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ABSTRACT Distinguishing between humans and common animals through a wall is necessary for facilitat-
ing successful rescue of survivors and enhancing the confidence of rescuers in post-disaster search and rescue
operations. However, few existing solutions are available with only dogs considered in this scenario. This
poses an issue in ensuring the recognition accuracy involving different animal species. This work proposed
a novel multiscale residual attention network for distinguishing between stationary humans and common
animals under a through-wall condition based on ultra-wideband radar, which is yet to be performed by
existing research using deep learning. Humans, dogs, cats, rabbits, and no target data are collected and
distinguished. The overall architecture of the proposed method differed from conventional deep learning
methods as it is constructed by parallel 3 x 3 and 5 x 5 kernels incorporated with the residual attention
learning mechanism. The effect of the slow-time dimension on the classification performance is analyzed,
thereby producing an optimal input size. The overall Fl-score of the proposed network can reach a high
value of 0.9064 and the recognition accuracy of human targets can reach 0.983 satisfying the requirements
for post-disaster rescue. Then, the effectiveness and advancement of the three components of the overall
network architecture are validated by ablation studies. Finally, the proposed method is compared with three
state-of-the-art methods. Comparison results indicate that the proposed method achieve a better performance.
The network and its results are envisioned to be applied in various practical situations, such as earthquake
rescue and intelligent homecare.

INDEX TERMS Convolutional neural network (CNN), distinguishing between stationary humans and
common animals, post-disaster rescue, residual attention learning mechanism, ultra-wideband (UWB) radar.

I. INTRODUCTION

The rapid development in ultra-wideband (UWB) radar
life-detection technology [1]-[5] has attracted the interest
of researchers in civilian and military applications mainly
due to its advantage in penetrability of obstacles, robust-
ness to weather conditions, and protection of visual pri-
vacy. Its applications include earthquake and hostage rescue

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

121572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

operations [6], gesture recognitions [7], person identifica-
tion [8], target imaging [9], human tracking [10], etc. In par-
ticularly, the distinction between humans and animals using
UWB radar is garnering attention as it can obtain signifi-
cant target information, thereby accurately guiding follow-
up operations. W.D Van Eeden et al. [11] combined the
Gaussian mixture model and hidden Markov model to dis-
tinguish slow-moving animals from human targets to detect
potential livestock thieves and poachers in nature reserves
and farmlands. Wang et al. [12] proposed a new parameter,
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the respiratory and heartbeat energy ratio (RHER), to clas-
sify humans and animals through vital signs monitoring.
Bjorklundet et al. [13] used a support vector machine clas-
sifier to distinguish between humans and animals for surveil-
lance of approaching organisms at the perimeter of critical
infrastructures.

However, these aforementioned works were mainly
focused on the moving state or free space condition of a
target. To date, there are no reports from other research groups
focused on the distinction based on their stationary states and
under a through-wall condition using UWB radar. It is cru-
cial to distinguish stationary humans from stationary animals
for post-disaster rescue operations where trapped targets are
buried and unable to move. In the scenario, some common
family pets may cause false alarms when detected as human
targets. This will waste valuable research time and rescue
resources and may miss opportunities to rescue more trapped
survivors. The authors of this study combined twelve hand-
crafted features with a support vector machine (SVM) model
in [14] to distinguish stationary humans and dogs in through-
wall conditions. Aside from dogs, cats and rabbits are also
common family pets that are likely to cause false alarms in
actual post-disaster rescue operations. The proposed features
of [14] may not function effectively in recognizing cats and
rabbits. As priori and professional knowledge is essential in
manual feature extraction, extracting of new handcrafted fea-
tures to recognize more animal species is rather difficult and
time-consuming. These disadvantages limit further develop-
ment and more practical application of the SVM method.
Thus, an automated feature extractor is desired.

Convolutional neural network (CNN) is a deep learning
architecture  adept at learning embedding from
two-dimensional images. CNN is widely employed as an
automatic feature extractor due to its accurate and robust
performance [15]. With the development of graphic process-
ing units (GPUs) and parallel computing techniques, vast
quantities of data can be processed in a short time with
CNN. Residual attention network is a new deep learning
architecture that is proposed to guide more discriminative
feature representations [16]. It is inspired by the brain signal
processing mechanism considered unusual by the human
vision, which only focuses on significant or interesting infor-
mation. Similarly, with this architecture, more discriminative
features are assigned with more attention.

In this study, a multiscale CNN model combined with
residual attention learning is proposed for distinguishing
between stationary humans and common animals under a
through-wall condition using UWB radar. The radar data
are preprocessed and then divided into windows with dif-
ferent widths and overlaps. The window width is first ana-
lyzed to obtain its optimal value. Then, the distinguishing
performance with different parts of the combined model is
compared and further discussed by ablation study. Finally,
the comparison with a state-of-the-art method is conducted.
To summarize, the main contributions of this study are as
follows.
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1) A data-set including stationary humans, dogs, cats,
rabbits, and no targets collected under a through-wall
condition using UWB radar is constructed.

