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ABSTRACT Evolution has endowed animals with outstanding adaptive behaviours which are grounded
in the organization of their sensorimotor system. This paper uses inspiration from these principles of
organization in the design of an artificial agent for autonomous driving. After distilling the relevant principles
from biology, their functional role in the implementation of an artificial system are explained. The resulting
Agent, developed in an EU H2020 Research and Innovation Action, is used to concretely demonstrate
the emergence of adaptive behaviour with a significant level of autonomy. Guidelines to adapt the same
principled organization of the sensorimotor system to other agents for driving are also obtained. The
demonstration of the system abilities is given with example scenarios and open access simulation tools.
Prospective developments concerning learning via mental imagery are finally discussed.

INDEX TERMS Adaptive behaviour, affordance competition hypothesis, autonomous driving, explainable
artificial intelligence.

I. INTRODUCTION
This paper presents the architecture of an Agent for
autonomous driving that was developed in an EU Horizon
2020 Research and Innovation Action (Grant 731593,
Dreams4Cars). The organization of the Agent sensory-motor
system was conceived with a twofold goal, both inspired
by biological principles: a) to support learning in a
‘‘wake-sleep/dream’’ scheme, and b) to produce adaptive
behaviours – in the ethological sense –when in use for vehicle
operation (i.e., at the ‘‘wake’’ state) [1].

This paper focuses on the latter aspect, illustrating princi-
ples and good practices for designing a sensorimotor system.
The focus includes ideas and expedients that can also be used
with little effort with (most of) the path planning and control
methods currently in use. Throughout, we use Open Access
simulation tools, and prospective longer-term developments
are discussed in the conclusions

Specifically, the paper invokes several biological ideas (see
Section I-B2) which underpin adaptive behaviours in Nature,
including: topographic organization of motor space, robust
action selection and steering of agent behaviour via biasing
of the action selection. Many of these come together in an
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overarching scheme – the Affordance Competition Hypothe-
sis [2] – which we use as a guiding framework.

When these principles are used to organize an artificial
system, benefits similar to those seen in animals emerge such
as safe, natural, adaptive and robust behaviours. A number
of other desirable benefits, such as the ability to deal with
a hierarchy of intentions, prioritizing safety vs legality, and
explainable Artificial Intelligence, are also shown. Notwith-
standing this, we do not claim that the Agent presented here
is optimal; rather we emphasise a set of interrelated princi-
ples that can be adopted, together or separately, to enhance
artificial behaviour.

The paper theory is substantiated with several working
examples for unusual situations and/or scenarios with ran-
domness in the environment and in the behaviour of the
other agents. The examples and simulations tools are open
access, as part of the Open Data produced by the Research
and Innovation Action (Dreams4Cars) [3].

A. NOVELTY AND CONTRIBUTION
The novelty and contribution of this paper is a sensorimotor
architecture based on principles that are successful in Nature.
Among these, the topographic organization of encodings in
motor space, behaviours that are emergent from the com-
petition between affordable actions, robust action selection
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(the MSPRT algorithm) and selection biasing as a means
to prioritize behaviours (for safety/legal/comfort etc.). The
paper describes, with examples, both the overall system and
the individual principles to permit a modular adoption of
these ideas.

As far as we are aware, this is the first time that an engi-
neered system for self-driving cars has been based on the
large scale architecture of the human brain. Thus, we invoke
ideas contained in the affordance competition hypothesis [2]
that sensory input, processed by visual and parietal cortical
brain areas, provides action options or affordances for deci-
sion making by sub-cortical structures (the basal ganglia).
The algorithms for decision making are based on those pre-
viously used to model the basal ganglia [4]. As such, our sys-
tem brings together elements of sensory, motor and decision
making competencies found in the brain.

B. RELATED WORK
1) PATH PLANNING AND CONTROL
A large number of methods and variants for trajectory plan-
ning and control are known in the literature. Reviews may be
found in [5]–[9]. In addition, machine learning approaches
should also be mentioned, for example, those based on learn-
ing human driving, e.g., [10]–[12].

For the goals of this paper, only the aspects of this work that
are relevant for the efficient organization of the sensorimotor
system are reviewed here.

The first point to note is that almost all trajectory planning
approaches work by first producing a number of candidate
trajectories and then selecting the ‘‘best’’ one. To link with
our biologically inspired agenda, this two stage approachmay
be couched in terms of an initial step of action priming (can-
didate trajectories being established) followed by an action
selection (fixing one trajectory for execution). However,
as will be clarified below, the way in which priming-selection
is carried out can make a great difference in the effectiveness
of an agent behaviour.

Concerning trajectory generation (action priming), two
aspects that characterize the production of candidate trajec-
tories are completeness and computational efficiency. Com-
pleteness means that the space of possible trajectories is
entirely spanned, so that a safe trajectory is found if it exists.
Many trajectory generation methods work by sampling either
the physical (configuration) space or the control space. Too
coarse a sampling may miss finding scarce evasive trajecto-
ries in critical situations. On the other hand, computational
efficiency (software and hardware) limits the number of can-
didates that can be analysed at every iteration.

Highly dynamic situations (which often happen in critical
conditions) also pose challenges. Ideally the planning update
rate should be high and the planning latency should be low,
so that fresh plans that respond to unpredictable environ-
mental changes are promptly available, e.g., [13]. However,
for the execution of a given trajectory, only predictive control
schemes are surely compatible with continuous re-planning,

whereas other types of control (e.g., feedback and pursuit
controllers) may not work because new plans may typically
begin at the current vehicle state and thus cancel the instan-
taneous errors that is used in those control schemes.

Dealing with moving obstacles is also challenging: not
only because obstacle trajectories must be predicted but, also,
because they add one dimension (time) to the planning prob-
lem (a simple, but not complete, method that may be used,
e.g., [14], is that paths are first planned without considering
the obstacles and then the longitudinal dynamics is adapted
to the obstacle movements).

Regarding trajectory selection (action selection), the choice
of one trajectory in a pool of trajectories must meet multiple
objectives: safety, compliance with traffic rules, travel time,
comfort, energy efficiency etc. Often these objectives are
combined into an unique cost function. However objectives
may be better organised in a hierarchy of priorities. Thus,
safety should have the highest priority, including priority
over traffic rules (for example, a vehicle should be allowed
crossing solid lane markings if that is the only way to avoid a
collision). In many trade-off approaches, however, safety and
compliance with traffic rules are considered at the same level
as ‘‘hard’’ constraints; whereas only the others are considered
separately as soft goals, e.g., [9].

Finally, the choice of the ‘‘optimal’’ manoeuvre is often
carried out according to a ‘‘winner takes all’’ (WTA) method,
i.e., by selecting the manoeuvre that maximizes the weighted
optimally criterion. However this kind of selection may not
be ideal in case of uncertainties and noise, where more robust
action selection algorithms can be deployed to advantage.

2) ADAPTIVE BEHAVIOUR
Discovering and selecting effective behaviours is critical for
animal survival. Natural evolution has produced very efficient
and highly effective methods for such adaptive behaviour
and, by studying them, it may be possible to improve the
robustness and autonomy of robot behaviour too.

One fundamental idea is the notion of an affordance [15],
[16] which makes an intimate link between perception and
action. In affordance theory, perception is not thought of as
simply an elucidation of a set of abstract features describing
the environment. Rather, the job of perception is to identify
ways in which the animal (or agent) may interact with its
environment by pursuing an effective course of action. For
example, in the current context, a free space like a roadside
parking spot (Fig. 4), offers and affordance for the action of
driving into it and may, on occasion, elicit a possibly life
saving behaviour in order to avoid a collision.

