accelerator design. The other execution
model is single work-item kernel [22], in which multiple
threads are executed on replicated pipeline circuits on the
device. In each clock cycle, a new thread can be launched on
the single work-item kernel to achieve a very high throughput.
In addition, fine-grained data-level parallelism can also be
utilized through customizing the structure of the underly-
ing pipeline circuit. Compared to NDrange kernels, single
work-item programmingmodel ismore flexible in controlling
the structure of the hardware circuit, and thus, is more suitable
in designing accelerators on FPGA-based platform. The key
design challenge we have faced in this work is to develop an
appropriate hardware architecture that can efficiently exploit

the intrinsic parallelism of the BM3D algorithm, while, at the
same time, minimizing the on-chip hardware resources.

D. MEMORY MODEL
The OpenCL memory model defines three abstract level of
memory regions in which the data can be stored and accessed
by the host program and hardware kernels. On the host side,
a host memory region is reserved and visible only to the
host. All the program, buffer and image objects are created,
initiated and stored in the host memory. On the device side,
there are two distinct regions, including global memory and
local/private memory. The global memory region is located
in the external DDRmemory on the FPGA board and permits
read/write access to all kernels. Local memory region is used
to allocate variables that are shared by all the threads running
on a OpenCL kernel, while private memory is private to a
single thread. In FPGA-based accelerator design, both the
local and private memories are located on the device side.
Local memory is generally implemented as on-chip embed-
ded memory blocks, while private memory is implemented
as registers. It is worth noting that, unlike GPU accelerators,
the bandwidth of the global memory on FPGA board is often
limited, therefore, optimizing the global memory bandwidth
becomes another key challenge in improving the performance
of OpenCL-based FPGA accelerators.

III. REVIEW AND ANALYSIS OF BM3D
BM3D is a novel image denosing strategy based on enhanced
sparse representation in the transform domain. The enhance-
ment of the sparsity, which is utilized as the major metric to
distinguish between image and noise, is achieved by grouping
similar 2D image fragments into 3D data arrays. Moreover,
grouping is realized by block-matching, i.e., gathering similar
patches of the image into groups by measuring the patch
distances. After transforming the 3D data array into the fre-
quency domain, collaborative filtering is accomplished by
shrinkage of the transformed 3D data array. As illustrated
in Fig. 2, the general procedure of BM3D is implemented
in two phases, namely the basic estimation phase (stage-1)

VOLUME 8, 2020 121989

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

and theWiener filtering phase (stage-2). In order to maximize
resource sharing in the hardware accelerator design, we have
partitioned the whole denosing flow into six sub-procedures,
including block-matching (grouping), 3D transform, inverse
3D transform, block-wise estimation (filtering) and aggre-
gation, each of which is implemented as an OpenCL kernel
function and is reused in successive filtering stages.

To guide the hardware design, we have measured the exe-
cution time of a software-based implementation [6] of the
BM3D algorithm on CPU. The detailed processing time can
be used as a quantitative metric to evaluate the computa-
tional complexity of each procedure. As shown by Fig. 3,
the block-matching and collaborative filtering steps consists
up to 98% of the total execution time, which means that the
FPGA accelerator must allocate as much hardware resource
as possible for these two procedures to support parallel accel-
eration of the computation. In what follows, we will briefly
review all the computational steps of these procedures and
identify the intrinsic parallelism that can be utilized to boost
the computation. Data transmit and reuse patterns will also
be analyzed with a specific emphasis on global memory
bandwidth optimization.

FIGURE 3. Breakdown of the execution time of a software
implementation of the BM3D algorithm on CPU [6].

A. GROUPING BY BLOCK-MATCHING
Grouping is a repetitive procedure that is performed on
sub-blocks (patches) of the input image. As shown in Fig. 4,
for each reference block R, it finds the patches that have
high similarity with the currently processed one within a
predefined searching window and stacks them together in a
3D array (group). The center of the search window is at the
top-left corner of the reference patch, and the window and
the block sizes are defined as Ws and K , respectively. The
reference patch slides within the whole image with a fixed
step of pstep, and in [4], pstep is set as 3. For a more elaborate
filtering process, pstep can be set as small as 1.
Similarity is generally calculated as the inverse of the

block-distance which means that patches with smaller dis-
tances are matched as similar, whereas the ones with larger
such distance are left out. As did in most previous studies [5],
[9], [10], we adopt the normalized Euclidean (L2) metric to
quantitatively measure the distance. Assuming R denotes the
reference patch and P is a block in its neighborhood, then the

distance between R and P can be calculated by

dist(R,P) =
L2
2(R,P)

K 2 =

∑
x(Rx − Px)

2

K 2 (1)

Then, a hard threshold τmatch is applied such that the patches
whose inverse distances are larger than this threshold are
grouped and stored in a 3D array G3D(R).

