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ABSTRACT Large amounts of data will be generated due to the rapid development of the Internet
of Things (IoT) technologies and 5th generation mobile networks (5G), the processing and analysis
requirements of big data will challenge existing networks and processing platforms. As the most promising
technology in 5G networks, edge computing will greatly ease the pressure on network and data processing
analysis on the edge. In this paper, we considered the coordination between compute and cache resources
between multi-level edge computing nodes (ENs), users under this system can offload computing tasks to
ENs to improve quality of service (QoS). We aimed to maximize the long-term profit on the edge, while
satisfying the low-latency computing of the users, and jointly optimize the edge-side node offloading strategy
and resource allocation. However, it is challenging to obtain an optimal strategy in such a dynamic and
complex system. To solve the complex resource allocation problem on the edge and make edge have certain
adaptation and cooperation, we used double deep Q-learning (DDQN) tomake decisions, ability to maximize
long-term gains while making quick decisions. The simulation results prove the effectiveness of DDQN in
maximizing revenue when allocation resources on the edge.

INDEX TERMS Collaborative computing, edge computing, optimization strategy.

I. INTRODUCTION
As mobile communication and IoT technologies advances,
smart cities, health care systems, etc. are deeply integrated
with IoT technologies, and a large amount of data gener-
ated will pose challenges to data analysis and processing.
Although the cloud computing [1] platform provides an effi-
cient computing platform for big data processing, high band-
width and high latency are unacceptable for scenarios with
low latency requirements such as industrial control and real-
time analysis.

In recent years, edge computing [2] as a new computing
platform attracted the attention of researchers, although edge
computing does not have a uniform definition, in essence,
it is by deploying computing resources at the edge of the
Internet, thereby reducing service delays, mitigating traffic
pressure on the backhaul link and meeting the computational
requirements of low latency applications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xu Chen.

Edge computing and cloud computing, distributed comput-
ing, parallel computing, etc. provide the necessary technical
means to achieve accurate and fast integrated computing anal-
ysis. Cloud computing is based on platform virtualization,
distributed storage, and parallel computing, flexible comput-
ing resources are allocated. Edge computing can be used as an
extension of cloud computing [2], [3]. It provides ubiquitous
and low latency and reliable computing.

However, edge computing has no powerful computing
power of cloud computing. When a single computing node
has many computing tasks, it is prone to high latency caused
by long task queues. Therefore, edge computing still has great
challenges in deployment and application.

(1) Firstly, the uncertainty of the computing task, due to
the uncertainty of factors such as the size of the computing
task, the length of computing time, and the delay of the
task, the workload between edge computing nodes may vary
greatly;

(2) Secondly, the workload scheduling of a single node,
the task dynamic scheduling and computing resource alloca-
tion between nodes when collaborative computing between
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multiple nodes. The nodes of the same level have the same
computing power, but there are differences in the number of
tasks. It is of great significance to coordinate the workload
balance between nodes and maintain low latency.

(3) Finally, the time interval, the most valuable part of edge
computing is the computing of low latency, so collaborative
computing should meet the requirements of low latency.

To solve the above problems, in this work, we use deep
reinforcement learning agents to determine the relevant nodes
of collaborative computing. Specifically, we are using double
deep Q-learning [4], [5] tomaximize the long-term profit of
collaborative computing and ensure load balancing between
nodes.

The rest of the paper is organized as follows: The second
part summarizes the related work of collaborative computing
in edge computing. The third part describes the dynamic
system model of edge collaborative computing. The fourth
part describes the collaborative computing strategy based on
DDQN. We provided the results of simulation experiments
and experiments in the fifth part. Finally, we summarized our
work and discusses the direction of future work.

II. RELATED WORK
In recent years, edge computing networks based on multiple
access have received extensive attention from academia and
industry. Edge computing eliminates latency by providing a
large number of computing resources for application services
that require low latency and high computational demands.
Although cloud computing has become very popular due
to its powerful computing and flexible resource allocation
strategies. However, due to the long distance between the
end device and the cloud, cloud computing services may not
provide assurance for low latency applications in the edge
network.