Cisek has articulated a neuroscientifically grounded ver-
sion of affordances and actions in his Affordance Com-
petition Hypothesis [2]. A computational neural model of
affordance priming and selection, based on these ideas has
also been developed [17]. In this model, potential actions are
formed, simultaneously and in parallel, in pathways running
from sensory to the motor cortices; anatomically this com-
prises a dorsal processing stream in the brain (dorsal is the
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FIGURE 1. Example dangerous motorway situation. Objects might fall from the minivan. A human driver has the ability to predict the
possible event, mentally simulate possible object trajectories and elaborate mitigation strategies (keep increased distance while
preparing evasive actions). With current technologies an autonomous vehicles will not be able of such cognition abilities (note it is not
only a matter of perception). Hence, as a mitigation strategies, an automated vehicle should be able to react to a real falling object by
quickly elaborating as many viable trajectories as possible (including trajectories not strictly legal such as squeezing between the
lanes) in order to have the largest possible set of choices.

upper surface in primates). Potential actions are encoded as
patterns of neural activity, with activation strength reflect-
ing the value, or ‘‘salience’’ of the encoded action. Actions
then compete for taking control of the agent, with their
probability of success determined by these salience values.
According to Cisek, adaptation to dynamically changing
conditions occurs via ‘‘the continuous evaluation of alter-
native activities that may become available and continuous
tradeoffs between choosing to persist in a given activity
and switching to a different one’’ [18]. Interestingly for
us, there are experimental studies that support the interpre-
tation of driver behaviours in terms of selection between
affordances [19], [20].

The emergence of adaptive behaviours from the priming-
selection arrangement is also discussed in [21], which high-
lights how using a centralized selection mechanism encoding
action salience with a common scale (instead of a distributed
one such as proposed in [22]) realizes a common evaluation
metric that permits seamless extension of motor abilities via
learning of new action priming loops.

Concerning the sub-problem of the action-selection —
which of the many possible actions is gated to the motor
system— there also are several studies and biologically
grounded computational models [23], [24]. Further, these
neural models have been shown to be describable by deci-
sion making algorithms such as the the multiple-hypothesis
sequential probability ratio test (MSPRT) [4]. Under certain
conditions, the MSPRT allows optimal decision making with
noisy and uncertain signals. It should therefore be unsur-
prising that the brain has recruited such algorithms to guide
animal behaviour. The MSPRT is described in more detail
in Section II-D

Finally, action-selection via the competition of immedi-
ately available affordances may be ‘‘biased’’ by higher level
influences, thereby offering the opportunity of steering agent

behaviours towards long-term goals [25], and the exploration
required for action discovery [26].

C. A CHALLENGING SITUATION
We introduce the architecture using examples of desired
system competencies. Fig. 1 shows a motorway situation
harbouring a danger in which objects might fall from the
minivan.

A human driver would have the ability to predict this pos-
sible event, to mentally simulate possible object trajectories
and to anticipate mitigation strategies (e.g., keep increased
distance, prepare evasive actions, comfortably change the
lane).

Let us assume an artificial driver is not yet capable of
this level of prediction. However, we might request that —
if an object actually falls onto the road— the agent has at
least: 1) the ability of evaluating as many escape strategies
as possible. Furthermore, the falling object, depending of
its nature, might have irregular trajectory. So: 2) continuous
quick adaptations of the current manoeuvre may also be nec-
essary. Finally, it may happen that a collision-free trajectory is
not strictly legal; for example if left and right lanes were busy,
it might happen that fitting in the middle between two lanes
could avoid the accident. Thismeans that safetymust have the
priority even, to some extent, over legality and that: 3) motor
planning must be carried out to satisfy multiple hierarchical
objectives where lower priority objectives can be given up if
necessary.

II. AGENT ARCHITECTURE
A. FUNCTIONAL LOOPS
Fig. 2 shows the biological basis for the architecture
of the Agent, adapted from [2].1 Of course, we don’t

1For clarity, only the processing streams that are active during vehicle
operation (point b, Section I) are shown.
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FIGURE 2. The Agent architecture is adapted from [2]. It is made of a
primary sensorimotor pathway that primes many candidate actions in
parallel (red arrow). These potential actions are encoded, with their
salience, topographically arranged in the motor space (‘‘motor cortex’’).
The selection among the possible actions is carried out by means of a
particular competition process that is robust against sensory and motor
noise (green loop). An ‘‘action biasing’’ loop can steer action selection to
implement constraints like traffic rules, as well as long-term action
sequences. Once an action is selected, inverse models of the body
dynamics are used to resolve the action into the low-level motor
commands (blue arrow).

aim to model the brain architecture faithfully as a large
scale neuronal network; rather, we use the the scheme
in Fig. 2 to highlight a series of functionalities and their
interrelationships, whichmay bemodelled at a high level with
other technologies (we use regular computer code with neural
network modules).

We now describe this architecture in more detail, starting
with the action priming stream (the solid red arrow) and the
action selection loop (shown in solid green); the remaining
processing streams will be discussed later.

In the human brain the action priming stream occurs in the
dorsal regions of cortex, and comprises a pathway running
form the sensory cortices (a in the figure) to the motor cor-
tices c. Of course, the human sensorimotor system is more
complex than the simple unidirectional data flow depicted by
the arrow: other pathways are involved, the flow is not simply
unidirectional (as indicated by the dashed red arrow in Fig. 2),
and information is compressed and expanded by convergence
and divergence in the neural pathways [27].

As noted earlier, we conceive of the action priming path-
way as computing the salience values of candidate trajecto-
ries (the salience is obtained via learned perception-action
associations, without evaluating the trajectories as an inter-
mediate step; see Section II-C4).

Turning to action selection, in the human brain there is an
action selection loop, at the heart of which is a sub-cortical
brain system of interconnected nuclei called the basal gan-
glia [24]. The basal ganglia are evolutionary old and common
to all vertebrates, reflecting the fundamental nature of the
behavioural problem of action selection faced by all animals.

As noted earlier, time-efficient decision-making equivalent to
the biological solution can be implemented with the MSPRT
algorithm (Section II-D1).

The basal ganglia are also a locus of learning – enabling the
selection of new actions, and re-emphasising the importance
of existing ones [26]. In this way they offer a mechanism for
influencing decision making, effectively steering the agent
behaviour for long-term rewards [25] (Section II-E).

B. ORGANIZATION OF THE ACTION SPACE:
THE ‘‘MOTOR CORTEX’’
The processing streams in the brain described above have the
critical property of dealingwithmany actions and affordances
in parallel. Further, the representations of the relevant per-
cepts and actions occurs in an ordered way with similar items,
and features therein, being encoded in proximity to each other
in the neural tissue. This notion of topographic organization
is found across several brain structures [28]–[30], among
which are the sensory and motor cortices referred to in Fig. 2,
a and c, respectively. The use of topographic organisation
has also found its way into abstract neural networks where,
for example, the topographic organization of the visual cor-
tex had been one inspiring idea of modern convolutional
networks.

We adopt the notion of topographic organization of the
motor cortex to the current context of driving, in the scheme
given in Fig. 3 (bottom). Here, the salience of primed actions
are arranged in a two-dimensional space corresponding to the
instantaneous lateral and longitudinal control.

This arrangement carries a number of benefits that are
not easily obtained when the pool of actions is not arranged
in this way. To our knowledge, the first time topographic
organization had been used for artificial ‘‘codrivers’’ was
in the FP7 InteractIVe project ( [31], Figure 7). The same
organization has been used in FP7 AdaptIVe and improved
in H2020 Dreams4Cars. We may, however, find a prelude
of this idea in the organization of ALVINN [32] where an
array of output neurons is used to topographically encode
the steering angle control of an autonomous land vehicle.
ALVINN is, also, relevant as an example of neuralised senso-
rimotor system different form those of Section I-B1 and more
conceptually similar to this paper. Topographic organization
and related action encoding has, also, relation to dynamical
systems theory of behaviours [33], in particular for what
concerns neural field dynamics and behaviour representation.