Assuming that the width and height of the input image
are represented by W and H , there is a total number of
(W − K)/pstep × (H − K)/pstep reference blocks and each
block requires an order ofW 2

s ·K
2
·Nstep multiply-accumulate

(MAC) operations, where Nstep denotes the number of the
selected similar patches. Fortunately, searching and distance
calculation of different reference blocks, such as the blocks
R1 and R2 shown in Fig. 4, can be conducted in parallel
since there is no data dependence among them. Therefore,
the proposed FPGA accelerator will exploit fine-grained data-
level parallelism of the algorithm to boost the computation.

FIGURE 4. Grouping and 3D transformation on two reference patches.

Beside the intrinsic data-level parallelism, the block-
matching algorithm also has a high data reuse rate. As shown
in Fig. 4, both the searching windows of adjacent refer-
ence blocks and the compared patches corresponds to one
reference block share a large overlapping area. Therefore,
in hardware design, we will propose an efficient on-chip data
buffering approach that can maximize reuse of the image
data to relieve the pressure on global memory bandwidth.
Moreover, we also propose to cache the 3D patches in ded-
icated on-chip buffers until the collaborative filtering is fin-
ished. However, due to the limited memory resource of the
FPGA device, the number of the stored patches should be
restricted to a fixed constantNstep. Thismeans that a hardware
distance sorting unit, which can find the first Nstep blocks
with the lowest distance, is also needed after distance cal-
culation. Furthermore, when the number of similar patches
is smaller than Nstep, we propose to fill up the empty entries
of the 3D array with the reference block (distance is zero).
In this way, the 3D transform operation can have a fixed
input length, which greatly reduces the complexity of the

121990 VOLUME 8, 2020

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

controlling circuit. We have verified that this algorithm opti-
mization has no obvious impact on denoising quality.

B. COLLABORATIVE DENOISE FILTERING
Collaborative filtering consists of three sub-steps: trans-
formation of the 3D data array, hard-thresholding or
Wiener-based filtering and inverse 3D transformation. The
key idea behind this scheme is that images have much sparse
representation in the transform domain than noise because
of the intrafragment correlation which appears between the
pixels of each patch and, thus, noise can be easily attenu-
ated after frequency thresholding. Compared to 2D transform
based denoising, the 3D transform can further take advantage
of the interfragment correlation which appears between the
corresponding pixels of different patches within the same
group and produce a even more sparse representation of
the true image. As illustrated in Fig. 2, the first stage of
collaborative filtering applies hard-thresholding denoise filter
whereas the second stage adopts a Wiener filter.

1) HARD-THRESHOLD FILTERING
By denoting the threshold as λ3D, the hard-threshold filtering
function hd(x) can be expressed as

hd(x) =

{
0, |x| < σ · λ3D ·

√
Nstep1

x, other
(2)

where σ represents the estimated standard deviation of the
noise signal. Normally, a stronger noise is detected, a larger
value of σ is set during denose filtering. The first stage
denoise filtering procedure can then be summarized by the
following formula:

P1st (R) = T −13D (hd (T3D(G3D(R)))) (3)

where T3D and T −13D present the forward and inverse 3D
transforms, respectively. G3D(R) denotes the 3D data array
obtained from block matching, and P1st (R) is the 3D array
generated by the first stage collaborative filtering procedure.

2) WIENER FILTERING
In the second stage, the non-linear hard-threshold filtering
function hd(x) is replaced by a Wiener filter-based spectrum
shrinkage operation as follow

P2nd (R) = T −13D (wr(T3D(G3D(R)))) (4)

and the coefficients of the Wiener filter are computed as

wr(x) =

∣∣T3D(G3D(Rbasic))(x)
∣∣2∣∣T3D(G3D(Rbasic))(x)

∣∣2 + σ 2
(5)

where Rbasic is the reference patch on the basic image
obtained through the first stage. From above definitions,
we can see that the coefficients array has the same size
with the reference block and needs to be computed on-the-
fly for each reference patch in the basic image. However,
it will only be used one time for the current 3D group, which

consumes a very small amount of global memory bandwidth
when compared to the data access pattern of block-matching.
Therefore, as shown by Fig. 5, we choose to store the obtained
coefficients in global memory and reserve as much on-chip
memory resource as possible to maximize the throughput
of the block-matching computation in the proposed FPGA
accelerator.

