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ABSTRACT With the rapid development of computer networks and multimedia technologies, images, which
are important carriers of information dissemination, have made human cognition of things easier. Image
recognition is a basic research task in computer vision, multimedia search, image understanding and other
fields. This paper proposes a hierarchical feature learning structure that is completely automatically based
on the original pixels of the image, and uses the K-SVD (K-Singular Value Decomposition) algorithm with
label consistency constraints to train the discriminant dictionary. For different types of image data sets,
the algorithm only extracts image blocks. After dense sampling, an efficient OMP (Orthogonal Matching
Pursuit) encoder is used to obtain a layered sparse representation. The improved SIFT (Scale Invariant
Feature Transform) algorithm is used to solve the difficult problem of multimedia visual image stereo
matching. The feature point extraction and stereo matching of multimedia visual images, different scales and
different viewpoint images are analyzed separately. Aiming at a large number of low-dimensional geometric
features of 3D images, this paper studies the extraction and sorting strategies of low-dimensional geometric
features of 3D images. A sparse representation method for 3D images is proposed, and the sparseness of
image features is evaluated. This further improves the accuracy of 3D image representation and the robustness
of 3D image recognition algorithms.

INDEX TERMS Sparse representation, image recognition, stereo matching, algorithm simulation, K-SVD.

I. INTRODUCTION

Image recognition technology has become one of the research
hotspots in the field of computer vision in recent years, and
has attracted extensive attention from researchers [1]-[3].
There are at least the following two reasons for the grow-
ing popularity of image recognition technology. One is the
increasing development of science and technology that is
closely related to life in the world [4]. The increasing demand
for safety from people and governments of various countries
has made the application of image recognition technology
increasingly demanding. The second is that image recogni-
tion technology has gone through decades of research and
development, its technology has gradually matured, and the
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benefits of putting this technology into use have become more
and more abundant [5].

With the maturity of technologies and theories in the
fields of pattern recognition, image processing, and machine
vision, image recognition technology has also been widely
used and developed, and some image recognition algo-
rithms have emerged [6]. Related scholars have proposed
a multi-illumination and multi-pose condition image recog-
nition method based on the illumination cone model [7].
This method proves that under different lighting conditions,
a partial image of the same image at the same angle can
form an illumination cone in the image space [8]. Later,
they also improved the method, which can also calculate
the illumination cone from a small number of image images
with unknown lighting conditions. At the same time, popular
learning was also proposed in this period [9], [10]. It is a
non-linear feature subspace research method. The essence
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of image recognition with it is to seek a low-dimensional
image manifold in the image space where the image is
located [11]-[13]. For the non-linear description of image
space, more representative algorithms are equidistant map-
ping algorithm, local linear embedding, Laplace feature map-
ping, etc [14], [15]. With the introduction of supervised
learning theory, scholars have found that there is no map-
ping relationship between nonlinear manifold learning meth-
ods and new data, they cannot process new data samples,
and they cannot be used to extract features [16]. There-
fore, Laplacianfaces was proposed and successfully used
for image recognition. In addition, support vector machines
also appeared during this period and have been extensively
studied [17]-[19]. Scholars use sparse representation the-
ory for image recognition [20]. The new algorithm has
attracted extensive attention from scholars at home and
abroad [21]-[23]. The sparse representation is derived from
a new mathematical theory. If the signal is sparse, it can
effectively isolate the masking loss and reconstruct the origi-
nal signal. In the sparse representation classification method,
the test sample can be described as a linear combination of the
training sample set. On the one hand, the degree of sparsity
of the combination coefficient can distinguish the image from
other images (such as building facilities, natural sceneries,
etc.). The degree of sparsity of the coefficient can discrimi-
nate the category to which the test sample belongs [24], [25].
Compared with the traditional discriminant method, this
method not only gets rid of the calculation complexity prob-
lem caused by the generalized eigenvalue decomposition,
but also further improves the generalization ability of the
algorithm [26]. At present, one of the hot research directions
of sparse representation is the sparse decomposition of sig-
nals under redundant dictionaries [27]-[29]. Relevant schol-
ars have proposed an image recognition method of kernel
sparse representation based on dictionary learning [30], [31].
This method first uses kernel technology to push the sparse
representation to a high-dimensional space to obtain a method
of kernel sparse representation. Finally, the obtained dic-
tionary is used to reconstruct the samples, and the image
images are classified according to the principle of minimum
residual between the reconstructed samples and the original
samples [32]-[34].

Through an in-depth study of the sparse representation the-
ory, this paper discusses a three-dimensional image recogni-
tion algorithm based on the sparse representation framework,
which can use the limited image low-dimensional features to
effectively characterize and robustly identify images. In order
to solve the problem of huge data volume of low-dimensional
geometric features of 3D images, which seriously affects the
application of sparse representation, this paper proposes a
sorting and selection strategy of 3D image features based on
Fisher linear discriminant analysis of sparse representation
elements. Through the identification experiment simulation,
the feasibility and effectiveness of the feature selection strat-
egy proposed by Fisher linear discriminant analysis based
on sparse representation elements and the three-dimensional
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image recognition algorithm based on sparse representation
are verified. Specifically, the technical contributions of this
article can be summarized as follows:

First: A supervised dictionary learning model based on
hierarchical sparse representation is proposed. Using the
hierarchical sparse representation method based on feature
learning, they automatically extract the image blocks densely
on the original pixels, use unsupervised uncoherent K-SVD
(K-Singular Value Decomposition) in the two-layer network
for dictionary learning, and pass OMP (Orthogonal Matching
Pursuit) sparse coding of image blocks. After acquiring image
features, the dictionary, discriminative coding parameters and
classifier parameters are simultaneously learned using the
LC-KSVD (Label Consistent K-SVD) method.