The notion of topographic organization is better clarified
by means of the example in Fig. 3, which presents a situation
with three legal-lane distinct affordances: a, remaining in
the current lane, b, turning right and c, changing lane to the
left. For each of these legal-level intentions, the agent could
elaborate an infinite number of trajectories, as exemplified
with the bi for the right turn case (of course equally numerous
trajectories also exist for lanes a and c, but they are simply not
shown). There may also be non-legal, but physically feasible,
intentions that basically correspond to using the entire road
surface, e.g., entering the right road in the opposite lane.
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FIGURE 3. Topographic organization of the motor space. The salience of
each available action is reported in the ‘‘motor cortex’’, which is the
two-dimensional space representing the instantaneous lateral and
longitudinal control. Hence, such map encodes the value of choosing one
particular combination of lateral/longitudinal control at any time.

The control space of a vehicle has two dimensions, corre-
sponding to lateral and longitudinal control. So, in order to
produce one trajectory, the agent must elaborate two func-
tions of time: the longitudinal control j(t) and the lateral
control r(t). For a given intention, not all trajectories have
the same cost though. Some – namely the smoothest ones
– are easier to produce and less prone to the risk of loss
of control and out of lane/road deviations. One could, for
example still take the right turn by abruptly steering to the
opposite direction for a while and then recovering with a
carefully controlled steering action to the right, for example
implementing b’. However, this would be very difficult to
execute (some could even be physically unfeasible).

For every trajectory γ , generated by a single choice
{j(t), r(t)}, a scalar functional V (γ ) can be defined to rep-
resent the ‘‘value’’ of that particular trajectory (see also
Section II-C).
To model different intentions, restrictions on the admis-

sible trajectories γ can be set. For example, the trajectory
for lane change intention must stay inside the current and
destination lane and terminate nearly aligned with the centre
of the destination lane (e.g., Fig. 4, c, green area). Intentions
are hence modelled with admissible sets gi for γ (e.g., γ ∈ gi
with gi like a, b, c, d in Fig. 4).

FIGURE 4. Modular parallel action priming. In a situation where there
may be several alternative goals (possibly organised hierarchically),
action priming can be parallelised, i.e. by overlapping the salience of each
goal evaluated individually.

Since the agent is primarily concerned with selecting the
current control {j(0) = j0, r(0) = r0} (in adaptive behaviour
future controls can be modified later), a definition of salience
as a means to express how good the choice of {j0, r0}may be
in relation to intention gi, can be given as follows:

sgi (r0, j0) = sup (V (γ )|r(0) = r0, j(0) = j0, γ ∈ gi) . (1)

This means that the salience value of the instantaneous choice
{j0, r0} for intention gi is that of the optimal γ among all
the trajectories beginning with {j(0) = j0, r(0) = r0} and
belonging to the subset gi, which models the intention.
It is not difficult to recognize the similarity with Rein-

forcement Learning, where sgi (r0, j0) is the Q function esti-
mating the future reward for choosing action {j0, r0} at the
current state. However, there are as many reward functions
as the number of goals/intentions gi, possibly organised
hierarchically.
Our ‘‘motor cortex’’ therefore encodes control actions as

being a two-dimensional array of discrete samples of the
control space. It is therefore analogous to the neural structure
in Fig. 2, c, and similar to the output neural array of ALVINN.
The value stored in the motor cortex array is sx(r0, j0),

where x may be either one individual goal or the union
of more (see next section). The discretization is typically
not uniform: finer in the centre of the motor space, where
minute precise control is desirable, and coarser at the edge.
In Dreams4Cars this motor cortex array has size 41×41 (ele-
ment [21, 21] corresponds to the null action), which means
that the agent at the lowest-level chooses among 1681 possi-
ble actions, organized in a hierarchy of intentions gi.

C. ACTION PRIMING
The instantiation of possible actions corresponds to the com-
putation of the salience sgi (r0, j0), i = 1, . . . ,N , where N is
the number of affordances.
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1) MODULARITY AND PARALLELIZATION
The process can be parallelized as shown in Fig. 4. Safety
is the first concern (panel a): the vehicle must stay in the
road and, if necessary, drive over the lane markings or over
other extra-lane room. The salience is computed for γ ∈
a by means of (1), as shown in the small inset sketch of
motor cortex to the right of the main panel (Fig. 4). Besides
remaining on the road, the agent may have three legal inten-
tions: b, lane following, c, lane change and d, stopping in the
parking spot. For each of them, the salience can be computed
in a similar manner (γ ∈ b, c, d), producing motor cortex
activation patterns as shown in the central column of motor
cortical sketches Fig. 4.

Note that, quite generally, intentions correspond to strips of
possibly variable width (the simplest way to know the strips
is if a digital map describing the road at the level of lanes
is available). Hence, a module that computes the salience
for a generic strip is sufficient for generating the individual
activation of each intention. With modularity, the complexity
of action priming is decomposed into developing simpler
functions that prime individual goals, which can be verified
in isolation.

A global salience function can then be obtained via aggre-
gation of the individual ones, as shown in Fig. 4, right,
or Fig. 3, bottom. One possible aggregating function is a
weighted max operator, i.e.:

s(r0, j0) = max(wisgi (r0, j0), gi ∈ affordances). (2)

where weights wi may serve to steer action selection as
explained in the following.

2) SCALABILITY
The encoding of action values with salience in the motor
cortex implies scalability: new action possibilities would be
enacted by new branches in Fig. 4 and appear as new active
regions in the motor cortex. Encoded with the same salience
scale, they would be immediately available for competition
with the others and for selection [21].

3) HIERARCHY OF INTENTIONS
Legal intentions are assigned higher salience, symbolised by
darker green tones, for example by using wb ≈ wc ≈ wd ≈ 1
and wa � 1. In this way the agent will first seek to meet
one action among b, c, d and only if no solution exists it will
use one action in a. This means that only if no legal action
is available the agent will resort on choosing a non-legal
physically feasible action (remaining in the road) as a last
resource.

4) COMPUTATION OF THE ‘‘MOTOR CORTEX’’:
DECLARATIVE PREDICTIONS
The computation of the salience by means of (1) can be
carried out, in principle, with the trajectory planning methods
mentioned in Section I-B1.
For this, (in principle) for every intention gi the motor

space {r0, j0} must be sampled with sufficient density and,

for each {r0, j0}, an optimal trajectory γ , maximizing func-
tional V (γ ) that represents the optimality criteria such as
those mentioned in Section I-B1, must be found. We are,
in particular, interested in evaluating the maximum of V (γ ),
which is the value of the choice {r0, j0} for intention gi,
i.e., the salience sgi (r0, j0).

2 However, one should note that
this process implies that many optimality problems must be
solved inline simultaneously, one for every discrete choice
of {r0, j0} and for every intention gi yielding a correspond-
ing large number of optimal trajectories that are used for
computing their values; all together computing sgi (r0, j0).
Only one trajectory will be executed though. Evaluating so
many trajectories in every detail for the purpose of extracting
their values (function sgi (r0, j0)) is not very efficient, albeit
there may be several means to accelerate and parallelize the
process.