2) A novel multiscale residual attention network is pro-
posed to extract the discriminative features for dis-
tinguishing between stationary humans and common
animals.

3) Intuitive in-depth analysis of the optimal input size
and performance with different parts of the proposed
network are performed.

4) The comparison results with the state-of-the-art method
validate the effectiveness and advancement of the pro-
posed method in addressing the issue.

The remainder of the paper is organized as follows.
Section II illustrates the utilized UWB radar system and
signal preprocessing steps. Section III describes the detailed
architecture of the novel multiscale residual attention net-
work. Section IV introduces evaluation indicators and imple-
mentation details for the network. Experimental results and
their corresponding in-depth analysis are in Section V.
Section VI provides suggestions for the directions of future
research. Finally, the paper is concluded in Section VIL.
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FIGURE 1. Block diagram of the utilized ultra-wideband (UWB) radar.
Abbreviations: ADC, Analog-to-Digital Converter; TA, transmitter antenna;
RA, receiving antenna; USB, universal serial bus.

Il. UWB RADAR SYSTEM AND SIGNAL PREPROCESSING
A. UWB RADAR SYSTEM
The block diagram of the utilized UWB radar is presented
in Fig. 1. Firstly, the trigger pulses with a center frequency
of 500 MHz and pulse repetition frequency of 128 kHz
are generated by the oscillator. The output of the oscillator
is fed through an electromagnetic pulse generator to excite
the transmitter antenna (TA). Then, the bowtie dipole TA
transmits vertically polarized pulses with a peak power of
approximately 5 W. Meanwhile, some pulses are sent into
a delay unit and range gates generator, where a series of
300-ps wide software-controlled range gates are generated.
Next, echoes are received by the receiving antenna (RA) and
only the parts within the range gates are collected, integrated,
and amplified through the integrator and amplifier. A series
of waveforms which include reflected life and range infor-
mation from media are sampled. Finally, the waveforms are
converted to the computer through a high-speed Analog-to-
Digital Converter (ADC) for further analysis [17]. The key
parameters of the UWB radar are given in Table 1.

After signal acquisition, the raw echo data D(m, n) are
stored as waveforms.m = 1, 2, - - - , M denotes the sampling
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TABLE 1. Key parameters of the UWB radar.

Parameters Values
Center frequency 500 MHz
Bandwidth 500 MHz
Pulse repetition frequency 128 kHz
Sampling points 2048
Scanning speed 64 Hz
Detection distance range 0-3m
point in propagation time and n = 1,2, --- , N denotes the

sampling point in observation time. The time axis associ-
ated with range along each received waveform is addressed
as “‘propagation time” and is in the order of nanoseconds.
A total of M = 2048 sampling points were collected
along with the recorded waveform t = 20 ns long corre-
sponding to a 0-3-m detection range. The scanning speed
of 64 waveforms per second along slow-time dimension sat-
isfied the Nyquist sampling rate for respiration. The time axis
along the measurement interval is termed as ‘“‘observation
time” or “slow-time” and is described by t in the order
of seconds. Hence, the number of recorded waveforms along
slow-time is N = 64 x T, with T denoting the overall
observation time. Fig. 2 shows the 2-D pseudo-color image
of the raw echo data D(m, n) when a male human target is
2.5 m behind a 28-cm thick brick wall with a radar attached
on the other side of the wall.
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FIGURE 2. 2-D pseudo-color image of the raw echo data with a male
human target 2.5 m behind a 28-cm thick brick wall.

B. SIGNAL PREPROCESSING
The signal preprocessing steps are illustrated in Fig. 3. A total
of six steps, including range accumulation, normalization,
direct current (DC) removal, 2-Hz low-pass (LP) filtering,
adaptive filtering, and slow-time accumulation, are imple-
mented. All subsequent model training and testing procedures
are based on the preprocessed signals.

Range accumulation can help reduce the computational
complexity by averaging the values within a range win-
dow along the propagation time index on the premise of
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FIGURE 3. Signal preprocessing steps. Abbreviations: DC, direct current;
LP, low-pass.

guaranteeing detailed information. It is defined in (1):

1 Wy
DataRA(y, n) = W Z

m=W(y—1)+1

D(m, n), (1)

with DataRA(y, n) as the echo data after range accumulation,
W as the range window length along the propagation time
index, and y as the point number on the propagation time
dimension after accumulation. W = 10 was chosen here [14],
thereby compressing the total number of points along the
propagation time index to 200 from 2,048.

Then, normalization along the slow-time index is per-
formed for echo data standardization to accelerate the con-
vergence of the deep learning model as illustrated in (2).