C. AGGREGATION
The aggregation operation combines the filtered 3D arrays to
generate an estimation of denoised image. According to [4],
patches from different positions may have overlapped pixels
with each other, and the same patch may also be included in
multiple 3D arrays. As the example shown in Fig. 4, the block
S is assigned to both the R1 and R2 groups. Considering
that homogeneous patches and patches containing edges and
corners should be treated differently to avoid undesired dis-
tortions, the BM3D algorithm applies a weighted average at
these overlapped pixels position as follows:

Pest (x) =

∑
R wagg

∑
P∈P(R)M (P, x) · uP,R(x)∑

R wagg
∑

P∈P(R)M (P, x)
(6)

where uP,R(x) denotes the pixel value at position x from the
patchP produced by the denoised 3D data arrayP(R) through
inverse transformation. Function M (P, x) is a mask signal
which indicates whether the pixel x belongs to the patch.wagg
represents the weights of the aggregation operation, which is
calculated differently in the two filtering stages as follows:

1) BASIC ESTIMATION PHASE
In the first step, the aggregation weight is calculated as the
inverse value of the number of retained elements (pixels)
of the 3D group P(R). Assuming the number of non-zero
elements of P(R) after the hard-threshold filtering as N 1st

R ,
then the weight can be calculated by the following equation:

w1st
agg =

1

σ 2N 1st
R

N 1st
R > 0

1 N 1st
R = 0

(7)

Considering a patch that contains rich detail information such
as edges and texture, after hard-threshold filtering, there are
generally more retained elements, so the weight is smaller.
In contrast, a homogeneous patch group is more sparse and
thus has larger weight. Therefore, the first filtering step favors
pixel estimates belonging to the more homogeneous patches.

2) FINAL ESTIMATION PHASE
In the second step, the aggregation produces the final estimate
of the denoised image. The weight is calculated as the inverse
squared L2-norm of the Wiener filter coefficients as follows:

w2nd
agg =

1

σ 2‖wr‖22
(8)

From (7) and (8) we can see that the aggregation process
requires complicated floating-point arithmetic operations,

VOLUME 8, 2020 121991

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

FIGURE 5. (a) Top-level architecture of the proposed FPGA accelerator for BM3D image denoising. (b) Data flow configuration
schemes for the first and second filtering stages.

such as square and reciprocal (division), which will cost a
large number of the hardware resource on FPGA. To address
this design issue, we have proposed several arithmetic level
optimizations to reduce the logic and DSP resource con-
sumption. The detailed hardware design is discussed in
Section-IV-C.

IV. HARDWARE ARCHITECTURE
Fig. 5-(a) shows the top-level architecture of the proposed
FPGA accelerator, which includes a Distance Calculation
unit, a Distance Comparison unit, a MemRead unit, a pair
of 3D Transform/Inverse Transform units, a Configurable
Filtering unit and an Aggregation unit. All these hardware
units are implemented as OpenCL kernel functions with con-
figurable hardware parameters (i.e., user defined macros) to
control the level of parallelism of the implemented algo-
rithm and balance between the computational performance
and hardware cost. The proposed accelerator architecture

concatenates the kernels in a way that forms a deep circuit
pipeline by using Intel’s OpenCL extension Channel. Inter-
mediate computation results can thus be directly passed from
one kernel to another resulting in very low frequency of data
transmission between FPGA accelerator and global memory.

The Line-Buffer kernel fetches image data from the global
memory (i.e., the on-board DDR memory) and caches fre-
quently reused data in on-chip memory to further reduce
the pressure on global memory bandwidth. It also converts
the serial input data stream into parallel outputs to support
high throughput computation in the following kernels. The
block-matching procedure is implemented as two kernels,
one of which is in charge of searching of the patches and
calculating the distances, while the other performs quick
sorting of the distance to obtain the 3D patch array with
the smallest distance. Collaborative filtering is carried out
by the pair of 3D Transform and Configurable Filter ker-
nels. As illustrated by Fig. 5-(b), the Line-Buffer, Distance

121992 VOLUME 8, 2020

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

Calculation/Comparison, 3D Transform and Configurable
Filtering kernels are reused between the first and second stage
of the denoising algorithm. For colored image, the block-
matching procedure is only performed on Y channel, and the
U/V channel reuses the same coordinates with Y channel.
Detailed hardware designs and corresponding optimization

schemes are as follow:

A. PARALLEL BLOCK-MATCHING
As discussed in previous section, block-matching is the most
compute-intensive procedure of the BM3D algorithm, how-
ever, parallel processing of multiple reference patches can
be utilized to boost the processing speed since there is no
data dependence among different 3D groups. As illustrated
in Fig. 6, assuming that we need to process a total number
of M × N reference blocks concurrently in parallel, then the
corresponding searching space covers an area of [Ws+pstep×
(M−1)]×[Ws+pstep×(N−1)] image pixels. Since the image
data will be repeated used because of the data access pattern
of the sliding-window based searching scheme, we propose
to cache the entire area (referred to as the prefetch window)
of the input image in the on-chip data buffer. In order to
efficiently support theM×N parallel block-matching compu-
tations, two optimized hardware architectures are proposed in
this design: i) a parallel line-buffer-based on-chip data cache
that can simultaneously provide high throughput data stream
to support parallel computation and maximize data reuse
to improve the global memory bandwidth utilization. ii) a
systolic-like 2D PE array architecture is developed to exploit
the fine-gained data-level parallelism of the block-matching
algorithm by efficiently pipelining the distance calculation
and comparison computations on the PE array. Due to the
high data reuse rate among the neighborhood PEs, very
wide data busses are also avoided resulting in reduced logic
resource consumption over the design of [17].

FIGURE 6. Sliding window based patches searching scheme. Searching of
the similar patche within each window is carried out in a ‘‘zig-zag’’
sequence.

1) LINE-BUFFER KERNEL
Fig. 7 shows the internal structure of the proposed
Line-Buffer kernel. It consists ofM parallel line-buffer units,
each of which is formed by eight concatenated 2-port RAMs

FIGURE 7. Hardware architecture of the proposed parallel line-buffer.

and a 2D array of 8×8 shift-registers. During block-matching,
the noisy image pixels of the search window are pushed into
the 2-port RAMs in a line-by-line manner starting from the
upper-left corner. After the eight line-buffers are filled up
with data, the shift-register array reads out eight lines of
image pixels from the RAMs and moves the data stream
through pipe-lined registers. In every clock cycle, one patch,
i.e., 64 pixels, can then be read out from one search window
and processed by following kernels. As the line-buffers are
updated by each line of the search window, the patches are
read from the register array in zig-zag sequence as shown by
Fig. 6. The depth of the line-bufferDbuf should be larger than
the width of the prefetch window.

The proposed line-buffer-based searchwindow prefetching
approach significantly reduces the global memory bandwidth
by avoiding repetitive memory access of the same image
pixel in the overlapped region of the patches. For instance,
assuming the search window is configured as 33×33 and the
size of the reference block is 8×8, non-optimized design will
need to fetch 43K pixels of image data for one search window
from the global memory when no data prefetching scheme is
adopted, whereas our approach only requires to read around
1K pixels, which satisfactorily reduced the global memory
bandwidth by more than 40×. This optimization is critical for
efficient FPGA-based accelerator designs, since the physical
width of the data bus of the FPGA on-chip memory controller
is usually shorter than GPUs.

2) DISTANCE CALCULATION KERNEL
In this work, we propose a systolic-like 2D array structure to
efficiently support parallel distance calculation for multiple
reference blocks. As illustrated by Fig. 8, the systolic array
consists of N ×M interconnected PEs. During computation,
the image patches of the reference window are divided into
N groups, and in each cycle, the image pixels ofM reference
blocks of the same group are pushed into the PE array simul-
taneously through the data bus on the top side, while the data
stream of the corresponding similar patches are propagated
through the data bus on the left side. Both data streams flow
through the 2D systolic array in a pipelined way and a total

VOLUME 8, 2020 121993

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

FIGURE 8. Architecture of the Distance Calculation kernel.

number of N ×M distance calculation tasks in the reference
window as defined by Fig. 6 can be executed in parallel. The
proposed systolic-like architecture has an advantage of avoid-
ing using extremely wide data bus for transmitting image
pixel data between the on-chip line-buffer-based data cache
and the computational unit. In previous works [17], to support
N × M parallel distance computaion tasks, both of the two
input data buses of the PE array were designed as wide as
N×M×64×8 bits. Such wide data buses can cause increased
logic utilization, severe routing problems and degradation
in Fmax of the final implemented design. In the proposed
architecture, the input data stream are divided into multiple
groups and pushed into the 2D PE array in a wave-by-wave
manner, which successfully saved the reference and similar
patch data buses by N and M times, respectively.
Each of the distance calculation PE (dPE) consists

of 64 multipliers plus a adder tree to implement one complete
Euclidean distance calculation defined by Equation (1) when
K = 8. Division by K 2 is realized by bit-shifting. To improve
the computational throughput of the Distance Calculation
kernel, the adder tree is divided into eight pipeline stages, and
in each clock cycle, the input similar patches are updated with
new ones, while the reference blocks remain the same until all
the patches in the search window have been compared. Since
each DSP block of the target FPGA device can support two
16b×16bfixed-point multiplication, one dPE of the proposed
2D array will consume 32 DSP blocks.