In the dorsal stream (Fig. 2), conversely, the salience of
the affordable actions is not evaluated via detailed elabo-
ration of all possible trajectories. Rather associations are
learned that link perceived affordances to estimates of their
value. These allow bypassing low-level detailed and compu-
tational demanding simulations (procedural simulations) to
carry out faster and more abstract predictions (declarative
predictions) [34]. One way to replicate this process, and
accelerating the inline evaluation of sgi (r0, j0), is training a
functional approximation (e.g., a neural network) with exam-
ples generated offline by means of one trajectory planner as
above. The neural network approximant will learn mapping
the lane geometry to the activation pattern (salience). One
early example of this was given in [35]. Another example
of training neural network approximants may also be found
in [36]. Since the generation of the training set is carried out
offline, there are no real-time concerns and the number of
training examples can be very large. At inference time the
trained network will short-cut procedural computations quite
quickly (if carefully crafted) and operating in parallel [36].

5) INHIBITORY CIRCUITS (OBSTACLES)
Obstacles are treated as space-time locations to be avoided.
Themapping between these space-time regions and themotor
space is (with some adaptation) derived from the same func-
tions used for mapping lane regions into humps of activi-
ties. The main difference is that the undesirable space-time
locations are inhibited, essentially zeroing the salience for
high collision probabilities (total inhibitions), and partially

2Of course, for every intention gi one might directly seek the
intention-specific optimal trajectory without discretizing the motor space
{r0, j0}. This would return the optimal control {r0, j0} of each intention.
However in this way the selection of one action (the optimal {r0, j0}) is
entangled with action priming and the only remaining choice would be
among the intentions gi. We seek instead to completely separate action
priming from action selection so that the optimal {r0, j0}may be chosen with
finer discretization and include obstacle inhibitions (see next sub-section).
Following the competition between excitatory and inhibitory affordances,
if necessary {r0, j0} may depart from the local optimum of one single
intention being attracted or repelled by others gi, see example Section III-D.
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decreasing the salience where the probability of collision is
secondary.

FIGURE 5. Modular parallel obstacle inhibitions. Inhibitions caused by
obstacles have a second level of modularity. Besides the computation of
individual obstacles in parallel, each obstacle can be resolved into a list
of future space time locations which can be processed in parallel by a
module that inhibits generic space-time regions.

The computation of the inhibitions may be broken down
into a further level of modularity: a) prediction of the obstacle
trajectory (Fig. 5, top) and b) inhibition of space-time regions
(bottom). Hence, in case of malfunctions one can diagnose
whether the prediction of the obstacle trajectory was incorrect
or whether the inhibitions were incorrectly computed [36].
The idea of separating desirable (mostly static) and undesir-
able (mostly dynamic) space-time regions via excitatory and
inhibitory circuits is one way to solve the problem of trajec-
tory planning with moving obstacles, which is otherwise very
difficult to compute simultaneously and an often recognized
hindrance for traditional trajectory planning.

In the example of Fig. 5 the choice between actions a
and b depends on how much a is inhibited by the obstacle.

The Agent will choose to change lane in response to a cut-in
manoeuvre that requires significant speed reduction.

D. ACTION SELECTION
The action values stored in the motor cortex are readily
available for action selection. The most obvious selection
criterion is the ‘‘winner takes all’’ (WTA), i.e., choosing the
action with the maximum instantaneous value.

1) ROBUST ACTION SELECTION: THE MSPRT ALGORITHM
In presence of noise the WTA criterion may not be the
best option. An instantaneous snapshot of salience maps
in the ‘‘motor cortex’’ may not reflect the distribution of
mean values, derived by accumulating ‘‘evidence’’ over
small periods of time, and which may offer the basis
for a better decision. This problem of decision mak-
ing using noisy evidence is a general problem in many
domains and one approach to its solution is supplied
by the Multi-hypothesis Sequential Probability Ratio Test
(MSPRT) [37], [38]. This choice of algorithm is supported the
observation that the biological decision making mechanism –
the basal ganglia – appears to have strong connections with
the MSPRT [4].

The MSPRT, can be shown, under certain circumstances,
to carry out time-optimal decision making with noise in
the sense that it gives the shortest time to decision, given
an acceptable error rate in making such decisions (to guar-
antee correct decision on every occasion would require
evidence be accumulated indefinitely). We use an adapta-
tion of the MSPRT (Algorithm 1), suitable for use with
our action salience maps, and for online working with
non-stationary inputs in a similar way to that described
in [39].

The adapted MSPRT algorithm works by accumulating
evidence for each action over time (CurrentChannels
appended to StoredChannels in Algorithm 1), and find-
ing the negative log likelihood that each channel is drawn
from a distribution with a higher mean than the other channels
(vector NegLogLikelihoodChannels in Algorithm 1).

The algorithm may be implemented at the level of the
aggregated motor cortex ((Eq. 2), in which case the compet-
ing channels (CurrentChannels) are the distinct values
s(r0, j0) of the salience array resulting from the discretization
of the space r0, j0 (see also, [40]).
The algorithm can also be used at higher intentional levels:

for example the weighted individual activation patterns of
each intention (wisgi (r0, j0)) may be first summarised into
scalar channels Si by means of an appropriate aggregation
operator. In this case the competition occurs among the inten-
tions (the CurrentChannels are the Si).
The competition between channels is enacted by the scalar

term Log(Total(Exp(StoredChannels))), added to all
NegLogLikelihoodChannels channels at each itera-
tion. The Total operator works across the temporal dimen-
sion, i.e., by summing the CurrentChannels recorded
in StoredChannels list. Once the log likelihood crosses
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Algorithm 1MSPRT Algorithm
Data: CurrentChannels, Threshold, Deadline, ForgetTime
Result: Selected Action (ArgMinLikelihood and MinLikelihood)
Start with empty StoredChannels;
while Decision not yet made do

StoredChannels← Append(CurrentChannels) // store salience vectors;
AccumulatedChannels← Total(StoredChannels) //Total across list (temporal total);
NegLogLikelihoodChannels←− AccumulatedChannels + Log(Total(Exp(StoredChannels)));
MinLikelihood←Min(NegLogLikelihoodChannels);
ArgMinLikelihood← ArgMin(NegLogLikelihoodChannels);
if MinLikelihood < Threshold then

forget frames before ForgetTime in the StoredChannels;
Return ArgMinLikelihood and MinLikelihood // selection before deadline;

end
if Deadline is elapsed then

reset the StoredChannels;
Return ArgMinLikelihood and MinLikelihood // selection after deadline;

end
end

the given Threshold, the action becomes selected. The
Threshold has to be tuned such that some predetermined
error rate is permitted. If the threshold is not passed before
a given Deadline, the algorithm can be stopped by taking
the most likely optimal choice accrued so far.

2) TRAJECTORY INSTANTIATION
Once an action {r0, j0} is selected, one can propagate the
selection backwards in the dorsal stream finding (symbolised
by the dashed red arrow in Fig. 3), for example, which
object, and at which future time, is limiting the move-
ment (for example Fig. 5); or which is the intended lane
(Fig. 4). Then, (only) the trajectory to be actually used
is computed with the necessary details and forwarded to
the motor system (Fig. 4, blue arrow). This idea is also
consistent with the architecture proposed by Meyer and
Damasio [27], in particular where backwards signalling is
foreseen.

3) MINIMUM COMMITMENT PRINCIPLE
The selection of one instantaneous action {r0, j0}, when
propagated backwards in the dorsal stream, often identifies
multiple goals that are compatible with {r0, j0} (albeit one
is the strongest). For example, in Fig. 3 the intention of
lane keeping (a), and the possible intention of changing
lane later (c’) map onto the same instantaneous control.
Hence, with selection of the peak a in Fig. 3, bottom,
the agent is also ‘‘keeping the door open’’ for c’. Choos-
ing between a and c’ does not require an immediate selec-
tion (at the level of {r0, j0}) and, with the choice of the
instantaneous action the agent carries out only the mini-
mum commitment possible: i.e., it chooses all the trajec-
tories that share the same control with a, and excludes
only c and b.