DataN (y, n)
DataRA(y, n) — min [DataRA(y, n)]
1<n<N

2—1,
max [DataRA(y, n)] — min [DataRA(y, n)] x
1<n<N

1<n<N

@)

with  DataN (y, n) signal after
normalization.
Next, DC removal is implemented to remove the DC com-

ponent and baseline drift. It is defined by:

denoting the echo

n+99

DataDC (y, n)=DataN (y, n)— Z DataN (y, n). 3)

100

2-Hz LP filtering is then performed to filter out high-
frequency noise and retain respiratory signals along the obser-
vation time dimension of the echo data. It is determined as:

DataLP(y, n) = DataDC(y, n)*h(t), 4

with h(¢z) as the impulse function of finite impulse
response (FIR) filter [18] and * representing convolution
operation.

Adaptive filtering is based on the least mean square (LMS)
algorithm and is employed to suppress strong clutters. The
detailed illustration and verification are provided in [19].
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Finally, slow-time accumulation is performed to reduce the
computational complexity along the slow-time dimension.
It is illustrated by:

Ox

> DataAF(y,n), (5)
n=0x—1)+1
with DSA(y, x) as the echo signal after slow-time accumu-
lation and Q as the window along the slow-time dimension.
Q = 4 was chosen, thereby suppressing the original 64-Hz
scanning speed to 16 Hz. Fig. 4 shows a 2-D pseudo-color
image of the preprocessed echo data when a male human
target is 2.5 m behind the 28-cm thick brick wall.
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FIGURE 4. 2-D pseudo-color image of the preprocessed echo data when a
male human target is 2.5 m behind a 28-cm thick brick wall.

It is noted that the data fed into the subsequent deep
learning network have all been preprocessed. The range and
slow-time accumulation reduced the data scale by 40 times.
The original data scale of D is 2048 x 3712, and the final
size after all preprocessing applied of DSA is 200 x 928.
Thus, the training procedure of the deep learning model is
accelerated. Meanwhile, the number of network layers can
be increased with abstract and complex features extracted at
higher layers [20].

Block 1, 32
Block 2, 64
Block 3, 128

Input

Preprocessed radar data

Block 4, 256

Block 5, 512

=
xeunjos

Feature extractor

Classitier

FIGURE 5. Overall structure of proposed multiscale residual attention
network. Abbreviations: GAP, global average pooling layer; fc, full
connected layer. Block 1, 32 represents that the outputs of block 1 have
32 channels.
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Ill. MULTISCALE RESIDUAL ATTENTION NETWORK

A multiscale CNN model combined with residual atten-
tion learning is proposed to distinguish stationary humans
from common animals. Its overall architecture is illustrated
in Fig. 5. Firstly, the preprocessed radar data are fed into
a feature extractor as the network input. The five blocks
with specific channel numbers in the feature extractor are
used to extract discriminative feature representations. Then,
the extracted features are fed into a classifier consisting of a
global average pooling (GAP) layer, two fully connected (FC)
layers with different node numbers, a dropout layer, and a
softmax classifier. Finally, classification results are obtained
as the output.

- @
LAP, @)
@

512

@)

512 nodes

Feature map with size of 3x3x 512,
512 represents the channel numbers

FIGURE 6. Global average pooling (GAP) structure. A 512-channel feature
map can be suppressed to a 512-node array. Each node represents the
average of a corresponding 3 x 3 channel.

The detailed structure and analysis of the feature extractor
will be discussed in Section III.A. and III.B. The GAP in the
classifier is a structural regularizer that prevents overfitting
for the overall structure [21]. Meanwhile, it can greatly reduce
the size of feature maps, which are the outputs of the feature
extractor. Particularly, using GAP, a 512-channel feature map
can be averaged to an array with only 512 nodes, thereby
satisfying the size requirements of the input data for the
subsequent FC layers. Each channel is in the form of a matrix,
and a node is a specific value. Thus, this is a method for
descending dimension of data scale. Fig. 6 illustrates the GAP
structure. Given the size of input data fed into the network
is (b, y, X, c¢), where b is the number of radar image within
a mini batch, (y, x) is the data scale of each radar image,
and c is the channel number. A mini batch contains data that
are fed into the network for training or test each time. It is a
way to reduce the computational complexity, different from
training or testing all data in one time. Then, at the beginning,
cis 1, namely the input data size is (b, y, X, 1). After processed
by feature extractor, the data size varies to (b, y, X, 512). After
GAP, it changes to (b, 1, 512). After the classifier, it changes
to (b, 1, 5).

The dropout, which is between two FC layers, is a widely
used method to prevent overfitting [22]. The nodes between
two FC layers are unlikely to participate in the forward prop-
agation nor the back propagation with a probability of 50%.
At the output of the classifier, softmax regression is used
to classify the five nodes of the second FC layer into five
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categories, namely human, dog, cat, rabbit, and no target.
Meanwhile, the corresponding probabilities of the five cat-
egories will be calculated and the category with the highest
probability value will be regarded as the final classification
result.
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FIGURE 7. Detailed block structure of the multiscale residual attention
network. Ci denotes the channel number of the output of block i.
Abbreviations: Conv, convolution kernel; BN, batch normalization.