Second: We use the improved SIFT algorithm to solve the
problem of difficult matching of multimedia visual image
cubes. Feature point extraction and stereo matching are per-
formed on multimedia visual image data, images of different
scales, and images of different viewpoints, respectively.

Third: In order to further extract robust image representa-
tions of expressions, this paper proposes a sorting and selec-
tion strategy for 3D image features based on Fisher linear
discriminant analysis of sparse representation elements.

The rest of this article is organized as follows.
Section 2 analyzes supervised dictionary learning based on
hierarchical sparse representation. Section 3 discusses the
feature extraction and stereo matching of image feature
points. Section 4 gives the simulation experiment results and
analysis. Section 5 summarizes the full text.

Il. SUPERVISED DICTIONARY LEARNING BASED ON
HIERARCHICAL SPARSE REPRESENTATION

A. SPARSE REPRESENTATION

Here, a hierarchical sparse representation method based on
feature learning is proposed. We use grayscale or RGB type
images to automatically extract image blocks densely on
the basis of original pixels, instead of the traditional spatial
pyramid pooling feature based on HOG descriptors, and use
unsupervised uncoherent K-SVD (K-Singular Value Decom-
position) for dictionary learning, layered training of image
block samples through OMP. After acquiring image features,
we introduce label consistency constraints and use K-SVD
algorithm to learn discriminative dictionaries for the acquired
features. At the same time, we get the optimal linear classifier.
Figure 1 is a schematic diagram of a supervised dictionary
learning image classification model based on hierarchical
sparse representation.

1) CONVEX RELAXATION OPTIMIZATION METHOD

Convex relaxation optimization is a method based on 11 norm
constraint [35]. By using the optimization problem with
11 norm constraint, it means that the solution also satisfies the
sparsity condition, and under the sufficient sparsity condition,
it is equivalent to the solution obtained by optimization with
the 10 norm of full probability [36]. In addition, the 11 norm
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FIGURE 1. Supervised dictionary learning image classification model

based on hierarchical sparse representation.

constrained optimization problem has an analytical solution

guarantees the full backward orthogonality of the residual in
each iteration, that is, the residual is always orthogonal to the
atoms that have been selected, thus converging after a limited
number of iterations.

B. DICTIONARY LEARNING

In an effective classification model based on sparse repre-
sentation, the dictionary learning stage usually plays a very
important role. As a special signal model, dictionary learning
aims to obtain a set of visual words or a group of atoms, and
a linear combination of a small number of atoms can be used
to approximate the original signal. Therefore, the original
signal is sparse under dictionary representation. Usually, it is
necessary to learn an over-complete dictionary. Because over
complete can provide the entire model with higher flexi-
bility and stronger robustness to noise. The prediction and
post-processing flow of the super-complete multi-dictionary
in different domains is shown in Figure 2.

3D multimedia

Interpolation

in polynomial time. The 11 norm is essentially a quadratic pro-
gramming problem with linear inequality constraints, which
can be expressed as follows:

argminO.S[Ily—DXII%] 5 > |lxll; (1)
X

Among them, § > 0, § is a fine-tuning parameter to balance
the data fitting and the sparsity of x. In fact, reducing the value
of 6 will result in a more sparse solution.

2) GREEDY TRACKING METHOD
In order to overcome the sparse representation problem using
10 norm constraints, the tracking method provides a special
way to obtain an approximate sparse solution. The earliest
greedy algorithm is MP (Matching Pursuit) [37]. The MP
algorithm can directly obtain the representation of the signal
sparsity, its essence is realized by calculating the best nonlin-
ear estimation of the signal on the redundant dictionary [38].
The input signal can be linearly represented by a small
number of dictionary atoms. Although the asymptotic con-
vergence can be guaranteed, the convergence of MP mainly
depends on the orthogonality of the residuals to the dictionary
atoms, and the dictionary atoms are not orthogonal to each
other [39]. Therefore, the biggest disadvantage of the MP
algorithm is that after a limited number of iterations, the solu-
tion obtained is still sub-optimal. In response to this problem,
OMP provides an effective solution. The OMP algorithm
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FIGURE 2. Prediction and post-processing flow of super-complete
multi-dictionary in different domains.

Since the number of atoms in the super-complete dic-
tionary is greater than the signal dimension, the coherence
between atoms is greater than 0. In order to avoid dictionary
atoms overfitting the training samples, coherence constraints
need to be considered in the over-complete dictionary learn-
ing method. In general, with the same dictionary redundancy,
weak coherence can speed up sparse coding and improve
signal reconstruction performance.