E. INTEGRATING TRAFFIC REGULATIONS VIA
BIASING ACTION SELECTION
So far, the behaviours emerge from a proper architecture and
the physical awareness of the environment. However, driving
is also a matter of regulation (for example, one should not
cross solid lane markings). The question of how to teach the
traffic rules to an artificial driver may be solved, once again,
with biological inspiration [25]. In particular, we exploit the
idea that behavioural choice can be steered by biasing low
level, motoric action selection with higher level goals (Fig. 2,
‘‘higher-level action biasing’’ loop). In this way, modules that
implement rules can act on the agent by specifying desirable
and undesirable space-time locations. The high level rules
are used to bias individual intentions (e.g., multiplying the
individual activations (after inhibitions) sgi (r0, j0) by gainswi
before combining the aggregated motor cortex as in (2).

An example is given in Fig. 6, where the intention of
remaining in lane may be artificially strengthened (green,
peak a) whereas the possibility of turning right may be artifi-
cially weakened (yellow, peak b). This way, all three possible
actions are passed to the selection process, but a is recom-
mended and b discouraged. If, for example, an obstacle were
severely inhibiting the recommended lane keeping intention
a, the Agent would resort to c and then b with this priority
order. The biasingweightsmay be hand tunedwith simulation
(the process is not very critical) or the weights may be learned
within a low-dimensional Reinforcement Learning problem.

1) BIAS VERSUS LOWER-LEVEL VETO
Biasing, as described above, can be used to program traffic
rules by strongly recommending or discouraging particular
actions. However, notice that biasing does not completely
preclude an action, which may still be executed if its pre-bias
salience is high enough; a situation which might occur in
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FIGURE 6. Action biasing principle. Action selection can be steered
towards long-term goals by weighting the salience of individual
intentions; for example increasing the salience of a and decreasing the
salience of b (centre). Notably, the process of action biasing is safe
because inhibited actions remain un-selectable (bottom).

safety critical situations such as collision avoidance. This idea
is developed further in Section III-C.

However, action biasing can only work in the space of
safe and possible actions. That is, if part of the action space
is inhibited then, whatever the biasing weights, no action
may be performed in that sub-space. No completely inhibited
action can ever be selected; the main sensorimotor loop will
not implement recommendations that correspond to unsafe
actions, a feature we call the ‘‘principle of lower-level veto’’.
This relieves the need for testing safety of the higher-level
biasing loops.

F. ADDITIONAL IMPLEMENTATION DETAILS
This paper has focused on sensorimotor principles in order
to describe the whole picture. Many details that could not be
fitted into the main narrative here can be found in the public
deliverables of the Dreams4Cars Research Action [1].

III. OPEN ACCESS DEMONSTRATIONS
This section presents four different examples that, together,
demonstrate the flexibility of the Agent architecture, which
has been explained above from a principled/theoretical point
of view.
A) The first example demonstrates complex adaptive and

explainable behaviours emerging from the affordance
competition principle; highlighting, in particular, the
importance of the topographic organization of the motor
cortex (Sections II-B to II-D).

B) The second example demonstrates robust action selec-
tion by comparing the commonly used Winner Takes All
(WTA) selection criterion versus the Multi-hypothesis
Sequential Probability Ratio Test algorithm (MSPRT)
(Section II-D); in particular showing that the latter yields
stable decisions at the cost of a minimal self-adapted
increase in the decision time.

C) The third example demonstrates higher-level action bias-
ing (Section II-E); in particular showing increased driving
efficiency obtained via proactive steering of low-level
action-selection.

D) The final example demonstrates hierarchical action-
selection producing adaptation of the Agent to rapid
unexpected events by, if necessary, forcing the traffic
rules and choosing the lesser evil; highlighting, also,
the importance of dense topographic organization of the
motor space (Section II-B).

The examples (with the exception of the second, that
includes real data experiments and a different simulation
platform) may be found in the Open Data repository [3],
where they can be reproduced or played. The environ-
ment used for these is the OpenDS open source driving
simulator3 [42].

A. EMERGENT ADAPTIVE BEHAVIOURS
The example is given in Fig. 7, which presents the case of
the Agent car (the black car) driving in a very wide lane,
with two (red) vehicles —one is not visible yet in the camera
view— closely following on both sides (time: 6.0 s). A stand-
ing (red) car is also present in the centre of the lane far ahead,
which is also not visible yet.

The frames show a camera view (left) and the density plot
of the motor cortex values (right). The dark blue circle is
the selected action. The distinction between green and white
is made to mark the longitudinal controls that comply with
the speed limit. So, any choice in the green area does not
violate the speed limit but, of course, the fastest option is
on the boundary between green and white. For clarity the

3https://opends.dfki.de/
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FIGURE 7. Example of emergent behaviours. The motor cortex activation is shown next to the camera view for different moments of the simulation. The
inhibited (red/yellow for total/partial inhibition) and affordable actions (green) and the agent choices (blue circle) are easily explainable (see text for
more comments), generating an, overall, complex behaviour that corresponds to what might be commonly expected.

decrease of salience laterally, due to the lane limited width,
is not shown. In the camera view, the pink line visualizes the
instantaneous selected trajectory, which is generated follow-
ing Section II-D2.

At time 6.0 s the inhibitions caused by the nearby cars (the
right one is not visible yet in the camera view) appear in
the motor cortex (red is total inhibition and yellow is partial
inhibition). The Agent is travelling straight and hence its
choice (blue circle) is not affected. Nonetheless one could say
that the Agent is ‘‘aware’’ of the presence of the two vehicles
because its motor space ‘‘reports’’ that some actions are no
longer possible.

At time 11.5 s the far vehicle ahead is detected causing
an inhibited region that overlaps with the previous current
choice. At time 12.0 s the agent finds that it is possible to
keep running at maximum speed by steering to the right. That
means that the Agent ‘‘thinks’’ to pass on the right of the
far obstacle and ahead of the vehicle that is following on the
right.

This illustrates how the agent decisions can be explained.
We, for example, know that if such an option was to be
discarded from the beginning, a greater safety gap (yellow
inhibition) should have been taught to the agent.

At time 13.3 s the option for passing on the right and
ahead of the following vehicle is no longer safe enough (dark
yellow), thus the agent opts for remaining in the centre of the
lane and reducing the speed according to the distant obstacle.
However, as the Agent reduces its speed a gap opens on the
left side.

At time 16.9 s the agent makes the decision of passing on
the left behind the left vehicle. Between time 16.9 s and 19.5 s
we can see how this intention is maintained (no need for
further revising it) and the manoeuvre that follows is exactly
what could be expected. Eventually, after the overtake has
been performed, at time 22.2 s the agent decides to return to
the lane center.

Overall, the example shows the emergence of complex
adaptive behaviours from basic principles, and from the way
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the sensorimotor architecture is organized (there were no
rules programmed, as such). The agent decisions can always
be clearly explained, and it is also clear what could be tuned
for modifying the behaviours.

1) RELATION TO AGENTS WITH
PROGRAMMED BEHAVIOURS
The same situation was run using an agent with rule-based
behaviours that could be transparently accessed. Here,
the agent remained stuck behind the stopped vehicle, as if
it were unable to make use of the unusual width of the lane;
or as if the stopped vehicle were schematically blocking ‘‘the
(entire) lane’’. Another shortcoming was found earlier in a
scenario consisting of a pedestrian incorrectly crossing the
road when the traffic light turns red for the pedestrian and
green for the car, as shown in [43].