To solve these problems, Edge Computing (EC) [2], [3],
[6] has been studied to deploy computing resources closer
to the user device, which can effectively improve applica-
tions’ Quality of Service(QoS) that requires large amounts
of computation and low latency. The computing of the task
at the edge is complicated by the complex factors of com-
puting, storage, caching, network, energy consumption, etc.,
it is difficult to make an offload strategy under low latency
calculation limits, therefore, researchers used game theory
to solve such problems. Zheng et al. [7] introduced ran-
dom games to represent the mobile user’s dynamic offload
decision-making process and proposed a multi-agent random
learning algorithm to solve the multi-user computing offload
problem. Due to the problem of MEC multi-user computing
offload in a multi-channel wireless interference environment,
Chen et al. [8] proposed to use the game theory, and proves
the advantages of the algorithm in energy consumption and
computing execution time.

In addition, heuristic algorithms or dynamic programming
methods can also be used to solve computational offload-
ing problems. Dinh et al. [9] proposed a joint optimization
computational offloading framework that can improve task

allocation decisions and adjusts the CPU frequency of mobile
devices. Mao et al. [10] proposes a dynamic calculation
offload algorithm, which is based on Lyapunov optimization.
This algorithm can jointly determine the CPU frequency and
offload strategy of the energy harvesting equipment MECO
problem.

For global model training, a sorted list network with mul-
tiple losses is proposed by Sheng et al. [11] to speed up train-
ing. This method can effectively mine training samples and
avoid time-consuming initialization. An online orchestration
framework that can be used for cross-edge service function
chains is proposed by Zhou et al. [12], the framework can
dynamically optimize the flow routing and resource alloca-
tion jointly to improve the overall cost efficiency as much as
possible. In order to sample and improve network decisions
in flow-aware software-defined networks, Wang et al. [13]
proposed a space-time cooperative sampling (STCS) frame-
work, and the experimental results prove the effectiveness of
its sampling.

Recently, researchers have begun to use machine learning
or deep learning to optimize the computational offload strat-
egy for edge computing. Zhang et al. [14] proposed an inter-
mittent connection cloudlet system based on theMarkov deci-
sion process for the dynamic offloading problem of mobile
users. But in the literature [15], in the mobile edge cloud,
the author studied the dynamic servicemigration problem and
proposed a sequential offload decision framework based on
the Markov decision process.

Li et al. [16] proposed an RL-based optimization frame-
work to solve the resource allocation problem in wireless
MEC. The framework optimizes the offloading decision and
computing resource allocation by optimizing the total cost of
delay and energy consumption of all UEs. Yang et al. [17]
proposed a computing resource allocation strategy based on
deep reinforcement learning for URLLC edge computing
networks with multiple users.

Wang et al. [18] considered the decision-making ability of
reinforcement learning and the security of federated learning,
a framework combining the two is proposed to optimize
communication, caching, and computation on the edge side.
Ren et al. [19] considered the dynamicworkload and complex
radio environment in the IoT environment, indicate the deci-
sion of the IoT device through multiple Deep Reinforcement
Learning (DRL) agents, distributed training is performed on
DRL agents through federated learning, and agents are also
distributed on multiple edge nodes in a distributed manner.

For intelligent IoT applications, a framework is proposed
by Liu et al. [20], which is based on the cloud edge architec-
ture, apply federal learning to make smart applications avail-
able. In order to solve the heterogeneous problem in the IoT
environment. Zhou et al. [21] made a comprehensive review
of recent studies on EI. First, he reviewed and analyzed the
motivation and background of artificial intelligence running
at the edge of the network. Then he summarized several
key technologies on the edge, deep learning frameworks,
models, etc.. Edge intelligence builds intelligent edges by
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FIGURE 1. Edge computing supported IoT system.

integrating DL into the edge computing framework to achieve
dynamic and adaptive edge maintenance and management.
Wang et al. [22] introduced and discussed the application sce-
narios of edge intelligence, methods and technologies used,
and future work challenges.

The ‘‘Edge Artificial Intelligence’’ framework is
designed [18] to intelligently use the collaboration between
the device and the edge nodes to exchange data and model
parameters, thereby better training and inferring the model.
In order to deal with complex dynamic control problems,
Wang et al. [23] proposed a FADE framework to accelerate
training. Shen et al. [24] by deployed deep reinforcement
learning (DRL) agents on IoT devices to make offload com-
puting decisions and used federated learning (FL) to conduct
distributed training for DRL. Wu et al. [25] proposed a
hierarchical edge artificial intelligence learning framework
HierTrain, which effectively deploys DNN training tasks on
a hierarchical MECC structure.