A. MULTISCALE LEARNING STRUCTURE

Multiscale learning structure is used to simultaneously extract
features with different granularities. Two types of convo-
lution kernels with different receptive fields are utilized in
the network to achieve feature learning with different scales.
AsshowninFig. 7, a3 x3 kernel and 5 x 5 kernel are designed
in parallel in the trunk branch. Fine-scale features will be
learned with the 3 x 3 kernel in branch 1, while the 5 x 5
kernel is utilized to extract coarse-scale features in branch 2.
Each block in feature extractor of Fig. 5 has similar structure
as depicted in Fig. 7, except the difference of the specific
channel number. An example of the convolution operation of
3 x 3 and 5 x 5 kernels is illustrated in Fig. 8. The stride of
the two kernels is both chosen as one (stride 1).

Ma et al. [14] proposed twelve handcrafted features
belonging to four categories, which are compared when dis-
tinguishing stationary human and dog targets. Among the
twelve features, some were used to reflect fine changes in
radar echo signals, such as the change rate of correlation coef-
ficient of micro vibration (CRCCMYV) and mean of wavelet
entropy (MWE) [23], while others were envisioned to reflect
coarse changes, such as respiratory frequency (RF).
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FIGURE 8. Sample convolution operation principles of 3 x 3 kernel and
5 x 5 kernels to learn fine-scale and coarse-scale features, respectively.

Thus, it is necessary to design a structure that can simulta-
neously learn fine-scale and coarse-scale representations in a
CNN network.

The rectified linear unit (ReLLU), a kind of activation func-
tion, in the trunk branch is a common method to achieve
piecewise nonlinear operation in a CNN network [24]. It is
defined by:

x, ifx>0

ReL = 0,x) =
eLu(x) = max(0, x) 0. ifx<o0.

(6)

B. RESIDUAL ATTENTION LEARNING MECHANISM
Residual attention learning mechanism, which can be incor-
porated with other self-designed feed-forward network archi-
tecture in an end-to-end training fashion, is used to generate
attention-aware representations [25]. It is inspired by the
mechanism of the brain signal processing of unusual subjects
of the human vision, in which only a focused location is
selected and different representations of the objects at the
selected location are enhanced. Four categories including
twelve handcrafted features were compared in [14]. The
results showed that the classification performance of different
categories varied greatly. Thus, residual attention learning
mechanism is vital in designing a CNN architecture to assign
more attention to features with more discriminative represen-
tations.

Residual attention learning mechanism is often designed
as a mask branch that uses a bottom-up top-down structure
to softly weigh the features learned from the trunk branch
[25], [26]. The trunk branch is utilized to implement feature
extraction and can be extended to any state-of-the-art network
structure. In this paper, the trunk branch is designed as a
multiscale learning structure with 3 x 3 and 5 x 5 kernels
in parallel as illustrated in Fig. 7. The residual attention
mechanism in Fig. 7 is constructed by max-pooling for down-
sampling, 3 x 3 convolutional kernels with different channel
numbers, and interpolations for up-sampling. The channel
number of mask branch output is equal to that of trunk brunch,
and the numbers of max-pooling and interpolation modules
are the same. Thus, data sizes of outputs of mask branch and
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trunk branch are the same and the outputs can be calculated
by element-wise sum and product operations. Mixed attention
function which uses simple sigmoid for each channel and
spatial position without additional restriction is employed in
the output of mask branch. It is defined by:

1

f(=vi,0) = m,

(N
with f (—v;, ¢) as the mixed attention function, v; as the feature
vector at the i-th spatial position, and c representing the
channels.

Also, Fig.7 illustrates the principle of incorporating the
trunk branch and mask branch. T(x) denotes the output of
the trunk branch and M(x) denotes the output of the mask
branch. After element-wise product and sum operations,
the output of incorporating the trunk and mask branch can
be defined by:

I(x) = T(x) x (M(x) + 1). 8)

IV. EVALUATION AND OTHER IMPLEMENTATION
DETAILS

A. EVALUATION

Besides accuracy (Acc), recall (R), precision (P), and
F1-score (F1) are also computed to evaluate the classification
performance of the deep learning network more comprehen-
sively [28], [29]. These parameters are respectively defined
in (9)—(12).

Tp+Tn

Acc = , ©)
Tp+Tn+Fp+ Fn
Ip
R=——, (10)
Ip+Fn
T
P = —p’ (11)
Tp + Fp
RxP
Fl = X 2, (12)
R+ P

where Tp is the number of true positives, 77 is the number of
true negatives, Fp is the number of false positives, and Fn is
the number of false negatives. A more intuitive illustration of
these variables is shown in Fig. 9.