Nonetheless, when comparing agents with emergent
behaviours – like this one – to agents with programmed
behaviours – for example implemented with finite state
machines – our examples cannot be generalised to say that
the latter necessarily underperforms. First, the mechanism of
the choice among different alternatives (albeit perhaps more
schematic) also exists in more traditional designs as men-
tioned in Section I-B1, and so they also exhibit some degree
of adaptive behaviour. Second, with programmed behaviours
the outcome depends on which behaviours have been imple-
mented. If some shortcoming is detected the program can be
updated – for example new rules or states and transitions can
be added.

Hence, we argue that, while in principle a given ability
can be obtained with both approaches, the difference is in
the effort needed for development. We argue that the devel-
opment of agents that are programmed in detail is going to
be more laborious, and requires us to identify every possible
situation and identify how to operate therein. Conversely,
an agent with emergent behaviors tends to be more robust,
producing correct behaviours more often. Debugging is nec-
essary also for the latter, but occurs more at the level of testing
the implementation of principles like correctly computing
inhibitions, correct biasing etc..

B. ROBUST ACTION SELECTION: WTA VS MSPRT
This scenario, shown in Fig. 8, is studied with IPG Car-
Maker; an industry-standard simulation tool that was used in
Dreams4Cars to create a virtual validated model of one real
test vehicle (a Jeep Renegade). Since the overtake scenario
was really tested on the Jeep Renegade (WTA only) and
reproduced in simulation with CarMaker (both WTA and
MSPRT), hence the example is presented with CarMaker
instead of OpenDS data.

The scenario realizes one situation where two actions
become equally salient, which is ideal to evaluate the effect of
noise in action selection. Thus, re-entering from the left lane
after an overtake manoeuvre may, at some point and condi-
tions, form two almost equivalent choices (Fig. 8, point 2).
The conditions are here explained: one way for returning to

FIGURE 8. Returning to the right lane after an overtake. At point 2,
actions a and b have the same salience. With noise, the WTA criterion
may cause oscillations, which are not produced with MSPRT.

the right lane may be to bias the right lane choice (Fig. 8, b)
according to Section II-E. The bias can be set in advance,
such as, e.g, before point 2 in Fig. 8, or may even be let set
forever. In both cases the lane change will occur only as soon
as a collision free manoeuvre is available (i.e., at point 2) and
not earlier (lower-level veto). Advance biasing is thus a way
to induce right lane changes to occur as early as possible.

FIGURE 9. Returning to the right lane after overtake. WTA criterion causes
oscillations, which are not seen with MSPRT (the oscillations of the
steering rate control happening before the obstacle location for WTA).

Fig. 9 compares the steering rate4 r0 forWTA andMSPRT.
At point 1, travelled distance 86m, a stopped obstacle is
detected for the first time 100m ahead. Of the two options,
stopping behind the obstacle (dashed arrow, Fig. 8) immedi-
ately has considerably less value than overtaking (solid line
arrow). In this case the lane change is by far the winner action
and no competition occurs in practice with the stop option.
The requested steering rate (that represents the selected
action r0) jumps immediately to approximately 0.02m−1s−1

which corresponds to the lane change manoeuvre. The exe-
cuted steering rate follows with a slight delay due to the
steering actuator lags and to the vehicle dynamics lags (it is
the requested steering rate that represents the selected action).

4The ‘‘steering rate’’ is defined here as the rate of change of curvature of
the vehicle trajectory.
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A different situation happens at point 2. When this point
is approached the right lane affordance becomes gradu-
ally stronger until, at point 2, travelled distance 154m,
the salience of the action b slightly tops the salience of a.
The WTA selection (Fig. 9, ‘‘Requested’’ line on top) occurs
as soon as b tops a and the execution follows with the usual
delay. However, because of noise in the perception and the
motor control, once themanoeuvre is initiated, there are oscil-
lations in the obstacle inhibitions strength and fluctuations of
the salience of b compared to a, which revert the decision
as shown with the fluctuations in the requested and executed
steering rate. These oscillations last until the obstacle is
finally passed. The MSPRT selection is shown in (Fig. 9,
bottom). In this case, since there is a competition between two
almost equally strong affordances a and b, the MSPRT algo-
rithm delays its decision until there is enough evidence that b
is the winner action. The delay (the drop of the ‘‘Requested’’
line) is not severe: about 100ms to 150ms as marked by the
slight distance between grid line at 154m and the drop of
the orange line in the chart. On the other hand the decision
is stable (the steering rate returns slight positive when the
trajectory must be straightened to enter the destination lane).
Note also that at point 1, when there was no doubt about
the choice, MSPRT was almost as fast as the WTA. In this
example MSPRT adapted the decision time.

C. (Proactive) ACTION BIASING
For this demonstration, we considered a three lanes motor-
way scenario with stochastic traffic. The comparison takes
place by running the same situations with two versions of
the agent: with and without biasing the selection of lanes.
The objective is to show that, with proper biases, the agent
develops more effective longer-term behaviours and, also,
complies with the rule of using the right-most free lane, when
available.

A total number of 100 simulations were performed, 50with
and 50 without the lane selection biasing. Every simulation
corresponds to driving along a 5 km straight section of the
motorway. The traffic is initialised by placing a random num-
ber of vehicles from a discrete uniform distribution between
30 and 70 vehicles. Each vehicle is placed on a random
lane (left, centre, right) at a random distance drawn from a
uniform distribution between 50m to 1750m ahead of the
agent’s vehicle (avoiding traffic vehicles overlaps). The vehi-
cles on the left lane are assigned a random velocity between
100 km/h to 110 km/h (uniform distribution); on the centre
lane between 80 km/h to 90 km/h; on the right lane between
50 km/h to 70 km/h. The ego vehicle target speed is set to
140 km/h such that it will overtake to run faster whenever
the possibility occurs.

1) NO BIASING
In this version of the Agent, the salience of the afford-
able lanes is not biased (the weights wi in Eq. 2 are the
same for all the three lanes). The agent will remain in its
lane until a leading vehicle begins inhibiting the free-flow

longitudinal control (such as, e.g, Fig. 6, bottom). When the
slow-down caused by this inhibition becomes large enough,
a nearby lane, either left or right, will be selected if less
inhibited (for this to happen the slow-down cost must exceed
the lane change cost). Hence the Agent has to first enter a
car-following penalising situation before feeling the need for
a lane change.

2) BIASING LANE SELECTION
In this version, lane selection is biased according to the
following logic:

• if the right lane is not slower than the Agent target speed,
then the right lane is biased;

• else, if the current lane is slower than the target speed and
the left lane is faster, then the left lane is given priority.

The speed of one lane is determined by the slowest vehicle
travelling in the lane segment from the current position to
a given distant horizon. This may include far vehicles that
are not yet causing car-following. The logic is proactive,
anticipating lane change before car-following conditions are
reached. The speed is topped by the speed limit of the lane.
If the lane is free, the lane’s speed is the speed limit.

With the first criterion, the ego vehicle gradually moves to
the rightmost lane if that does not reduce its travel time. With
the second criterion, the ego vehicle moves to a left faster lane
if that improves its travel time.

One important remark is that the evaluation of the crite-
ria can be carried out on a simple schematic instantaneous
situation without needing precise evaluation of objects tra-
jectories. The criteria, in fact, produce only priorities for the
action selection. For example, if the criteria set the priority
for a lane change, but there is a vehicle cutting in, the choice
will be rejected because the obstacle will be inhibiting the
lane salience.

Another remark is that these criteria, as formulated above,
permit passing on the right. This may/may not be allowed
depending on the particular road and highway code (prevent-
ing passing on the right would require additional criteria).