When we consider communication, computing resource
allocation, delay constraints, etc., the complexity of the edge
computing systemwill be very high, it is challenging to obtain
an optimal strategy in such a dynamic and complex system.
Deep reinforcement learning is an improvement in reinforce-
ment learning. The deep Q network is used to approximate
the Q value function [4] to avoid excessively high estimates.
It can be used to implement automatic resource allocation in
wireless networks.

Therefore, we proposed that edge nodes use deep rein-
forcement learning agents to determine the allocation of
computing resources and the maximum long-term benefits.
Specifically, due to the complex resource allocation problem
at the edge, we used DDQN as a decision agent, which makes
the edge have certain adaptation and cooperation. Ability to
maximize long-term gains while making quick decisions.

III. SYSTEM MODEL
This paper used the nodes with computing ability in the edge
computing environment to analyze, as shown in Figure 1.
Overall, the system is divided into four levels. The first is
the device layer where the user device is located, including
various networked devices of the user, such as mobile phones,
IoT, VR, PC, etc., which establish connections with the Inter-
net through a wireless network access point or 5G.

Secondly, the base station, cellular network, wireless net-
work access point, etc., in which the user device is connected.
These equipment are located at the edge of the Internet,
connecting users and the Internet, and closest to the user
device. Placing the edge computing nodes here will greatly
reduce the delay and improve the users’ experience, this paper
assumes that the base station has an edge computing node
which user connected to, and the node is marked as a level 1
computing node.

Then there is a level 2 compute node. The level 2 compute
node is located between the level 1 compute node and the
cloud computing platform of the core network. It acts as a col-
laborator for the compute node of the level 1 compute node.
A level 2 compute node can coordinate a cache, calculation,
etc. There are several levels 1 compute nodes in the area, and
the level 2 compute nodes are close to the user, but not as
close as the level 1 node.

Finally, the cloud computing platform is located in the core
network. The cloud computing platform stores the running
environment of the user application and the latest data and
can release the file image to the computing node near the user
when needed.

A. COMMUNICATION MODEL
The system includes β level 1 computing nodes and α level
2 computing nodes, wherein the level 1 computing node β
belongs to β,β = {1, 2, . . . , β}, and the level 2 computing
node α belongs to α,α = {1, 2, . . . , α}. There are a total
of γ , γ = {1, 2, . . . , γ } user devices, and user device γ
belong to γ . Among them, γ devices are divided into β
groups, and user devices in each group are connected to β.
For quantitative analysis, the time horizon is discretized into
time epochs indexed by δ with equivalent duration as ε (in
seconds).

We described the networkmodel using a single base station
β and the user device γ connected to it. When the device
γ establishes a connection with the base station β, the base
station allocates W Hz spectrum resources to the device, but
the base station channel experiences a time-space change of
rayleigh fading and following the flat fading model.

We denote ζ βδ as the channel gain during the epoch δ
between the device and an EN β ∈ β, which is assumed static
and independently taken from a finite state space ζ . The ρηδ
is the transmit power with maximum limitation ρηmax , which
9 is the power of interference plus noise. The transmission
speed θ of the user device is calculated as follows:

θ = W ∗ log2(1+ ζ
β
δ · ρ

η
δ /9) (1)

B. COMPUTING MODEL
We assume that every computing node in the system has
the ability to be virtualization, and the application running
environment image of the user device can be found in the
cloud. Each level 1 compute node has an IP address and a
remaining computing resource table of other level 1 nodes
connected to it and a level 2 computing node α of the upper
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level. Within a certain period of time δ, the node connects
to the surrounding node and one level 2 node α. The level
1 node β broadcasts its own remaining computing resource
χβ , χβ = (Cβ , Sβ ) and accepts the remaining computing
resource χ ′β broadcasts from other nodes, updating the local
resource table based on the broadcast content.

We treat γ β as a set of service requesters, where each
requester γ belongs to γ β , connects to the nearest base station
β according to its signal strength, and then sends a request
to the compute node β where the base station is located,
where Rγβ ,R

γ
β = (Ds,Tl,Cr , Sr ) is computing request send

from user γ to the node β. Where Ds includes the task data
and image file globally unique identifier (GUID), Tl is the
computational delay limit of node β, Cr is the computing
resource size required, and Sr is the storage resource size
required.