Predicted label
— 1 0
2
E 1 |Tp|Fn
=
£ 0 |Fp|Tn
R

FIGURE 9. lllustration of true positives (7p), true negatives (7n), false
positives (Fp), and false negatives (Fn).

B. OTHER IMPLEMENTATION DETAILS

The multiscale residual attention network used in this study
was trained on a GeForce RTX 2080GPU with 11 GB of
memory. The CUDA library was utilized for acceleration.
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An Adaptive Moment Estimation (Adam) optimizer was
employed with mini batches of size 8 and L, regularization
of 0.001. The network was trained for around 300 epochs.
The property value of ‘padding’ is ‘SAME’ when performing
kernel convolution, and this allows the output size of 3 x 3
and 5 x 5 kernels in the trunk branch to be the same and to
be combined by channel-wise contact operation. The changed
learning rate (LR), defined by (13), was then utilized.

_ 0.001, if epoch < 200 (13)
~ 1 0.0001, if 200 < epoch < 300.

V. EXPERIMENTAL RESULTS

A. TARGET AND EXPERIMENTAL SETUP DESCRIPTION
This paper aims to distinguish stationary humans and com-
mon animals under a through-wall condition using UWB
radar. The frequency of common pets in daily life may cause
false alarms in post-disaster rescue applications. Thus, dogs,
cats, and rabbits were chosen as the animal targets. The
radar data of five healthy human targets aged 24 to 43 years
old, five grown-up beagle dogs aged approximately 1 year,
five healthy domestic cats aged about 28 months, and five
New Zealand White rabbits aged approximately 5 months
were collected. Table 2 illustrates the detailed information
of the aforementioned targets. All animals, except cats, were
from the Experimental Animal Center of Fourth Military
Medical University. Five cats were voluntarily supplied by
the members of our team. It is guaranteed that there was no
harm inflicted upon all the animal targets involved during the
experiments.

TABLE 2. Detailed information of collected targets.

Human Dog Cat Rabbit Total

Target numbers 5 5 5 5 20

Male numbers 3 2 2 2 9
Female numbers 2 3 3 3 11
Average weight 65 9.43 2.95 2.74

(kg
Average age 29 1 24 0.4
(years)

Data samples 5x10 5x10 5x10 5x10 20x10

In the experimental setup, a 28-cm thick brick wall is
present between the target and radar. The raw radar echo
data were collected by detecting each target approximately
2.5 m away from the brick wall ten times. Each detection was
conducted for 58 s. The time interval of every two acqui-
sitions, target distance from the wall, posture facing radar
and environmental interference were not identical for each
detection. Thus, the raw radar echo signals could be regarded
as from different samples with smaller acquisition times, such
as 10 times per target. Fig. 10 shows the geometries and
photographs of the experimental scenarios.

121577



IEEE Access

Y. Ma et al.: Multiscale Residual Attention Network for Distinguishing Stationary Humans and Common Animals

Brick wall

Human Target

Y
Other Static}
Objects

@

25m

Brick wall

Dog Target
AR
D
ikl i
|(— 08ar>| Other Static:
08m  Objects
abl |
(®)
Brick wall

Radar
i T Cat Target

B

=

fx CET T otersund
08m Objects }
— H

=25m
Table

©

Brick wall

Rabbit Target

L—%F Other SlaLicé

08m Objects }

Table ti 7( fo
(@

FIGURE 10. The sketch maps and actual measuring photographs of
(a) human, (b) dog, (c) cat, and (d) rabbit targets.

During the radar data acquisition of the animals, each
target freely lied at a comfortable position until they could
maintain a fixed position quietly for over one minute on the
experimental table, which is 0.8-m wide, 0.8-m high, and
2.5 m away from the brick wall. Thus, animals may lay
with random postures and face different directions in each
data acquisition. Similarly, the human target faced different
directions during each data acquisition trials. A cat cage was
provided during the measuring experiments for the cats as it
was infeasible to wait for them to lay quietly for over one
minute. The cage fence is spaced at approximately 3.5 cm,
thereby still permitting cats to move freely in the fixed space.
This would allow cats to reach their stationary state faster
to satisfy the requirements of the experimental setup. The
measuring intervals for each human target ranged from 1 to
30 min while those of each animal ranged from 1 min to
5 days. Therefore, there were large differences among the

121578

radar data of similar target due to significant variations of the
target states and environmental interference during each trial.

No-target scenarios are also important and often appear in
real rescue situations, thereby possibly causing false alarm in
discerning human targets in post-disaster rescue operations.
Thus, similar to target trials, 50 no target samples were col-
lected. The corresponding sketch map and actual measuring
photograph of these trials are shown in Fig. 11.

No Target

Other Static}
08m  Objects |

g w

FIGURE 11. Geometry and photograph of radar data acquisition with no
targets.

