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ABSTRACT In view of various issues occasioned by harmonic pollution in the power system, the opti-
mization of the filter parameters is of great significance. However, under the system constraints, estimating
the filter parameters accurately and reliably is a challenging task. To complete this task, this paper
proposes an improved salp swarm algorithm based on the spiral flight search strategy (ISSA-SFS), which
rationally integrates the spiral flight search (SFS) strategy, the multiple leader (ML) strategy, and the random
learning (RL) strategy with two improved evolution phases: the improved lead phase (ILP) and the improved
follow phase (IFP). In the ILP, the SFS strategy is introduced to enhance the global search capability and
avoid premature convergence. Furthermore, in the ILP, anML strategy is proposed to select multiple leaders,
further strengthening the global search capability of the proposed algorithm. In the IFP, a simple RL strategy
is developed to learn two different random individuals, efficiently improving the local exploitation. The
proposed algorithm ISSA-SFS is applied to optimize two prominent hybrid active power filter (HAPF)
topologies, and each topology contains four different study cases. The overall experimental results indicate
that the ISSA-SFS is a more promising alternative to achieve the optimal design of HAPFs compared with
other well-established algorithms, especially in terms of accuracy and robustness.

INDEX TERMS Parameter optimization, harmonic pollution (HP), hybrid active power filter (HAPF), salp
swarm algorithm (SSA), spiral flight search (SFS).

I. INTRODUCTION
With the rapid development of electronics industry technolo-
gies, there are more and more non-linear loads in the modern
power system, which might lead to significant line voltage
distortion [1]. The voltage distortion is the primary source of
harmonic pollution, and harmonic pollution would influence
power quality significantly and endanger the safety of the
power grid and power equipment. Therefore, the monitoring
and reduction of harmonic pollution have become important
research topics [2].

Existing schemes for controlling harmonic pollution
include two categories. One is to modify the characteristics
of non-linear loads in power electronic devices to correct the
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power factor, while this approach has the disadvantages of
high cost and low efficiency. The other is to install passive
filters, active filters, or hybrid active filters to compensate
reactive power [3]–[5]. Due to the technical or economic
defects of passive or active filters [6], the combination of pas-
sive and active topology is usually employed to control har-
monic, which is called the hybrid active power filter (HAPF).
HAPF is more stable and has a lower cost than passive power
filter (PPF) and active power filter (APF) because the hybrid
topology combines and utilizes the advantages of PPF and
APF. Consequently, the harmonic problem can be solved as
much as possible by HAPF, and the application of HAPF is a
promising approach for reducing harmonics [7].

So far, the research on HAPF is mainly about the design of
different topologies [8]–[10], while parameter optimization
of HAPFs is relatively few. One possible reason is that
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research in this area is relatively challenging. In HAPF,
the main challenge is how to choose the appropriate APF
gain, passive inductance and capacitance response values,
while satisfying the system’s constraints on single and overall
voltage and current harmonic distortion levels [11]. In this
case, it becomes particularly important to develop a techni-
cal solution that effectively optimizes the parameters of the
HAPF.

The optimization issue of HAPF parameters in power
systems can come down to a single objective constrained
optimization issue. To be more specific, the target of the
function is to reach a compromise solution based on some
conditions. Due to the nonlinearity of the loads, it is diffi-
cult to find a satisfactory solution by conventional methods.
Compared with the traditional gradient-based method, meta-
heuristic methods are insensitive to the initial condition of
solutions and have higher efficiency [12], [13]. So that meta-
heuristic methods are of general technical significance, and
they have become a powerful choice for solving many practi-
cal engineering problems [14]. For instance, Ochoa et al. [15]
used the fuzzy differential evolution (FDE) algorithm in the
optimization of fuzzy controller design. Castillo et al. [16]
applied the Karnik and Mendel algorithm for the defuzzifi-
cation process and presented a comparative study. In [17],
a multiple learning backtracking search algorithm (MLBSA)
is proposed for the parameter identification issues of pho-
tovoltaic models, etc. Nevertheless, in previous studies,
the number of references using heuristic optimization tech-
niques to extract parameters of the HAPF is limited. In 2017,
Biswas et al. [11] applied a meta-heuristic algorithm based
on the success-history based parameter adaptation for dif-
ferential evolution (SHADE) algorithm called L-SHADE to
optimize appropriate parameters of two prominent HAPF
structural configurations. The L-SHADE algorithm improved
the performance of SHADE by adopting a linear popula-
tion size reduction (LPSR) strategy, and this meta-heuristic
method exhibited the best performance among all non-hybrid
algorithms in the CEC 2014 competition on single objec-
tive real-parameter optimization [11]. Therefore, L-SHADE
is useful for the HAPF parameter design issue, and it has
a competitive filtering effect. However, the performance of
L-SHADE still has the potential to improve. Therefore, devel-
oping a competitive meta-heuristic algorithm to find a more
accurate and reliable solution is still a challenging task.