Dictionary learning is a very important stage in the sparse
representation framework, which will greatly affect the qual-
ity of signal reconstruction and the effect in related appli-
cations. Dictionary construction is achieved by transforming
domains, such as DCT (Discrete Cosine Transform). The
transform domain-based method uses a fixed set of transform
functions, usually a standard orthogonal basis to represent the
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signal, so it is not possible to characterize natural images in a
more flexible mode. For example, a sharp transition cannot be
represented correctly with DCT. Wavelets are used to indicate
a smooth transition, but the effect is not good.

In the natural image classification task, if the training
image is sampled in the manner of block sampling and the
dictionary is obtained by learning the image sample block,
then the sample block extracted from the test image can be
approximately represented as a linear combination of a small
number of dictionary atoms. The sparse coefficient is usually
in the form of a vector and is used to characterize the original
features of the image block. An intuitive sparse representation
framework based on dictionary learning is shown in Figure 3,
where the dictionary is composed of 256 primitives.
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FIGURE 3. Schematic diagram of sparse representation framework based
on dictionary learning.
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For natural images, learning an effective dictionary from a
set of super-complete feature sets for visual recognition has
attracted more and more attention. If divided according to dif-
ferent types of penalties, dictionary learning algorithms can
usually be divided into three categories, which are methods
based on the 10 norm, methods based on convex relaxation,
and methods based on non-convex relaxation. The division
method that will be adopted in this section is to divide dic-
tionary learning into two categories, namely unsupervised
dictionary learning and supervised dictionary learning. The
main difference between the two is whether the category
information of the images in the training set is used in the
process of learning the dictionary.

The unsupervised dictionary learning process does not
consider the use of image category information in the train-
ing process, which belongs to a typical data-driven learn-
ing method. Although unsupervised dictionary learning has
been widely used in many tasks, different dictionary learning
methods should be designed for different problems, that is,
task-driven learning methods. Therefore, the supervised dic-
tionary learning algorithm proposed for image classification
tasks has developed rapidly in recent years. The supervised
dictionary learning method introduces category labels as
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supervised information into the dictionary learning process,
which makes the learned dictionary carry effective discrimi-
nant information for classification.

One type of supervised dictionary learning method is
to directly add the discriminant penalty item to the objec-
tive function during the training process. Representative
such methods include D-KSVD (Discriminative KSVD),
LC-KSVD and FDDL (Fisher Discrimination Dictionary
Learning). D-KSVD uses linear prediction classification
error as the criterion, introduces the discrimination informa-
tion and classification parameters into the objective function,
and uses the K-SVD algorithm to obtain the global optimal
solution to all parameters. However, this method cannot guar-
antee the discriminative power of sparse representation coef-
ficients when using a small dictionary. FDDL introduces class
label information and Fisher discriminant information into
the objective function to learn the structured dictionary. This
method has achieved good results in image recognition tasks.
In addition to explicitly introducing discriminative sparse
coding and independent predictive linear classifiers into the
objective function, LC-KSVD’s biggest advantage is that it
can learn the dictionary, discriminant coding parameters and
classifier parameters at the same time, which is very impor-
tant for the optimization process of the objective function.
Therefore, this section only introduces the LC-KSVD method
in detail.

In order to achieve a balanced reconstruction and discrim-
inativeness, and finally learn a multi-class linear classifier at
the same time, the LC-KSVD method needs to maintain clear
consistency between the atoms of the dictionary and class
labels. This dictionary learning method using supervised
information introduces discriminative sparse coding errors
and classification errors as regular terms into the objective
function.

C. HIERARCHICAL LEARNING
The feature extraction process is to transform the original
image data into a reasonable internal representation or fea-
ture vector, and then the classifier can detect these feature
vectors at the input. The traditional feature representation for
image classification always relies too much on well-designed
descriptors. Descriptors used for feature extraction require a
lot of prior knowledge in the professional field, and satis-
factory results are not always obtained. Hierarchical learning
allows a computing model composed of multiple processing
layers to obtain effective data representation through multiple
abstraction layer learning. This learning process is usually
completely automatic from the original image pixels, rather
than artificially designed descriptors. In essence, hierarchical
learning is a new research direction that crosses many subject
areas, for example, neural networks, artificial intelligence,
pattern recognition, optimization methods, signal processing
and graphical modeling. In a typical hierarchical learning
model, the following two elements are usually required:

(1) The model is composed of multi-layer or multi-stage
nonlinear information processing.
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(2) Data indicates that the learning process gradually devel-
ops to a higher or more abstract stage.

Multiple recognition tasks using convolutional sparse cod-
ing in a hierarchical model have achieved remarkable results.
For example, a multi-layer learning scheme can be used
to apply convolutional sparse coding to visual recognition
tasks. Obtaining meaningful image representation through
hierarchical matching recognition tracking and using it for
image classification tasks has become the most representative
way in hierarchical learning models. Although similar to
the convolution scheme, the entire coding process is more
concise than convolutional sparse coding.

Except for the input feature map composed of image blocks
and the output feature map obtained by pooling the maximum
value, the matrix S is essentially a type of intermediate feature
map with U channels, and its scale is h x h x U. The output
feature map of each layer can be used as the input of the next
layer to learn the sparse image representation layer by layer.
The image recognition framework based on multi-layer hier-
archical orthogonal matching tracking is shown in Figure 4.
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FIGURE 4. Image recognition framework based on multi-layer
hierarchical orthogonal matching tracking.