B. ANALYSIS OF SLOW-TIME DIMENSION

It is of vital importance to scientifically design relevant input
dimensions during the feature extracting process in deep
learning network [27]. An optimal range window (ORW)
along the propagation time dimension, where the target signal
is in the middle, was set to be 31-point long in [14]. The cor-
responding classification results in [14] showed ORW length
yielded great performance. Thus, considering the even input
size must be in the residual attention learning mechanism, a
range window with a length of 32 points along the propa-
gation time dimension with one point at the window bottom
was chosen for this study. Then, the key turns to choosing the
appropriate time window (TW) along the slow-time dimen-
sion with the best multi-classification performance.

When comparing the classification performance with TWs
of different widths, it is crucial to contain at least one respi-
ratory period per TW. If TW width is less than the length of
one respiratory period, the information and representations
in the TW will be insufficient. Thus, TW widths ranging
from 4 to 16 s with 2-s intervals step were chosen. After
signal preprocessing, the corresponding sampling frequency
becomes 16 Hz (waveforms per second). Hence, in a TW,
there are 64 waveforms when the width is 4 s and 256 wave-
forms when the width is 16 s. To take full advantage of the
58-second per continuous radar echo signal with duration,
overlaps of consecutive waveforms between adjoining TWs
are commonly used [16], [27]. The relationship between TW
width and overlaps in this research is defined in (14).

TW x 20 — 58 x 16
Oy =

20—-1
where TW is the width of the time window and O,, is the
number of waveforms per overlap. A total of 20 TWs are
involved in each preprocessed radar echo signal. Thus, there
will be a total of 5000 samples belonging to 250 preprocessed
radar echo signals of five target types. The distinguishing

, (14)
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results can be higher than those in the case of non-overlapping
windows of adjoining cases due to the overlap of training and
testing windows. The schematic overview of the analysis is
depicted in Fig. 12.

Brick wall

Preprocessing

o 0 20 30 40 50 60
Slow-time (s5)

(b)
i& Human

/
//'
Er cat

‘%\\"@ Rabbit

\*O No target
(0 (d)

32 Points Length

Multiscale Residual
Attention Network

0 ™ 20 30 40 50 S8
Slow-time (s)

FIGURE 12. Schematic overview for analysis of slow-time dimension.
(a) Raw radar data acquisition for each target. (b) Preprocessing of raw
radar data. (c) Radar data after preprocessing are reduced to fragments
with different TW widths along the slow-time dimension. Each fragment
has 32 points length along the propagation time dimension. (d) The
fragments are fed into a multiscale residual attention network, which
predicts probabilities for each target type.

To prevent overfitting, five-fold cross-validation was
employed. It is implemented by firstly dividing the 5000
samples randomly into five copies with equal number. Then,
four of them are used as training set and the remaining copy
is used as the test set per time, until each data copy is used
as test data. The comparison results of different TWs using
five-fold cross-validation are shown in Fig. 13 where a 12-s
wide TW has been found to have the optimal classification
performance with an F1-score of 0.9064.

4 6 8 10 12 14 16
TW (8)

FIGURE 13. Comparison results with different TWs. Abbreviations: TW,
time window (TW) along the slow-time dimension. A 12-s wide TW has
the optimal classification performance.

When the TW width is small, such as 4 s, the TW period
is short with much less corresponding information. Thus,
the difference between TWs is insignificant producing much
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lower F1-scores. Relatively, when the TW width is large, such
as 16 s, of course the TW period is long enough with more
corresponding information. However, the width of the over-
laps and TWs will be much closer. When TW is 16-s wide,
the calculated overlaps obtained from (13) will be 220 wave-
forms, which is equivalent to 13 s. Therefore, the difference
between the contiguous TWs will be much smaller, thereby
having much lower Fl-scores. When the TW is 12-s wide,
a compromise will be reached, thereby obtaining the highest
Fl1-score.

Predicted label

| S &S50

§ o83 74|51
z 7 975 3 [13] 2
:g el o)28(661[47 [264
24 | 1l17] 2 |o73] #
Q| o]15| 7 [23]es5
| Human Dog %"’Cat @Rabbit ONo target

FIGURE 14. Confusion matrix of distinguishing result when the width of
TWis 12 s.

Fig. 14 illustrates the confusion matrix of the distinguish-
ing result when the TW is 12-s wide. The corresponding key
evaluation indicators are shown in Tables 3 and 4.

TABLE 3. Overall F1-score and accuracy when the width of TW is 12 s.

Indicators Values
Fl-score 0.9064
Accuracy 0.9094

TABLE 4. Recall and precision of targets when the width of TW is 12 s.