3) DISTANCE COMPARISON KERNEL
Sorting of the grouped patch distances is another time con-
suming operation. In OpenCL kernel code, the distance sort-
ing computation is implemented in a loop structure which
is hard to be fully unrolled due to the intrinsic data depen-
dency. There are several studies, such as [20], [21], which
has developed dedicated hardware sorting circuits on FPGA,
however, the reported implementations are either too costly
to be applied in our design or only suitable for large data set.

To reduce the hardware implementation cost, we relax
the constraint on the sorting procedure of the 3D array by
allowing that the Nstep patches, which have the shortest dis-
tance to reference block, can be stored in random order. Then

FIGURE 9. Architecture of the Distance Comparison kernel.

a cost-efficient distance comparison circuit is developed as
shown by Fig. 9. The sorting PE (sPE) consists of a parallel
comparator tree and a pair of register arrays. In each clock
cycle, a newly received distance Di is inserted into the last
position of the input register array, and then the comparator
tree finds the maximum distance and returns the index of
the corresponding register. If the new distance Di is not the
maximumone, it will be switchedwith themaximumdistance
found, and a new patch group is generated and stored in the
output register array. In order to maintain a short critical path
delay, we have limited the depth of the grouped 3D array
to 16. During comparison both the distance data and patch
indexes are stored in the pair of register arrays. Note that we
have verified that the proposed hardware-oriented algorithm-
level optimization schemes have no obvious impact on the
quality of the denoised image.

B. 3D TRANSFORM/INVERSE TRANSFORM KERNELS
The collaborative filtering procedure is implemented by three
pipelined kernels, including the 3D Transform kernel, Con-
figurable Filter kernel and Inverse 3D Transform kernel.
Due to limited on-chip memory resources, the pixel values
of the similar patches are not cached on FPGA. Instead of
storing 64 × 3 × 16-bit data for each colored image patche,
the proposed accelerator only stores the upper-left corner
coordinates in two 16-bit words. After receiving the patch
coordinates from the Distance Comparison kernel, the 3D
Transform kernel loads the corresponding data from global
memory and feeds the pixel stream to the internal 3D trans-
formation circuit.

As shown in Fig. 4, the 3D transformation is normally
realized by the combination of a 2D DCT and a 1-D
Walsh-Hadamard transformations in the hardware design.
The 2D DCT is applied separately to each individual patch
within the 3D group, while the Walsh-Hadamard transform
is applied among the multiple patches. In order to reduce the
arithmetic complexity of the 2D DCT procedure, we have
implemented two fast 1-D DCT units [16], each of which
only requires 11 multiplications, to implement the required
2D DCT transformation. Fig. 10 shows the internal hardware

121994 VOLUME 8, 2020

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

FIGURE 10. The hardware architecture of the 3D transform/inverse
transform circuit.

structure of the 3D Transform/Inverse Transform kernels.
Since a series of filtering operations have to be conducted
in the pipeline, both the 1-DCT and Walsh-Hadamard trans-
form/inverse transform are performed in single-precision
floating-point format to guarantee the precision of the final
results. In order to maintain a high throughput data flow,
the two DCT units are fully pipelined, each of which con-
sumes 37 DSP blocks (11 for multiplication and 26 for
additions/subtractions), while the Walsh-Hadamard unit con-
sumes 64 DSP blocks. Moreover, we have designed a pair of
ping-pong buffers before each of the transform unit to support
concurrent image data loading and processing, and improve
the efficiency of the hardware pipelines.

C. AGGREGATION KERNEL
Division operation is required in both generation of the
weights as defined in (7) and (8), and the weighted average
of the overlapped pixels. Implementing division operation in
FPGA logic is very costly and it may also have a negative
impact on the working frequency of the accelerator. Hence,
we propose to use a look-up table based low-cost approach
to approximate the division operation. Our strategy is to store
the reciprocal function 1

n into a look-up table, and convert
the division operations to multiplications. For instance, in the
basic estimation stage, the 3D group is of the size 8×8×16,
and consequently the largest possible non-zero value of N 1st

R
is 1024. Since σ 2 is a predefined constant, we could store
the value of 1

σ 2
, 1
2σ 2

, 1
3σ 2
, . . . , 1

1024·σ 2
in a look-up table with

1024 entries. During the aggregation computation, the input
divisor σ 2N 1st

R is first normalized to the range of [0, 1024)
by adding a bias to its exponent, and then converted from the
floating-point format to an integer with 10-bit precision by
using the OpenCL build-in convert function. Finally, the table

lookup is addressed by the converted integer to fetch the
corresponding coefficient.