Unlike the layered convolutional coding method, this
section proposes a more direct and efficient layered feature
map construction method, so that all image blocks taken
from the input image can be independently sparsely encoded,
using non-coherent K-SVD dictionary without using a con-
volutional model. In the learning process of the first layer of
sparse representation, first, image blocks are extracted from
the image in a dense sampling manner. Then, they randomly
extract a certain number of image blocks from each image
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and form a sample set Y for training the dictionary. Finally,
non-coherent K-SVD is used for dictionary learning.

After the second layer of sparse coding stage, spatial pyra-
mid pooling is used instead of maximum pooling, and then a
more abstract image representation with spatial information
is generated. Spatial pyramid pooling is a non-linear operator
that can generate more advanced image representations for
sparse coding of spatially adjacent local image blocks.

In addition, inspired by the computational neurology
model, after each pooling stage, the introduction of local
contrast normalization as the preprocessing of the next layer
of input data can make the different areas of the image
more uniform and invariant to changes in illumination. These
important properties play a key role in real-time and effective
image classification.

Ill. FEATURE EXTRACTION OF IMAGE FEATURE POINTS
AND STEREO MATCHING

A. SCALE SPACE EXTREME VALUE DETECTION

The SIFT (Scale Invariant Feature Transform) feature point
is the pole in three consecutive Gaussian differential image,
S0 it is necessary to construct the scale space function first.
In order to simulate the multi-scale feature of image data,
the theory of scale space appeared in the visual perception of
computers. Because the Gaussian convolution kernel is the
only linear kernel that achieves scale conversion, the two-
dimensional image I (x, y) can be obtained from the convolu-
tion of the Gaussian kernel image and the image in a certain
scale space:

L(U7xvy)=I(xvy)'G(osxvy) (2)

The Gaussian two-dimensional convolution kernel in the
expression is:

G(o.x,y) = 2nod) (" = ) 3)

Among them, G (X, y, o) is the variable Gaussian function
of scale, (x, y) is the space coordinate, and o is the scale
coordinate. The polar space detection of the scale space first
builds the Gaussian and DoG gold towers, and then conducts
the extreme value detection of the DoG gold tower. This can
determine the location and scale of the characteristic points at
the initial stage. The general features correspond to the large
scale, and the detailed features correspond to the small scale.

1) CONSTRUCTION OF GAUSSIAN GOLD TOWER

If the image I (X, y) and the Gaussian kernel G (x, y, o) under
different scale factors are convolved, then we will get the sta-
ble characteristic points under different scale spaces, which
is the composition of the Gaussian gold tower. Normally, the
Gaussian pyramid is O-level. In general, it will be selected
as level 4, and each level will have a scale image of S layer.
Generally, S will be selected as layer 5. In order to increase the
number of feature points, the first layer of the first stage of the
Gaussian pyramid magnifies the original image by 2 times; if
the scale factor ratio of two adjacent layers in the same stage
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is k, then the first stage will be obtained. The scale factor of
the second layer is k o, and the scale factors of other layers
can be obtained by analogy; since the first layer of the second
order is obtained by sub-sampling the intermediate layer scale
image of the first order, the factor is k2 o, and the scale factor
of the second layer of the second order is k times that of the
first layer of the second order, so the scale factor is k 3¢; then
the first layer of the third order is for the second order. The
intermediate layer scale image is obtained by sub-sampling.

2) CONSTRUCTION OF DOO GOLD TOWER

The detection process of the extreme value in the DoG space
is to detect the minimum or maximum value in the con-
structed PoG pyramid. Each pixel in the middle layer of the
DoG pyramid scale needs to be adjacent to its 26 pixels. For
comparison, these 26 pixels are the 8 pixels adjacent to it and
the 9 adjacent pixels on the two layers above and below it.
The purpose of this is to ensure that the scale local extreme
values can be detected in both space and two-dimensional
image space. The pixel marked with a cross in the middle
layer, if it is the minimum or maximum value of the adjacent
26 pixels DoG, you can use this point as a local extreme point,
and record the position of the point and the corresponding
scale.

B. FEATURE POINT PRECISE POSITIONING
Since the DoG value is more sensitive to noise and edges,
and the SIFT method simply locates the key point at the
position and scale of the central sampling point, the local
extreme point detected in the above DoG scale space needs
further inspection, so that the local extreme point can be
accurately positioned as a feature point. In order to determine
the interpolation position of the maximum value, the 3D
quadratic equation function of the local sampling point was
fitted. The Taylor expansion of the scale space function D
(o, X, y) at the local extreme point is:

D =0.5x7 82Dx X oDt D 4

(0,x,y)=0. e + W_‘_ (00, X0, yo) (4

Among them, the neighborhood difference approximates
the first and second derivatives in the above formula to obtain
other second-order derivatives. You derivate the above for-
mula and make it equal to 0, you can get the exact extreme
value position Yp,x as follows:

aD (92D
Ymax = _ﬁ (m) (5)

In order to improve the matching’s anti-noise ability and
stability, it is necessary to remove the low-contrast character-
istic point and the edge instability characteristic point among
them.