Human Dog Cat Rabbit No target
Recall 0.9830 0.9750 0.6610 0.9730 0.9550
Precision  0.9919 0.9357 0.9764 0.9171 0.7771

The overall F1-score and accuracy obtained high values of
0.9064 and 0.9094, respectively. The recall and precision of
human targets reached 0.983 and 0.9919, respectively, satis-
fying the requirements of post-disaster rescue applications.
A significantly high distinguishing rate of human targets
will be beneficial for improving the success rate of rescu-
ing survivors and enhancing the confidence of rescuers. The
recall of cat was relatively low with a value of 0.661 due to
oversight of 264 of 1,000 samples, which were distinguished
as no targets, as presented in Fig. 14. Moreover, the iron
material of the specific cat cage used in the cat’s experiments
to limit their movement in a fixed space and accelerate the
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experiments affected the propagation of the UWB radar sig-
nals, thereby weakening the signals. Therefore, the signals
of cats and no targets exhibited a degree of similarity that
lead to the misjudgment. This reduced the overall F1-score
and accuracy of the multi-classification task. However, it did
not affect the identification of human targets, which still
conformed to the original goal for the post-disaster rescue of
survivors.

C. PERFORMANCE VALIDATION OF THE NETWORK
ARCHITECTURE

Ablation studies are commonly chosen for understanding the
contribution of various components when different structures
are combined into a network [16], [30]. It is typically per-
formed by removing some structure of the overall network
and then assessing how the performance is affected. 3 x 3
kernels, 5 x 5 kernels, and residual attention learning mecha-
nism are integrated to construct a novel multiscale residual
attention network in this study. Thus, ablation studies are
utilized to analyze and validate the performance of these
incorporated architectures. The inputs are the 5000 samples
with 32-point length in the propagation time dimension and
12-s wide in slow-time dimension, which has been validated
to yield the optimal performance. Five-fold cross-validation
is also used here. The results of the corresponding ablation
studies of the novel multiscale residual attention network are
shown in Table 5. Fl-score is chosen to be the evaluation
indicator.

TABLE 5. Results of the ablation studies of the multiscale residual
attention network.

3x3 Kernels 4 4 v v
5%5 Kernels v v v v
Residual Attention v v v

Learning Mechanism

F1-score 0906 0.812 0.874 0.830 0.723 0.621

The network combining all three structures has the opti-
mal performance with the highest Fl-score in Table 5. The
F1-score of the multiscale structure with parallel 3 x 3 and
5 x 5 kernels parallel is 0.812. Thus, by solely implement-
ing a multiscale structure, the network performance cannot
be significantly improved. When the network has no resid-
ual attention learning mechanism, a larger decrease in the
F1-score is observed than the absence of 3 x 3 kernels or 5 x 5
kernels, thereby illustrating its more important role in the
overall architecture. When there are only independent 3 x 3
kernels or 5 x 5 kernels, the F1-score decreased to the lowest.
The above results validated that a network simultaneously
combining the three structures in parallel best satisfied the cir-
cumstance in distinguishing stationary humans from common
animals under a through-wall condition using UWB radar.
Moreover, the architecture effectiveness and advancement of
the multiscale residual attention network is verified.
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D. COMPARISON WITH STATE-OF-THE-ART METHOD

1) COMPARISON WITH THE SVM METHOD

To the best of our knowledge, only the team of [14] is
dedicated to research on novel and practical methods of
distinguishing between stationary humans and animals under
a through-wall condition using UWB radar for post-disaster
rescue applications. Thus, the method in [14] is chosen as the
baseline for the comparison with a state-of-the-art method.
In [14], twelve handcrafted features belonging to four cate-
gories were combined by the SVM method. These features
are listed in Table 6.

TABLE 6. Twelve handcrafted features in [14].

Categories Handcrafted Features

Standard deviation change rate of micro

Energy-corresponding vibration (StdCRMV)
features Energy ratio of the reference frequency band
(ERRFB)
Optimal Correlation Coefficient of Micro
Correlation coefficient- vibration (OCCMV)

corresponding features Change rate of correlation coefficient of
micro vibration (CRCCMV)

Mean of wavelet entropy of target signal

(MWE)
Standard deviation of wavelet entropy of
Wavelet entropy- target signal (StdWE)
corresponding features Mean of MWE in the OW window
(MMWEOW)

Ratio of wavelet entropy (RWE)

fisa
f3/a

Frequency-

corresponding features Width betweenf, ;4 and f; 4, (WOHMS)

Respiratory Frequency (RF)

According to the requirements of the feature extraction
procedures in [14], DataAF (y, n) are the outputs for the signal
preprocessing procedure, as shown in Fig. 3. In order to
maintain the correspondence with the data dividing method in
the comparison, five-fold cross-validation is used in dividing
the 250 samples of DataAF (y, n). This is performed by firstly
randomly dividing all samples into five copies with equal
numbers. Then, four of them are used as the training set while
the remaining copy is used as the test set each time until each
data copy is used as the test set. The comparison results are
shown in Table 7 and Fig. 15.

TABLE 7. Performance comparison results.