V. IMPLEMENTATION RESULTS
A. EXPERIMENTAL SETUP
To evaluate the performance of the proposed accelerator,
we have implemented the design on Intel’s A10 FPGA
development board. The on-board FPGA is an Arria-
10 GX1150 device, which has 1150K logic elements,
1518 DSP blocks and 66Mb on-chip memory resources.
A single DDR4 SDRAM is attached to the FPGA providing
19.2 GB/s global memory bandwidth. The host machine is
equipped with an Intel i7-6700K CPU and 64GB memories.
The proposed architecture was modeled in OpenCL kernel
codes and compiled by using Intel OpenCL SDK v20.1. The
FPGA accelerator executes the entire block-matching and 3D
filtering algorithm, while the host program loads image files
from the hard drive and sends the data to FPGA through
OpenCL APIs. A NVIDIA GeForce Titan-Xp GPU was also
installed on the host machine to implement two reference
GPU-based software accelerators of [8] and [9]. The hard-
ware specifications of the FPGA and GPU boards are listed
and compared in Table 1.

TABLE 1. Hardware specifications of the FPGA and GPU boards.

In the final design, the size of the search window was
configured as 33 × 33 pixels, while the group size Nstep in
both stages was set with a constant value of 16. The threshold
τmatch for grouping was different between the first and second
phases, i.e., τ 1stmatch = 2500 and τ 2ndmatch = 400. In addition,
the step size pstep of the reference blocks was 3 within the
whole image, and the patch size K was set with an value of 8.
For collaborative filtering, we select λ3D = 2.7when σ < 40,
otherwise λ3D = 2.8.

B. PERFORMANCE AND RESOURCE ANALYSIS
As discussed in Section IV-A3, two design parameters M
and N are defined in the proposed architecture to control the
number of parallel PEs used in the Distance Calculating and
Comparison kernels. The highest attainable performance of
the final design is bounded by the FPGA DSP resource and
the corresponding parameter configuration is M = 8 and
N = 5. The working frequency of the best implemented
design on the Intel Arria-10 GX1150 FPGA is 233 MHz.
We have measured the average processing time for both
gray and color images with different input sizes and report
the performance results in Fig. 11. It can be observed that
color image generally takes around 2.1× the processing time
than gray image. In theory, our implementation can also

VOLUME 8, 2020 121995

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

FIGURE 11. Average processing times of images of a different size
(σ = 25).

be used for larger images, and the execution time increases
proportionally with the image resolution. However, due to
bandwidth and on-chip RAM constraints, the implemented
design cannot handle arbitrarily large images like GPUs.

We further used the Intel OpenCL SDK [22] to profile
the detailed execution time that each kernel has spend when
performing the whole BM3D denoising algorithm. Fig. 12
reports the results for a design with parameter configuration
of M = 4,N = 2 and a 256 × 256 input color image.
Note that the real processing time without kernel profiling
will be significantly lower than which is shown in Fig. 12
because of the delay involved with kernel profiling itself.
It can be seen that all kernels run in parallel forming a deep
kernel pipeline, which exhibits a very high utilization of the
hardware resource (measured occupancy of the PE is 80% ∼
85%) and avoids unnecessary transmitting of intermediate
filtering result between FPGA and external memory. Due to
the latency of the hardware pipeline, the aggregation kernel
takes a slightly longer time to finish than other kernels. In

FIGURE 12. Profiled execution time of each kernel. The example shown is
for design with hardware parameters M = 4, N = 2, and σ = 25.

the first stage, block-matching (i.e., distance calculation and
comparison) is only conducted on the channel Y , while in
the second stage, block-matching is performed on the basic
estimate.

Fig. 13 reports the detailed hardware resource utilizations,
including logic, DSP and on-chip memory blocks, of each
kernel type of the best implemented design. It can be seen
from the result that 99% of the on-chip DSP resource have
been consumed, while there are still plenty of logic and
memory resources available. The PE array in the Distance
Calculation kernel contributes the largest portion (82%) of the
total DSP usage. We could conclude that the block-matching
procedure, more specifically the distance calculation compu-
tation, is the bottleneck in accelerating the BM3D algorithm
on FPGA.

C. COMPARISON WITH GPU ACCELERATORS
In order to compare with GPU-based software accelera-
tors, we have measured the performance of two open-source
designs of [8] and [9] by using the Nvidia GeForce Titan-Xp
GPU installed on the same host machine. The follow-
ing parameters, including K (patch size), pstep (stride of
the patches), τmatch (distance threshold) and λ3D (hard-
thresholding limit), were set with the same values as the
FPGA accelerator. The only difference it that the GPU
designs adopt a search window of 39 × 39 due to the lim-
itation of the software design, whereas our design used a
window size of 33 × 33. Table 2 compares the measured
performance data with the proposed FPGA-based accelerator.
It can be observed that the proposed design achieves an
average speedup of 20% for both gray and color images
when compared to the CUDA-based GPU design of [9].
When compared to the OpenCL-based GPU design, our
approach has a 14× notable advantage on processing speed.
On the other hand, by taking into account the power con-
sumption data shown in Table 1, one could see that our
design has a significant 8.3× advantage in energy reduction
over GPU-based accelerators. the proposed FPGA accelera-
tor operates at a 6.8× lower working frequency and consists
of 2.5× computational resource, which reflects that the pro-
posed systolic-like pipelining architecture is more efficient
than the SIMD-based GPU architecture. This makes our work

TABLE 2. Comparison of the execution time (σ = 25).