To remove the unstable edge response points, the Hessian
matrix shown in the following formula is used, in which the
matrix term is the partial derivative at the characteristic point,
which is also approximated by the neighborhood difference
score.
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The main curvature can be calculated using the 2 x 2 Hes-
sian matrix H, because the eigenvalues of the H matrix are
proportional to the main curvature of D, so the ratio value
is directly calculated instead of the specific eigenvalue, and
the maximum amplitude characteristic is «, and the second
largest value is characterized by 8, r = «/f, then the ratio
value is as follows:

(B +rp)?
af?

C. DETERMINATION OF THE DIRECTION OF
CHARACTERISTIC POINTS

In order to determine the direction parameter of each feature
point, the gradient distribution of the pixels in the neighbor-
hood of the feature point can be used to make the operator
have rotation invariance.

In the actual calculation, the sampling is usually performed
in the neighborhood window centered on the characteristic
points, and the histogram of the gradient direction is used to
calculate the gradient direction of the neighboring pixels. The
range of the gradient direction of the histogram is 0 ~ 2 7,
and every 10 degrees is a b i n, there are a total of 36 bins.
The direction of the characteristic point is the main direction
of the gradient of the neighborhood at the characteristic point,
that is, the direction of the gradient at the peak value of the
histogram.

Figure 5 is an example of determining the main direction
using the gradient histogram as the key point when using
7 bins. The picture on the right is a Gaussian circular window
centered on the feature point. The arrow indicates the gradient
direction of the pixel. The length of the arrow indicates the
gradient modulus of the point. The picture on the left is
the histogram of the gradient direction of the feature point.
The abscissa represents the number of bins, and the ordinate
represents the sum of Gaussian weighted gradient modulus
values of the pixel point corresponding to the corresponding
bin, and the peak value is the main direction interval of the
feature point.

The main direction of the local gradient corresponds to the
highest peak in the direction histogram. When the peak tops
in the histogram are detected, other arbitrary local peaks are
equivalent to 80% of the highest peak top energy, and other
characteristic points can be established in other directions.
Thus, for multi-peak positions with similar amplitudes, mul-
tiple feature points can be established at the same position and
scale. Only about 15% of the points are assigned to multiple
directions, and these points have a great influence on the
stability of the match. Finally, a parabola is used to fit the
values of the three histograms closest to each peak top, and
then the peak top position is interpolated to obtain higher
precision.

Ratio =

6)

D. SIFT DESCRIPTOR GENERATION

The image feature points detected in the above process all
contain position, corresponding scale and direction three
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information. These parameters describe the local image area
in a repeatable two-dimensional coordinate system, which is
invariant. The next step is to calculate the description of the
local image area.

In order to ensure that the rotation does not change, it is
necessary to rotate the coordinate axis to the direction of the
feature point, and then use the feature point as the center
to take an 8 x 8 window, but it does not take the row and
column of the feature point. It consists of 4 seed points to
form a feature point. Each seed point has 8 directions of
vector information, which can generate a total of 32 data of
2 x 2 x 8 and form a 32-dimensional SIFT feature vector. That
is, the feature point descriptor needs 8 x 8 image data blocks
in total. Because the idea of associating neighborhood direc-
tional information is used, this algorithm greatly enhances the
ability to resist noise, and it also has better fault tolerance for
matching features with positioning errors.

In order to improve the robustness of feature match-
ing, in the actual calculation process, each feature point is
described by 4 x 4 total 16 seed points, and each seed point
has vector information in 8 directions, and each feature point
will be a total of 128 data, so a 128 dimension SIFT feature
vector is formed, so that 16 x 16 image data blocks are
required. In this way, the SIFT feature vector eliminates the
effects caused by the geometric deformation factors, such as
rotation, scale change, etc. If you continue to normalize the
length of the feature vector, you can further eliminate the
effect of the light.

E. SIFT CHARACTERISTIC VECTOR MATCHING
For the feature of the similarity measure, the distance function
is often used for processing. The commonly used distance
functions include Mahalanobis distance and Euclidean dis-
tance. In this paper, the Euclidean distance is used as a mea-
sure of similarity between two images. Euclidean distance is a
commonly used distance definition, which is the true distance
between two points in n-dimensional space.

The potential matching pairs between the images are
obtained through the similarity measure. After obtaining the
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SIFT feature vector, the priority k —d tree is used for search-
ing. The purpose is to search for the 2 nearest neighboring
similar feature points of each feature point. Among the fea-
ture points, the value obtained by dividing the next closest
distance by the nearest distance is less than a certain thresh-
old, then the pair of matching points can be accepted. If the
value of this threshold is lowered, the number of matching
points will be reduced, but it will be more stable.

The potential matching pairs obtained by the above method
sometimes inevitably have partial matches that are wrong.
In this case, geometric restrictions and additional constraints
should be used to eliminate these wrong matches, which
will greatly improve the robustness. The point method is a
random sampling consistency algorithm, and the geometric
constraints are often epipolar constraints.