After node β receives the task request Rγβ , First check the
remaining computing resources χβ = (Cβ , Sβ ) at the node β,
and if the remaining computing resource χβ meets the user
computing requirement Cr < Cβ&Sr < Sβ , then the service
is started. During the service start phase, the node β searches
for the image cache resource image required for the user task
computing from the local cache area. If the image resource
is in the local cache area, the image is loaded from the local
cache area and the computing service is started. If there is no
cached image locally, the node downloads the image file from
the cloud platform to the node β and starts the computing
service. When the calculation ends, the node β returns the
computing result to the user device, completes the computing
task of this period, waits for the user to compute the task for
the next period or the user ends the computing command and
pay for the task Rγβ .

If the remaining computing resource χβ at node β cannot
satisfy the user computing requirement, Cr > Cβ‖Sr > Sβ ,
the service cannot be opened locally, and node β will forward
the user request to the node in the computing resource table
that meets the user’s computing requirements. If the node x
accepts the computing task, the user’s computing service will
be completed by the node x, and the base station β performs
the transfer function here.

If there is no node in the calculation resource table that
meets user requirements, the length of the queue determines
whether the task is placed in the task queue or offloaded to
the cloud. If the queue at node β is not full, φβ < φmaxβ ,
the computing task is placed in the local task queue, and the
task queue is a first in first out FIFO model; if the task queue
at node β is full φβ = φmaxβ , the computing task is offloaded
to the cloud. In summary, the user computing task Rγβ offload
policy ωγβ is:

ω
γ
β =


0 if Cr < Cβ , Sr < Sβ and φβ = 0, node β;
1 if Cr < Cx , Sr < Sx and φx = 0, node x;
2 if Cr<Cx , Sr<Sβ and φβ<φmaxβ , queue φβ ;

3 Offload task Rγβ to the cloud.
(2)

C. PAYMENT STRATEGY
After the user’s computing request Rγβ is completed by node
β and the computing result is returned to the user device,
the user devicewill pay to the node β according to the delay of
the computing completion λβδ . If the computing is completed
within the limited time of Tl , the user pays according to the
actual delay time. If the edge node times out to complete the
computing task, users will not pay it.

zγβ =


π ∗ λ

β
δ if λβδ < Tl , π is the price of edge;

0 if λβδ > Tl ;
η if task Rγβ failed, and η < 0.

(3)

The delay λβδ in this paper is defined as the time interval
between when the user equipment initiates the calculation
request and when the device receives the node calculation
result. If the computing task is placed at the base station β
to which the user device is connected, the computing delay
λ
β
δ can be expressed as:

λ
β
δ = σγ + σ

′
r + hβ + σβ (4)

where σγ is the time spent on the transmit task Rγβ , and σ
′
r

is the time it takes to transmit the result. hβ is the time taken
by the computing node β to switch the computing task at the
base station, which is a small fixed value.

σγ = Ds/θ (5)

σβ is the time required for the computing node to complete
the computing task. It is usually related to the CPU frequency
fcpu, the size of CPU cache ccpu, and the data size Ds of the
task data.

σβ = Ds/(fcpu ∗ ccpu) (6)

If the computing task is placed at the neighboring base
station β ′, the delay λβ

′

δ is:

λ
β ′

δ = σγ + σ
′
r + hβ ′ + σβ ′ + 2 ∗ dβ

′

β /c (7)

where dβ
′

β is the fixed distance between the base station β
and the neighbor node β ′, c is the speed of light. Finally, our
objective function is:

max
∑

β∈{β,α}

∑
δ

zγβ

s.t. ∀γ ∈ γ ,∀β ∈ {β,α}

Cr >= 0, Sr >= 0 (8)

IV. COLLABORATIVE COMPUTING STRATEGY BASED ON
DOUBLE DEEP Q-LEARNING
In order to better understand the DDQN agent, we briefly
introduce DDQN in this paper. First, we introduce reinforce-
ment learning. Reinforcement learning is an important branch
of machine learning, agents in reinforcement learning can
learn the actions that maximize the return through interaction
with the environment. Unlike supervised learning, reinforce-
ment learning does not learn from the samples provided.
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Instead, act and learn from their own experience in an uncer-
tain environment.