121996 VOLUME 8, 2020

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

FIGURE 13. Breakdown of the normalized hardware resource utilization of the best implemented design.

FIGURE 14. Comparison of the measured PSNR of denoised grayscale and color images.

an idea choice for embedded applications, such as surveil-
lance system, robotics, etc.

Both the proposed FPGA accelerator and the GPU-based
reference designs have conducted several approximations
on the original BM3D algorithm to reduce the cost of
the final implementation. For instance, in the our design,
the original floating-point division operation is approxi-
mated by fixed-point table look-up, which may introduce
computational errors to the denoised image. On the other
hand, the GPU design of [9] rounded the basic estimate
of the first aggregation step to 8-bit integers immedi-
ately after computation, while our design kept the result
in 16-bit fixed-point format. These differences in detailed

harware/software implementations will result in a slightly
different image processing quality.

Therefore, we have also measured the PSNR of the
denoised images processed by both GPU and FPGA-based
designs and compare the results in Fig. 14. The comparison
only covers the case of σ < 40 since the GPU reference
design does not support further larger σ . It is clear that
our scheme achieves around 2 ∼ 3 dB higher PSNR than
the GPU reference design for all the color images tested,
while the image quality for gray images are vey close.
The result indicates that the precision of the basic estimate
may has a large impact on the image quality of the U/V
channels.

VOLUME 8, 2020 121997

D. Wang et al.: FPGA-Based Hardware Accelerator for Real-Time BM3D

VI. CONCLUSION
In this paper, we propose an FPGA-based hardware acceler-
ator for block-matching and 3D filtering algorithm. A deeply
pipelined OpenCL kernel architecture together with a line-
buffer-based on-chip data caching scheme were developed to
maximize data reuse and reduce external memory bandwidth.
The compute-intensive block-matching procedure was accel-
erated by a systolic-like parallel PE array structure, which
efficiently exploits fine-grained data-level parallelism of the
block-matching algorithm. The best implemented design on
an Arria-10 GX1150 FPGA achieved 20% processing speed
improvement and slightly better denoising quality when
compared to a state-of-the-art software design on Nividia
Titan-Xp GPU. The most distinguish advantage of the pro-
posed scheme is the 8.3× improvement in power dissipation.
Thus, the proposed approach is especially suitable for embed-
ded application scenarios, in which energy efficiency is the
most critical design concern.

REFERENCES
[1] S. Zhang and R. L. Stevenson, ‘‘Inertia sensor aided alignment for burst

pipeline in low light conditions,’’ in Proc. 25th IEEE Int. Conf. Image
Process. (ICIP), Oct. 2018, pp. 3953–3957.

[2] V. Estellers, S. Soatto, and X. Bresson, ‘‘Adaptive regularization with
the structure tensor,’’ IEEE Trans. Image Process., vol. 24, no. 6,
pp. 1777–1790, Jun. 2015.

[3] T. Yu, X. Wang, and A. Shami, ‘‘UAV-enabled spatial data sampling in
large-scale IoT systems using denoising autoencoder neural network,’’
IEEE Internet Things J., vol. 6, no. 2, pp. 1856–1865, Apr. 2019.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ‘‘Image denoising by
sparse 3-D transform-domain collaborative filtering,’’ IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[5] F. Chen, L. Zhang, and H. Yu, ‘‘External patch prior guided internal
clustering for image denoising,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 603–611.

[6] C-Programm for a BM3D Denoising Algorithm. Accessed: Aug. 1, 2019.
[Online]. Available: https://github.com/20logTom/BM3D

[7] M. Lebrun, ‘‘An analysis and implementation of the BM3D image denois-
ing method,’’ Image Process. Line, vol. 2, pp. 175–213, Aug. 2012.

[8] S. Sarjanoja, J. Boutellier, and J. Hannuksela, ‘‘BM3D image denoising
using heterogeneous computing platforms,’’ in Proc. Conf. Design Archit.
Signal Image Process. (DASIP), Sep. 2015, pp. 1–8.