IV. SIMULATION EXPERIMENT RESULTS AND ANALYSIS
A. SIMULATION EXPERIMENT DESIGN AND RESULTS

In order to verify the effectiveness of the three-dimensional
image representation method, image feature component
selection strategy and recognition framework based on sparse
representation, a detailed experimental scheme is designed in
this section, and a large number of comparative experiments
are done. Part of the feature image in the simulation exper-
iment is shown in Figure 6. The histogram of the original
image feature area is shown in Figure 7.

In order to illustrate the effectiveness of the low-
dimensional feature ranking and selection strategy pro-
posed in this section, it is necessary to determine which
low-dimensional features are selected to characterize the
original image. This section organizes the extracted low-
dimensional feature components of all three-dimensional
images into feature pools, and selects the first 1 feature com-
ponents with strong classification and discrimination capa-
bilities according to the feature component sorting selection
strategy, and re-characterizes the original image. Considering
the computational complexity of the selection strategy and
the computational cost of sparse representation, this section
sets 1 to 9 levels from 100 to 900, that is, I = 100, 200,
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FIGURE 6. Part of the feature image in the simulation experiment.
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FIGURE 7. Histogram of the original image feature area.

300, 900. The results of the three-dimensional image recog-
nition experiment are shown in Figure 8. It can be seen from
Figure 8 that when 1 = 500, the recognition efficiency based
on the three kinds of three-dimensional image geometric
features has reached a relatively high value. When 1 > 500,
the recognition efficiency increases slowly and almost tends
to be stable. Therefore, the following recognition experiments
select the first 500 image feature components with strong
discriminating ability and large contribution rate for recogni-
tion from the feature pool composed of all low-dimensional
feature components of the three-dimensional image, which
are used for final image characterization and recognition.

In order to prove the superiority of the image feature
component selection strategy and the effectiveness of the
recognition algorithm based on sparse representation, this
section designs eight experimental test schemes from the two
aspects of image low-dimensional feature organization and
classifier framework:
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FIGURE 8. Image recognition results under the number of
low-dimensional feature selections of different 3D images.

1) SOLUTION 1

In order to further verify the effectiveness of the image recog-
nition framework based on sparse representation, this section
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further designs a Fisher linear discriminant analysis based
on sparse representation elements for image low-dimensional
feature component selection, and uses LDA (Latent Dirichlet
Allocation). Sub-space projection mapping is performed on
the selected image feature components. Finally, the nearest
neighbor method is used for image recognition.

2) SOLUTION 2

In order to further verify the effectiveness of the image recog-
nition framework based on sparse representation, this section
further designs a Fisher linear discriminant analysis based
on sparse representation elements for image low-dimensional
feature component selection, and uses PCA (Principal Com-
ponents Analysis). Sub-space projection mapping is per-
formed on the selected image feature components. Finally,
the nearest neighbor method is used for image recognition.

3) SOLUTION 3

We use Fisher’s linear discriminant analysis based on sparse
representation elements to sort and select image feature com-
ponents, select all the image feature components in the fea-
ture pool, and re-characterize the three-dimensional image.
Finally, we use the sparse representation framework for image
recognition.

4) SCHEME 4

Sparse preserving mapping is a common feature
dimensionality reduction method in the field of sparse rep-
resentation. The principle of this method is to maintain the
sparsity of the original input signal for feature dimensionality
reduction. This section also tests the sparse preserving map.
Finally, the sparse representation framework is used for image
recognition.

5) SOLUTION 5

PCA is a mainstream feature dimensionality reduction
method. Through PCA dimensionality reduction, high-
dimensional vectors can be projected by a projection
matrix to obtain their low-dimensional vector representation,
which further ensures the feasibility of sparse representa-
tion recognition framework. Therefore, this section proposes
an image recognition scheme combining PCA and sparse
representation.

6) SOLUTION 6

In view of the problem that the low-dimensional feature
quantity of the image is huge and it is necessary to reduce
the dimension or re-select the organization, this section pro-
poses a method RS (Randomly Select) to randomly select
the low-dimensional feature component of the image. This
method randomly selects a certain number of feature com-
ponents from the low-dimensional feature component pool
of the image and reorganizes the image to re-represent the
image. Finally, sparse representation framework is used for
image recognition.
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7) SCHEME 7

For all extracted three-dimensional image low-dimensional
features, linear discriminant analysis (LDA) method is used
to reduce dimensionality, and the image is re-characterized.
Finally, NN (Nearest Neighbor) is used for image recognition.

8) SCHEME 8

For all three-dimensional image low-dimensional features
(image surface triangle patch area, triangle patch normal
and geodesic distance between image surface feature points),
PCA method is used to reduce the dimension of all the
above three-dimensional image low-dimensional features and
re-characterize the image. First, we use the PCA method to
train the spatial feature base of the image subspace; then, each
image sample (test sample and library sample) is projected on
the image subspace, and a new dimensionality reduced image
representation is obtained. Finally, based on the representa-
tion method after image dimension reduction, NN is used for
image recognition.

In the experiment, each person’s three-dimensional image
data was divided into 10 groups according to expressions
(5 groups of neutral expression data, 5 groups with expression
data), each test selected 1 group of image data for testing,
and the rest for training, and repeated several times to take
average recognition efficiency. The recognition results for the
above eight experimental schemes are shown in Figure 9.
The time consumption of different methods under different
feature dimensions is shown in Figure 10.