Algorithm 1 Collaborative Computing Framework
1: Initialize:
2: Each edge node loads DDQN model as agent;
3: The compute node β broadcasts its remaining computing

power χβ (Cβ , Sβ ) to other nodes;
4: Node β receives the remaining computing power broad-

cast and adds it to the calculation table C ;
5: If: there is computing task Rγβ = (Ds,Tl,Cr, Sr);
6: The agent takes the node β status s and the task Rγβ as

input, s = C ;
7: Generate a decision policy according to action a;
8: Switch(a):;
9: case 0: Immediately allocate computing resources and

perform computing tasks;
10: case 1: Put tasks into the local task queue φ and wait

to allocate computing resources;
11: case 2: Send task to the node in the computing resource

table;
12: case 3: Send tasks to the cloud computing platform;
13: Return: Send the results to the user device;
14: The user pays the node according to the calculation delay

and the task resource allocation amount;

Reinforcement learning has two salient features: multiple
trials and delayed rewards. Trial testing means weighing
trade-offs between exploration and development. Agents will
try some effective actions that can generate rewards based on
past experience, but in order to generate higher returns, there
is also a certain probability to explore new actions. Agents
must take a variety of actions and gradually get the most out
of it. Another feature of reinforcement learning is that agents
should look at the global, not only considering immediate
rewards, but also long-term cumulative rewards, which are
designated as reward functions.

Model-free reinforcement learning has been successfully
applied to the processing of deep neural networks and value
functions [4]. It can directly use the original state representa-
tion as a neural network input to learn the strategy of difficult
tasks [5]. Q-Learning is a model-free reinforcement learning
algorithm. The most important component of the Q-learning
algorithm is a method for correctly and effectively estimating
the Q value. Q-functions can be implemented simply by look-
up tables or function approximators, sometimes by nonlinear
approximators, such as neural networks or even more com-
plex deep neural networks. Q-learning is combined with deep
neural networks, so-called Deep learning Q-learning(DQN).
The formula for Q-learning is:

Qπ (s, a) = E[R1 + γR2 + · · · |S0 = s,A0 = a, π] (9)

The parameter update formula is:

θt+1 = θt + α(Y
Q
t − Q(St ,At ; θt ))

h

θt

Q(St ,At ; θt ) (10)

FIGURE 2. Decision Agent Based on DDQN.

which YQt is defined as:

YQt = Rt+1 + γ · m
a
axQ(St+1,At ; θt ) (11)

The formula of deep Q-learning is:

YDQNt = Rt+1 + γ · m
a
axQ(St+1, a; θ ′t ) (12)

Improved DQN: double deep Q-learning. DDQN-based
agent was shown in Figure 2. In conventional DQN, selecting
an action and evaluating the selected action uses a maximum
value that exceeds the Q value, which results in an overly
optimistic estimate of the Q value. In order to alleviate the
problem of overestimation, the target value in DDQN is
designed and updated to

YQt = Rt+1 + γ · Q(St+1, a
a
rgmaxQ(St+1, a; θt ); θt ) (13)

The error function in DDQN is rewritten as:

YDoubleQt = Rt+1 + γ · Q(St+1, a
a
rgmaxQ(St+1, a; θt ); θ ′t )

(14)

Among them, the action selection is separated from the
target Q value generation. This simple technique makes the
overestimation significantly reduced and the training process
runs faster and more reliably.

V. SIMULATION RESULTS
A. EXPERIMENT SETUP
This paper uses a simulation experiment method to instan-
tiate user device and edge computing nodes for simulation
through Python programming. The operating system used in
the experiment was CentOS7, the processor was Intel E5-
2650 V4, the hard disk size was 480G SSD + 4T enterprise
hard disk, and the memory was 32G. The code interpreter
is Python, version 3.6, and the code runtime dependen-
cies include Tensorflow, Keras, Numpy, Scipy, Matplotlib,
CUDA, etc..

The experimental data includes the computational task of
the user offloading to the edge node in the time period i, which
is randomly generated by calling the Bernoulli and Poisson
functions in the Scipy library. The experiment assumes that
the user device has the ability to connect to the network and
can offload computing tasks and receive computing results.
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Algorithm 2 Collaborative Edge Computing Strategy Based
on Double Deep Q-Learning
1: Initialization:
2: Initialize replaymemory:R and thememory capacity:M ;
3: Main deep-Q network with random weights: θ ;
4: Target deep-Q network with weights: θ− = θ ;
5: For epoch i in I :
6: Input the system state s into the generated Q-network;
7: Compute the Q-value Q(s, a; θ );
8: Input the system state s′ into the generated Q-network;
9: Compute the Q-value Q(s′, a; θ );
10: Input the system state s′ into the target Q-network;
11: Compute the Q-value Q(s′, a; θ−);
12: Compute the target Q-value;
13: Y = p(s, a)+ γQ(s′, argmax(s′, a ; θ ), θ−);
14: Output: action a;
15: Record the changed status s′′ and rewardz after action

a to memory R;
16: End For
17: Save model.