3) RESULTS
Table 1 shows: a) the percentage of the time spent in the
car-following condition, b) the mean time spent in one lane
between lane changes and c) the average travelling velocity.
Biasing yields a reduction of 32% (from 74.5% to 50.5%)
of the car-following time, which is obtained with more fre-
quent lane changes (from 31.9 s down to 17.9 s between
lane changes) and an higher average speed (from 96.7 km/h
to 109.5 km/h). In evaluating the latter, one must consider
that the leftmost lane is populated with vehicles travelling at
speeds between 100 km/h to 110 km/h: the mean travelling
speed is thus the average between car-following conditions
and the occasionally faster free-flow conditions.

The vehicle velocity, per lane, is shown in Fig. 10 and
Fig. 11, respectively for the ‘‘bias’’ and no ‘‘bias cases’’.
So, in Fig. 10 the bottom sub-chart (red, right lane) shows the
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TABLE 1. Highway simulation scenario results.

FIGURE 10. Lane selection with proactive bias (‘‘bias’’ case). Velocity
profiles of the 50 simulations. The speed of the vehicle is represented in
the sub-chart of the lane where the vehicle is located. From top to
bottom: the left, centre and right lanes are represented with blue, green
and red respectively. The profiles on one lane are interrupted where the
vehicle changes lane.

vehicle speed in the 50 simulations when the vehicle was in
the right lane. One can notice a large number of cases where
the speed drops from 140 km/h to 50–70 km/h. These are
transitions from free flow to car-following, when a leading
vehicle is approached. The car-following condition does not
last much: as soon as it is possible, the car changes to the
central lane (the speed profile continues in the middle lane
chart, green). Often, the lane change happens already during
the slow down phase, before entering the constant speed
car-following condition. In only one case (at about 4500m),
the vehicle remained trapped in car-follow for some time. The
middle lane chart shows the acceleration phases of the vehicle
coming from the right lane (short traits below 50–70 km/h as
well as further acceleration to 140 km/h when the lane is free.
Notice that the vehicle never remains in car-following in the
middle lane, because it has twice lane change opportunities
(either to the left or to the right). The left lane chart shows
accelerations from the vehicle coming from the middle lane,
as well as transitions from full speed down to the 100 km/h to
110 km/h traffic speed. In this lane the vehicle remains often
trapped behind the fast traffic. The ‘‘no bias’’ case (Fig. 11)
shows a less efficient behaviour that is produced without
the proactive promotion of lane changes. In particular, one
can notice that the ego vehicle remains easily trapped in the

FIGURE 11. Lane selection without proactive bias (‘‘no bias’’ case).
Compared to the previous figure, the velocity profiles reveal that, without
proactive lane change, the agent may remain frequently trapped behind
slower vehicles in both the middle and the rightmost lane.

traffic, both in the right and, also, middle lane. Furthermore,
the lane changes from the right to the middle lane are less
frequent in the slow-down phase. The mean travelling speed
is annotated per lane. While there is no great improvement
in the leftmost lane, a significant improvement is observed
in the middle and especially the rightmost lane, which is
conveniently used whenever it is free. The general conclusion
is that proactively biasing action selection, by anticipating
virtuous manoeuvres, increases efficiency.

D. HIERARCHICAL ACTION-SELECTION
This final example investigates the adaptation of the Agent to
rapid unexpected events, if necessary responding by forcing
the traffic rules and choosing the lesser evil. The study is
inspired by the situation shown in Fig. 1. The ego car travels
on a straight three-lane motorway following a vehicle that,
unexpectedly drops an object (a traffic cone in the simulation,
see schematic representation in Fig. 12). In the longitudinal
direction the motion of the fallen object is uniformly deceler-
ated. In the lateral direction it weaves from left to right with
a linearly increasing amplitude, as defined by equation (3),
which will be later commented.

The traffic is travelling at 60.0 km/h, which is also the
initial speed at which the cone is released. In order to have
a schematic situation that helps interpretation, the spacing of
the vehicles is uniform, but the relative position1s of the next
vehicle in both lanes may vary (Fig. 12).

Parametric simulations have been carried out by varying:
1) the traffic density, which may be either ‘‘high’’ (vehicle

separation 1.8 s, or 30m) or ‘‘low’’ (separation 3 s,
or 50m),

2) deceleration of the fallen object, acone ∈ {−5.0,−4.5,
−4.0,−3.5,−3.0,−2.5,−2.0} m/s2;
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FIGURE 12. Schematic representation of the ‘‘US 101’’ scenario
(Section III-D). The road cone falls from a leading car and follows a
partially random trajectory. The ego car, yellow vehicle, attempts to either
brakes or force change lane (including fitting in between lanes).

3) time headway between ego and leading vehicle
Th ∈ {1.25, 1.5, 1.75, 2.0, 2.25, 2.5} s.

For each case, i.e. the combination of one traffic density
(high/low), one value of acone and one value of Th we per-
formed 20 simulations, for a total of 20× 2× 7× 6 = 1680
simulations.

Each simulation was carried out with partially random lat-
eral cone movements, generated by (3) with phase φ0 drawn
from a uniform distribution U (−π/4, π/4). Hence, the lateral
displacement of the cone yc(x) is given as a function of the
longitudinal distance x travelled by the cone

yc(x) = 0.05 x sin (λx + φ0)+ U (−0.05, 0.05) , (3)

where λ = 20m−1 is the period of the oscillations whereas
the amplitude increases linearly with the travelled distance x.
Also, while the traffic was regularly spaced, the relative

position1s of the next vehicle ahead (there are also vehicles
behind) on both the left and right lanes was set randomly
from a random uniform distribution U(0,L), with L being the
spacing between the vehicles in the traffic (L = 30m for high
density traffic and L = 50m for low density traffic).

To model mechanical and actuation delays, the ego vehicle
deceleration rate (longitudinal jerk) cannot exceed−10m/s3.
This means that it takes 0.5 s to reach −5m/s2, which is the
largest cone deceleration considered (in a real vehicle this fig-
ure may vary depending on the braking plant characteristics).
Also, because the Agent re-planning loop runs at 20Hz there
is an additional 50ms delay between perception and action
request (this figure may also vary). Finally, we assume that
the range sensor and perception system detecting the cone
measure the distance and the velocity of the cone, but does not
estimate the acceleration. Because of these limitations, and
depending on the time headway at the moment of the object
fall the collision might indeed be unavoidable.

Finally, it has to be said that, for this study, the mechanism
for proactively changing lane, as described in Section III-C,
is not active (otherwise the car would change to lanes as
soon as they have farther obstacles and will not permanently
remain in car-following, which is necessary for this study)

1) RESULTS
With high-density traffic, there are no gaps in the adjacent
lanes where the vehicle can fit while fully preserving the
desired longitudinal safety distances. Yet, these gaps (1.8 s)
are wide enough to fit inside without collision,5 especially
if the car does not move entirely into the destination lane but
stays on the lane border over the lane markings. Interestingly,
the choice of such a ‘‘least evil’’ behaviour is generated by
the play between partial and total inhibitions: with a dense
‘‘motor cortex’’ many intermediate actions exists among
which some collision free choice, albeit not prefect, can be
found.

This is shown in Fig. 13 which presents two instants of
the same simulation. On top, the ego vehicle (the black
car) follows the ‘‘dangerous’’ car before the object falls.
When, sometimes later, the cone falls (time: 15.0 s), theAgent
initially adapts to the reducing speed of the obstacle until,
at some point (time: 16.5 s) the action corresponding to
squeezing between the current lane and the right lane is
chosen despite being partially inhibited by a nearer car behind
(darker yellow area in Fig. 13 bottom). As shown in this
example, the agent does not move completely into the right
lane but shifts laterally only as much as needed to avoid the
obstacle.

FIGURE 13. Example of emergency avoidance behaviour. The Agent
chooses a risky action (bottom figure) to avoid the collision with the
dropping obstacle.