100 =1 Neutralimage  Emoticon image Al images: T
80
60

40

Recognition rate(%)

20

1 2 3 4 5 6 7 8
Experimental program

FIGURE 9. 3D image recognition results based on sparse representation.

B. ANALYSIS OF EXPERIMENTAL RESULTS

From the comparison of the experimental results of schemes
three, four, five and six in Figure 9, it can be seen that the
image feature component sorting selection strategy based on
Fisher’s linear discriminant analysis of elements compares to
the three feature selection or RS, PCA and sparse preserva-
tion mapping. The dimensionality reduction method is more
effective, and can more accurately extract image feature com-
ponents that are effective for classification and have a large
contribution rate to recognition.
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FIGURE 10. Time consumption of eight experimental schemes.

Image feature component ranking and selection strategy
based on Fisher linear discriminant analysis of sparse rep-
resentation elements comprehensively considers the differ-
ences between image feature components within and between
classes, and through training, scientifically learns the confi-
dence coefficients of each feature component (ie, the discrim-
inant ability coefficient). The feature components are ranked
according to their discriminative ability, and the feature com-
ponents are reorganized to reconstruct the representation of
the training set and the sparse feature matrix of the train-
ing set, thereby improving the feature representation ability
under the sparse representation framework to a certain extent.
Therefore, the best experimental results (scheme three) have
been obtained. The method has strong purpose and stable
performance.

Scheme 6 adopts the strategy of randomly selecting feature
components. The random sampling strategy is a commonly
used observation and sampling method. The sampling results
have certain objectivity, but this method has a large sampling
randomness, and the feature components selected in each
experiment are different, leading to unstable performance and
poor purpose, therefore, the experimental results are not ideal.

Scheme 5 uses PCA to reconstruct the training set image
sparse matrix, and obtains the PCA representation of each
sample after dimensionality reduction through training. Since
the projection matrix of PCA is solved with the goal of
reconstructing and representing the training sample, the rep-
resentation based on PCA can only be analyzed from the
perspective of reconstruction to ensure that the representation
based on PCA is in the low-dimensional subspace of the
sample. It is not to solve the discriminant information that is
effective for classification. In addition, the training of PCA
projection matrix is directly limited by the number of 3D
image samples and sample dispersion of the training set. The
larger the number of samples and the greater the dispersion,
the more accurate the projection matrix trained by PCA and
the more realistic the sample subspace can be reproduced.
In view of the properties of the PCA algorithm itself, the rep-
resentation ability of the PCA dimensionality-reduced feature
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matrix under the sparse representation framework needs to be
studied. Therefore, the recognition result of this scheme is not
ideal.

The dimensionality reduction algorithm of sparse preserv-
ing mapping adopted in scheme 4 is a commonly used fea-
ture dimensionality reduction method in the field of sparse
representation. The sparse preserving mapping algorithm per-
forms feature dimensionality reduction while maintaining the
sparsity of the original input signal, that is, maintaining the
initial representation of training samples. The sparseness of
the way is to reduce the dimension. Because the sparseness
of the initial representation of the training sample cannot be
evaluated, it is impossible to determine whether the initial
representation of the training sample is beneficial to the
sparse representation recognition framework. The limitation
of the sparsity of the initial representation method has not
improved the original sparsity. Therefore, the recognition
result of scheme 5 is also not ideal.

In order to verify the effectiveness of the image recogni-
tion framework based on sparse representation, three com-
parative experiments (Scheme 1, Scheme 2 and Scheme 3)
are designed in this section. Through the comparison of
experimental results, it is found that the recognition frame-
work based on sparse representation used in scheme 3 is
more suitable for the low-dimensional features of the image
selected by Fisher linear discriminant analysis algorithm
based on sparse representation elements than the recognition
framework of PCA and LDA, and can be more effectively
integrated.

In addition, in order to further test the superiority of
Fisher linear discriminant analysis based on sparse rep-
resentation elements 4 sparse representation recognition
algorithm (Scheme 3), two other comparative experiments
(Scheme 7 and Scheme 8) are designed in this section. The
eighth scheme is to perform PCA dimensionality reduc-
tion on all low-dimensional geometric features of all three-
dimensional images, and use the nearest neighbor classi-
fier for classification and recognition. Due to the essential
properties of the PCA algorithm, the image representation
method after PCA dimensionality reduction is not a favorable
feature for image classification and recognition. Therefore,
the experimental results of Scheme 8 are relatively poor.
Option 7 uses the LDA algorithm to reduce the dimension-
ality of all low-dimensional geometric features of the three-
dimensional image. Although the projection matrix of the
LDA algorithm is solved on the premise of the most favorable
classification of the original sample, the low-dimensional
feature volume of the three-dimensional image is huge, and
these low-dimensional features are greatly affected by fac-
tors such as image expression, which is not conducive to
the effective classification of the original samples by the
LDA algorithm. Therefore, the robustness of image features
directly affects the recognition performance of the algorithm.
Scheme three selects more robust image feature components
through training to re-characterize the original image. There-
fore, the image representation is more unique and accurate,
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FIGURE 11.

and the recognition results are better than scheme seven and
scheme eight.