F1-score Accuracy
SVM with 12 Handcrafted Features 0.8140 0.8080
Multiscale Residual Attention Network 0.9064 0.9094

The F1-score and accuracy of the multiscale residual atten-
tion network were 0.0924 and 0.1014, respectively, higher
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FIGURE 15. Comparison results of normalized confusion matrix between
the multiscale residual attention network and SVM method with
12 handcrafted features.

than that of the SVM with 12 handcrafted. Thus, this validated
the ability of the network to significantly enhance multi-
classification performance. The lower performance of the
SVM may be attributed to its handcrafted features, a majority
of which were designed for distinguishing between stationary
humans and dogs, thereby making them unfit for distinguish-
ing between humans, dogs, cats, rabbits, and no target.

From the normalized comparison results of the confusion
matrix in Fig. 15, the proposed network has better distinguish-
ing rates for all kinds of targets than those of SVM. However,
for both methods, the distinguishing rate of cats is very low
(0.661 and 0.46 respectively), which can be due to the iron
material of the cat cage that affected the propagation of the
electromagnetic waves.

0.9064
09
+
0.8780 ®
&
‘5 08+
] 0.8050
T
k= 0Tt
0.6 " |=#%—Multiscale Residual Attention Network
—p— ResNet-34
4 Inception-V3
0.5
4 8 12 16

TW (s)

FIGURE 16. Performance comparison with two CNN models on test set.

2) COMPARISON WITH OTHER CONVOLUTIONAL

NEURAL NETWORKS

To further validate the novelty and advancement of the multi-
scale residual attention network, two CNN models are cho-
sen for comparison. They are Inception-v3 [31], [32], and
ResNet-34 [33], respectively. The above two models are rel-
atively new and have been demonstrate to have excellent
performance toward to many kinds of issues. The data for
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comparison are the same as those used in section V.B when
analyzing impact of slow-time dimension. The performance
comparison results are shown in Fig.16. TW widths of 4 s,
8 s, 12 s, and 16 s are analyzed. Performance of all the
three models have similar trends as the TW width changes.
They all obtain the highest F1-score when the TW is 12-s
wide, because a compromise will be reached at this point
as illustrated in Section V.B. The multiscale residual atten-
tion network can get a highest Fl-score value of 90.64%,
2.84% higher than that of Inception-v3 model, and 10.14%
higher than that of ResNet-34. These results indicate that
the proposed multiscale residual attention network has better
performance and novelty.

VI. DISCUSSION

The proposed multiscale residual attention network provided
an outstanding performance in distinguishing stationary
humans and common animals under a through-wall condition
using UWB radar. In particular, it outperformed the state-
of-the-art method using SVM with 12 handcrafted features
in [14]. Notably, there were no reports from other research
groups that employed deep learning in distinguishing sta-
tionary humans and animals under a through-wall condition.
There are still experimental setup-corresponding issues that
may be further considered for more practical applications. For
instance, in the following in-depth research, more realistic
scenario of search and rescue will be researched and more
investigation of the effect of changing locations, objects,
clutter, between the wall and the target will be implemented.

VIl. CONCLUSION

This study addressed the issue of distinguishing stationary
humans, dogs, cats, rabbits, and no targets under a through-
wall condition using UWB radar by proposing a novel mul-
tiscale attention network. This study is the first to use a deep
learning method in this application. 3 x 3 kernels, 5 x 5
kernels, and a residual attention learning mechanism are
integrated parallel to construct the overall architecture. In the
experimental setup, all targets are about 2.5 m from a 28-cm
thick brick wall. Then, an optimal input size is analyzed and
chosen to feed into the network. Input with a 32-point long
range window along the propagation time dimension and
12-s wide TW along the slow-time dimension are validated
to exhibit the best multi-classification performance with an
Fl1-score and accuracy of 0.9064 and 0.9094, respectively.
Particularly, the recall of human targets can reach a high
value of 0.983, which satisfies the requirement for rescuing
survivors in post-disaster scenarios. Next, the performances
of the three parallel components of the overall network archi-
tecture are analyzed by ablation studies, thereby validating
its effectiveness and superiority. Finally, the multiscale resid-
ual attention network is compared with three start-of-the-art
methods, including an SVM method that extracted twelve
handcrafted features, two new CNN models of Inception-
v3 and ResNet-34. The Fl-score of the proposed network
is 9.24% higher than that of the SVM, 2.84% higher than
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that of the Inception-v3 model, and 10.14% higher than that
of the ResNet-34 model. These comparison results indicate
that the proposed method is more suitable for the scientific
problem of this paper. Simultaneously, the effectiveness and
advancement of the multiscale residual attention network
are validated. In summary, the proposed multiscale residual
attention network satisfied the requirement for rescuing appli-
cations more practically with the reduced need for advanced
professional knowledge owing to its automated and excep-
tional feature extractor. We envision the implementation of
our proposed method in practical post-disaster rescue appli-
cations, such as earthquake rescue missions
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