Fig. 14 shows the trajectories of the ego vehicle for dif-
ferent combinations of cone deceleration and time headway.
We distinguish the results in terms of three possible out-
comes: overtake, in case the ego vehicle clears the cone
by passing laterally and continues travelling along the road
(blue lines); stop, if the ego vehicle stops without hitting the
obstacle (green lines); collision if a collision occurs either
in the attempt of passing or stopping (red lines). Similarly,
Fig. 15 shows the trajectories for the high density traffic case.

5Moving into a 1.8 s gap, the host vehicle is going to leave only a fraction
of a second gap between the vehicle in front or behind.
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FIGURE 14. Low density traffic. Trajectories as function of time headway
and cone deceleration with distinction for collision (red), stop (green) and
clear (blue).

FIGURE 15. High density traffic. Trajectories as function of time headway
and cone deceleration with distinction for collision (red), stop (green) and
clear (blue).

Concerning trajectories that clear the obstacle (blue lines),
one can notice that manoeuvres corresponding to travelling
in between the lanes, such as the one shown in Fig. 13, are
not very frequent. This is because the traffic reacts and it
often happens that when the ego vehicle moves in front of one
vehicle, this vehicle opens a greater gap which lets complete
the lane change (this is revealed by changes in the trajectory
shapes that follows adaptations of the traffic, especially at
short time headways).

By counting the number of clear, stop and collision
manoeuvres the probability of the three outcomes can be
estimated (somewhat coarsely because there are only 20 sim-
ulations per case). These are shown in Fig. 16 and Fig. 17
respectively for the low and high density traffic cases.

If the low density traffic is considered (Fig. 16 and Fig. 14)
one can notice the presence of 4 different clusters. For
deceleration below 4m/s2 and time headway above 2 s the
Agent stops. Instead if the time headway is below 2 s the
Agent prefers to overtake. However, if the time headway is
very small, 1.25 s the Agent stops or overtake with similar

FIGURE 16. Low density traffic. Probability for collision, stop and clear
manoeuvres. With high deceleration of the cone, the most probable
outcome is collision. Otherwise, if the time headway is short, the agent
tries to force a lane change (detailed discussion in the text).

FIGURE 17. High density traffic. Probability for collision, stop and clear
manoeuvres. With higher density of the traffic, forcing a lane change is
less likely (detailed discussion in the text).

probabilities. Which happens depends on the what is on the
side: gaps or obstacles. For deceleration above 4.5m/s2 a
collision almost always occurs (with slight greater probabil-
ity for shorter time hideaways). The collisions are due to
the (assumed) limitation in the perception system that does
not estimate the obstacle deceleration. Without knowing the
deceleration, the average future velocity is systematical over-
estimated and this error is larger for larger deceleration until
a collision may happen. The high density traffic is similar
(Fig. 17 and Fig. 15) but in this case, below 4m/s2 (where the
car can stop) we see an expansion of the stop choice, because,
of course, there is no completely free gap on both sides.When
the time headway is very small (1.25 s) the Agent forces the
lane change such as in Fig. 13. If the deceleration is above
4m/s2 collisions occur, with higher probability and a similar
pattern (worse for shorter time headway).

E. OTHER EXAMPLES
A project video with other examples is given in [44]. and we
draw attention to several specific segments. Thus, at video
times 0:37-1:29 there are four examples of emergent longitu-
dinal behaviours (car following, stopped obstacle, suddenly
braking leading car and pedestrian walking in the middle
of the road), which are generated, similarly to those in
Section III-A by the mechanism of Section II-C5.
At video times 1:29-1:53 there are two other examples of

obstacles suddenly entering the road (a walking and a running
pedestrian).

Proactive behaviour is shown at times 1:53-2:10. The
example consists of the preventive adoption of a safe reduced
speed in the proximity of a pedestrian that might enter the
road (before the pedestrian starts moving). This high-level
behaviour is further discussed in Section IV.
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Action selection is presented between times 2:10 and 3:14.
First, the effect of sensor and motor noise with the WTA
selection criterion is shown. Then, better evidence-based
MSPRT robust action selection is shown beginning at time
2:40.

Complex behaviours in a motorway scenario, generated
by affordance competition with proactive biasing of action
selection (similarly to Section III-C) is shown between times
3:53 and 4:51.

Finally, complex behaviours in a urban-like scenar-
ios, which includes intersections, are shown beginning at
time 4.52

IV. EXTENSIONS: LEARNING VIA MENTAL IMAGERY
While this paper dealt with emergent autonomy, the agent
described here was conceived with the final goal of learning
and optimizing behaviours via a process that might be called
‘‘mental simulation’’, which is inspired by the ability of
humans to use mental imagery to explore future possibilities,
including those in the dream state while sleeping [45]–[47].

This form of learning for artificial agents was themain goal
of the Dreams4Cars project [1] (point b in the introduction),
and was successfully achieved by building on the agent archi-
tecture described here. These results will be shown, in full,
in future publications, but preliminary reports are available
in the public project deliverables (such as D3.3, D7.3, that
can be found in the project website), in [48]–[50] and in two
communication project videos [44], [51].

In learning via mental simulation, the Agent does not
interact with the plant/environment directly (which would be
a form of Reinforcement Learning); instead, it first learns
a model of the plant/environment and then interacts within
that model. In this way, the agent can test actions that would
be dangerous in the real world. Also the agent is focused on
constructing its own predictive and control models, which can
be tested and improved the next time that agent acts in the
real world. Finally, a less evident, but actually very important
point, is that, once a model of the environment/plant is avail-
able, there are ways to synthesize inverse models for control
and behaviour that aremore efficient than trial and error direct
interaction with the learned models as shown next.

Learning with mental simulations requires additional loops
that are not shown in Fig. 2. There are, in particular, two main
loci/methods for learning.

One approach bootstraps the Agent sensorimotor system
bottom up, starting with the learning of low-level forward
models and, via progressive manipulation of these models,
synthesizing low and higher-level forward and inversemodels
that may become particular instantiations of the motor output
loop (motor control) and of the dorsal stream (new excitatory
and inhibitory circuits representing the ability to detect/prime
new/better affordances). Two examples of neural network
controllers for predictive lateral control learned with this
process are visible in the video [44] at, respectively, time
3:15 and time 3:29.

A second locus of learning is at the action selection and
consists of learning the biases that produce longer terms
rewards, while transversing in the short term states of little
value (for example transversing a slow lane to get to a
faster one could be an extension of the mechanism used in
Section II-E). This can be regarded as a form of Reinforce-
ment Learning (among the affordable actions). A slightly
different variant of this method concerns the learning of
behavioural parameters (for example the choice of a safe
speed related to a given context). This is also learnable quite
efficiently with Reinforcement Learning. Two examples of
this are given in the video [44] at, respectively, time 1:53 and
time 5:04.

The project video [51] (simplified for communication pur-
poses) gives an overall description of both the goals men-
tioned in the introduction, and clarifies how the agent archi-
tecture described in this paper functions with learning via
mental imagery.

V. CONCLUSION
This paper described a sensorimotor architecture based on
a few, biologically inspired principles, which is capable
of producing adaptive autonomy while incorporating logi-
cal criteria. The position is supported by open accessible
working examples. The same scenarios could also be used
as benchmarks. Additional examples (not described in this
paper) that extend the demonstration abilities may be found
in the ZENODO repository [52]. This paper focused on the
high level architectural principles and there are several ways
to implement them; additional details for the Dreams4Cars
implementation can be found in the public deliverables [1].
Explainability of the agent decision is, also, of prime impor-
tance. The topographic organization of the motor space is a
key contributor to this feature because the competing actions
can be identified, and the selected action can be back traced
in the dorsal stream finding the intentions that generated the
selection.
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