C. EVALUATION OF SPARSE REPRESENTATION ABILITY

1) EVALUATION OF SPARSE REPRESENTATION BASED ON
ENERGY CONCENTRATION

The sparse representation framework is to use all training
samples to sparsely represent the unknown samples. Ideally,
if the training set signal is sparse, the energy of the test object
in the sparse representation should be concentrated on the
same samples. Therefore, we can evaluate the representation
ability of the sparse representation framework by testing the
energy concentration of the test objects on similar sample
objects. The sparse coefficients of the four test sample images
are shown in Figure 11.

Based on sparse representation elements, Fisher linear dis-
criminant analysis, sparse preserving mapping, PCA and RS
four feature selection or dimensionality reduction methods,
the characteristics of sparse representation energy distribu-
tion under the sparse representation framework are shown
in Figure 12.

It can be seen from the energy distribution state of the
sparse representation in Figure 12 that under the sparse
representation recognition framework based on the feature
selection strategy based on Fisher linear discriminant analysis
of sparse representation elements, the energy concentration
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Sparse coefficient
(d) The sparse coefficient representation of the test sample image 4

Sparse coefficient representation of four test sample images.

of the test objects on the same kind of sample objects reaches
86.21%. However, under the sparse representation recogni-
tion framework based on RS, PCA and sparse preservation
mapping feature selection or dimensionality reduction strat-
egy, the energy concentration of test objects on the same
kind of sample objects averages are 61.12%, 64.38% and
74.46%. It can be seen from the comparison of the ability
concentration that the feature selection strategy based on
Fisher linear discriminant analysis based on sparse represen-
tation elements proposed in this paper has a strong ability to
organize the low-dimensional features of the image.

2) SPARSE REPRESENTATION CAPABILITY EVALUATION
BASED ON BULLDOZER DISTANCE

In order to further verify the ability of the feature selec-
tion strategy based on Fisher linear discriminant analysis
based on sparse representation elements to organize the
low-dimensional features of images, this section proposes
a sparse representation capability evaluation method based
on bulldozer distance. In this section, the selected coef-
ficients of the low-dimensional features of the selected
image under sparse representation are used as the sam-
ple representation form, and the similarity between the
sparse representation coefficients of the test sample and the
sparse representation coefficients of all samples in the train-
ing set is calculated using the sparse representation based
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FIGURE 13. The characteristics of the two evaluation methods are sparse
and represent the state of energy distribution.

on the distance of the bulldozer. The similarity concentra-
tion degree of the test samples and similar samples in the
training set is also counted to evaluate the sparse representa-
tion ability under the sparse representation framework of the
low-dimensional features of the image selected based on the
Fisher linear discriminant analysis scheme based on sparse
representation elements.

Under Fisher linear discriminant analysis based on sparse
representation elements feature selection strategy and sparse
representation framework, the sparse representation energy
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distribution states of the two evaluation methods are shown
in Figure 13.

As can be seen from the energy distribution diagram in
Figure 13, under the Fisher linear discriminant analysis fea-
ture selection strategy and sparse representation framework
based on sparse representation elements, the sparsity assess-
ment of the training matrix based on the energy assessment
method based on bulldozer distance averages 80.56%, and
83.36%, and the results of the two evaluation methods are
consistent. It can be seen that Fisher linear discriminant anal-
ysis based on sparse representation elements feature selection
strategy is more scientific and effective for feature selection,
and can meet the requirements of the sparsity of the training
feature matrix by the sparse representation method to a cer-
tain extent.

V. CONCLUSION

This paper proposes a supervised dictionary learning model
based on hierarchical sparse representation. After introducing
label consistency constraints, the K-SVD algorithm is used to
learn discriminative dictionaries of the acquired features, and
an optimal linear classifier is obtained. The characteristics
of the improved SIFT algorithm are analyzed and used to
solve the problem that the brightness of the multimedia visual
image is greatly affected by the change of the incident angle
of illumination. Respectively we analyze the multimedia
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visual image data, images of different sizes, and images of
different viewpoints. Analysis shows that the SIFT feature is
a local feature of the image, which maintains its invariance to
its rotation, translation, scale scaling, and brightness changes,
and maintains good stability to viewing angle changes, affine
transformations, and noise, and is unique and informative.
Through an in-depth study of the sparse representation the-
ory, a three-dimensional image recognition algorithm based
on the sparse representation framework is discussed. This
algorithm can effectively characterize and robustly identify
images using limited image low-dimensional features. 3D
image feature sorting selection strategy selects a small num-
ber of image personality features that are effective for recog-
nition from the huge image feature information, improves
the recognition performance of the algorithm, reduces the
computational cost of the algorithm, and thus guarantees
the sparse representation theory in 3D image recognition.
Two sparse representation evaluation methods are discussed.
From the experimental point of view, the feature selection
strategy of Fisher linear discriminant analysis based on sparse
representation elements and the effectiveness of the three-
dimensional image recognition framework based on sparse
representation are evaluated. The evaluation results of the two
methods are compared. Consistently, the effectiveness and
importance of the feature selection strategy based on Fisher
linear discriminant analysis of sparse representation elements
are verified once again, and the features selected by this
strategy have strong representation ability and high energy
concentration under the sparse representation framework.
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