[9] D. Honzátko andM.Kruliš, ‘‘Accelerating block-matching and 3Dfiltering
method for image denoising on GPUs,’’ J. Real-Time Image Process.,
vol. 16, no. 6, pp. 1–15, 2017.

[10] A. Davy and T. Ehret, ‘‘GPU acceleration of NL-means, BM3D and
VBM3D,’’ J. Real-Time Image Process., pp. 1–18, Feb. 2020.

[11] Nvidia TESLA v100 Architecture. Accessed: Jun. 20, 2019. [Online].
Available: https://im ages.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper

[12] M. Ravi, A. Sewa, S. T. G., and S. S. S. Sanagapati, ‘‘FPGA as a hardware
accelerator for computation intensive maximum likelihood expectation
maximization medical image reconstruction algorithm,’’ IEEE Access,
vol. 7, pp. 111727–111735, 2019.

[13] C. Li, Y. Bi, F. Marzani, and F. Yang, ‘‘Fast FPGA prototyping for real-
time image processing with very high-level synthesis,’’ J. Real-Time Image
Proc., vol. 16, pp. 1795–1812, Apr. 2017.

[14] S. Nakasone, L.-G. Ofverstedt, G. Wilken, and U. Skoglund, ‘‘An OpenCL
implementation of an image filter on FPGA,’’ in Proc. IEEE 5th Int. Conf.
Comput. Commun. (ICCC), Dec. 2019, pp. 272–276.

[15] J.Wang, B. Li, andK. Xing, ‘‘A new real-time lucky imaging algorithm and
its implementation techniques,’’ IEEE Access, vol. 8, pp. 52192–52208,
2020.

[16] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, ‘‘Practical fast 1-D DCT
algorithms with 11 multiplications,’’ in Proc. Int. Conf. Acoust., Speech,
Signal Process., May 1989, pp. 988–991.

[17] X. Wang, K. Xu, and D. Wang, ‘‘Accelerating block-matching and 3D
filtering-based image denoising algorithm on FPGAs,’’ in Proc. 14th IEEE
Int. Conf. Signal Process. (ICSP), Aug. 2018, pp. 235–240.

[18] I. Firmansyah and Y. Yamaguchi, ‘‘OpenCL implementation of FPGA-
based signal generation and measurement,’’ IEEE Access, vol. 7,
pp. 48849–48859, 2019.

[19] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, ‘‘Efficient FPGA
implementation of OpenCL high-performance computing applications via
high-level synthesis,’’ IEEE Access, vol. 5, pp. 2747–2762, 2017.

[20] Y. Pu, J. Peng, L. Huang, and J. Chen, ‘‘An efficient KNN algorithm
implemented on FPGA based heterogeneous computing system using
OpenCL,’’ in Proc. IEEE 23rd Annu. Int. Symp. Field-Program. Custom
Comput. Mach., May 2015, pp. 167–170.

[21] Bitonic Sorting. Accessed: Jun. 20, 2020. [Online]. Available:
https://github.com/mediroozmeh/Biton-ic-Sorting

[22] Intel FPGA SDK for OpenCL Programming Guide. Accessed:
Jun. 26, 2020. [Online]. Available: https://www.intel.com/content/www/
us/en/programmable/documentation/-mwh1391807965224.html

DONG WANG (Member, IEEE) was born in
Xianyang, Shanxi, China, in 1981. He received the
B.S. and Ph.D. degrees in information engineering
and control science from Xi’an Jiaotong Univer-
sity, China, in 2004 and 2010, respectively.

From 2010 to 2013, he was a Postdoctoral
Researcher with the Institute of Microelectronics,
Tsinghua University. Since 2013, he has been an
Associate Professor with the Institute of Informa-
tion Science, Beijing Jiaotong University. He was

a Visiting Scholar with the Department of Electrical and Computer Engi-
neering, University of California at Davis, from 2018 to 2019. His research
interests include computer arithmetic for reconfigurable devices and high
performance and energy efficient computing architectures for embedded and
machine learning applications.

JIA XU was born in Chifeng, Nei Mongol, China,
in 1997. He received the B.S. degree from Bei-
jing Jiaotong University, China, in 2019. He is
currently pursuing the M.E. degree in signal and
information processing. His current research inter-
ests include heterogeneous computation on recon-
figurable devices and neural network accelerators.

KE XU was born in Weifang, Shandong, China,
in 1993. He received the B.S. degree from the
Hefei University of Technology, China, in 2016.
He is currently pursuing the Ph.D. degree with
the Institute of Information Science, Beijing Jiao-
tong University, Beijing, China. His research
interests include neural network compression,
high-performance computing architectures for
embedded applications, and computer vision.

121998 VOLUME 8, 2020