FIGURE 3. Rewards obtained by the agents during training.

Experiments in this paper compared Double deep Q-
learning (DDQN), Deep Q-learning (DQN), Dueling deep Q-
learning and Natural Q-learning, where the learning rate is set
to 0.001, the replay memory size is 200, and the total training
steps is 12000, the neural network update iteration cycle was
set to update every 100 times. The penalty for mission failure
is −30. After the task is successfully completed, agents will
get rewards, the size of the reward obtained is closely related
to the time the task is completed, the time the task is transmit-
ted, and the total time spent offloading the calculation. In the
experiment, the wireless channel was set to 6 different levels.

B. RESULT ANALYSIS
The reward obtained by the agent in the experiment is shown
in Figure 3. During the period when training started, the neu-
ral network weights had just been initialized, and the agent
could not give a good offload decision. At this time, the deci-
sion was randomly generated, resulting in The calculation of
the received offload task fails and is punished, so the total
reward is negative.

FIGURE 4. Detailed of rewards obtained by agents (6000-12000 steps).

FIGURE 5. The number of failed tasks changes during agent training.

FIGURE 6. Detailed changes in the number of failed
tasks(6000-12000 steps).

However, with the increase of training and the update
of neural networks, the agent can make the correct offload
decision, and get more rewards than punishments, so the
total rewards continue to increase with training. And it is
obvious that agents based on DDQN can get more rewards
with training.

In order to more intuitively show the difference in rewards
obtained by different neural network agents, the zoomed-in
reward total changes are shown in Figure. 4.

Figure 5 shows the change in the number of task failures
during the training process. At the beginning of the training,
the task calculation failed more, and the total number of task
failures increased rapidly. With the training, the increased
rate of task failures decreased and eventually reached a stable
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FIGURE 7. Agent training loss.

FIGURE 8. Distribution map of transmission time when task is offloaded.

level. Observation shows that the DDQN-based agent has
fewer task failures during the training process.

In order to more intuitively show the difference in the
number of failed tasks of different neural network agents,
the enlarged number change is shown in Figure. 6. The num-
ber of DDQN-based agent failures is always lower than other
reinforcement learning.

Figure 7. shows the loss of change during training. The loss
function of DDQN is defined as the square of the difference
between the estimation function and the value function. The
loss is recorded every 6 pieces of training. The training loss
based on DDQN is less than the other reinforcement learning
at the beginning. As the weight of the neural network is
updated, the loss is getting smaller and smaller, the training
loss of several other reinforcement learning agents still fluc-
tuates.

Record and display the user data transmission time in the
experiment as shown in Figure 8. On the whole, the prop-

FIGURE 9. Value changes in agents.

agation time of user data is normally distributed, but it is
irregular. In the experiment, some user data are more, but
the network channel is poor. Therefore, the long transmission
time leads to a high delay. However, some users have fewer
data and the network is better, and the transmission time is
shorter.

Figure 9 shows the value of the value calculated by the
value function in the agent. At the beginning of the training,
the value cannot be well estimated, but as the training pro-
gresses, the value estimation continues to approach the true
level. And reached a stable level in the end.

VI. CONCLUSION AND FUTURE WORK
In this paper, we consider the bandwidth, computing, and
cache resources of the ENs, benefit from the deep learning
and powerful learning ability and decision-making charac-
teristics, maximize the edge while satisfying the low-latency
computing of users at the edge. In addition, it also considers
the horizontal and vertical coordination cache and computing
at the edge, which has certain adaptability and can fully
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coordinate the computing resources at the edge to maximize
the value. However, the DDQN on the EN has a long training
period and the effect is unstable. It needs to train for a while
to make better decisions. In addition, when multiple ENs in
the same group perform collaborative computing, we have
not studied the prioritization strategy of computing resources
or the computing resource bidding strategy. Future work we
will focus on competitive bidding and allocation priorities.
In addition, the security of users on the edge is also the focus
of research.
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