Salp swarm algorithm (SSA) is a young and popular meta-
heuristic algorithm proposed by Mirjalili et al. in 2017 [18].
The algorithm is inspired by the swarming behavior of salps.
Similar to most meta-heuristic algorithms, SSA is optimized
from a set of multiple solutions with randomly given posi-
tions, then these solutions are adjusted through the iterative
process. Research points out that within a certain operating
time [19], SSA has a better capability to seek out the global
solution, and the parameter tuning is less than other meta-
heuristic algorithms, such as simulated annealing (SA) [20],
hill-climbing [21], and grey wolf optimization (GWO) [22].
Furthermore, SSA holds the advantages of simplicity and

ease of hybridization. In summary, SSA has certain strengths
among the above algorithms. Therefore, SSA has beenwidely
used in engineering applications [23], machine learning [24],
image processing [25], and many other application fields
[26], [27]. In SSA, the population consists of a leader and
followers. The update process of salps includes two differ-
ent continuous phases: the lead phase (LP) and the follow
phase (FP). The former represents the leader’s moving stage,
while the latter represents the moving stage of followers.
To the best of our knowledge, the SSA has renewed for
diverse variants to solve different optimization problems. The
main variants of SSA can be divided into two categories:
hybridization of SSA and modifications of SSA [27]. The
hybrid SSA variants are generally formed by mixing SSA
with another algorithm or technical methods. For example,
Singh et al. [29] developed a new algorithm calledHSSASCA
by combining SSA with a sine cosine algorithm (SCA),
the performance of HSSASCA is verified in twenty-two
standard functions. Asaithambi and Rajappa [23] designed
a hybrid algorithm based on SSA and Hooke-Jeeves algo-
rithm called SSA-HJ, which is applied for optimizing the
sizing of a CMOS differential amplifier and the comparator
circuit. As for modified SSA variants, most of them mod-
ify the original SSA by adopting different strategies in the
above two continuous phases, i.e., LP and FP. For instance,
an improved salp swarm algorithm (ISSA) is proposed in [29]
by introducing an inertia weight into LP and FP as a control
parameter, which speeds up the convergence and achieves
better performance. Sayed et al. proposed a new algorithm
in [30], the algorithm only modified LP while FP followed
the original version, the amended LP introduced the chaotic
theory, which significantly improves the exploration capabil-
ity. In [31], Qais et al. presented an enhanced salp swarm
algorithm (ESSA) to improve the basic SSA.According to the
Gaussian model, the covariance variable in LP increased its
step size in the exponential direction, and the space equation
in FP is modified by replacing the constant with a random
number.

Although SSA and its variant algorithms have some advan-
tages, like other meta-heuristic algorithms, they still have
some imperfections. For example, the basic SSA may be
trapped in the stagnation point [19], which results in local
optimization and slow convergence speed. As for variants of
SSA, some of them succeed in avoiding falling into local
optimal and accelerating the convergence speed. In spite of
this, no free lunch (NFL) [32] proves that each meta-heuristic
algorithm has different characteristics, so each algorithm can-
not deal with all optimization problems. To the best of our
knowledge, so far, there are no attempts of using SSAmethod
in exacting the parameters of the two HAPF topologies.
In this case, we develop an improved salp swarm algorithm
based on spiral flight search strategy (ISSA-SFS) and apply
it for extracting the optimal HAPF parameters.

In ISSA-SFS, inspired by reference [33], we first adopt
the spiral flight search strategy (SFS) for optimizing the
search space and shortening the distance between leaders

VOLUME 8, 2020 154817



L. Zhang et al.: ISSA With SFS for Optimizing HAPFs’ Parameters

and the food source. Furthermore, in order to obtain better
performance in terms of achieving an optimal global solution,
we propose a multiple leader (ML) strategy which expands
the leader group from one leader to multiple leaders. In this
way, more than one leader update towards food, and the
single-chain structure is modified to a multi-chain structure.
As a further step, we further develop a random learning (RL)
strategy for enhancing the population diversity and accel-
erate the convergence speed. The updated trajectory of the
follower group is modified to update based on two indi-
viduals randomly selected, instead of moving the follower’s
position based on the previous one. In order to achieve a
good balance between the global and local search capabilities
of the algorithm, we integrate the above strategies into the
ILP and IFP of ISSA-SFS. To assess the performance of
ISSA-SFS, we execute some comparisons between it and six
well-established algorithms on extracting appropriate param-
eters of two commonly used HAPF topologies. The com-
parative results indicate that the performance of ISSA-SFS
is superior to the original SSA algorithm and other popu-
lar heuristic algorithms: L-SHADE [11], moth-flame opti-
mization algorithm (MFO) [33], particle swarm optimization
(PSO) [34], teaching-learning based optimization algorithm
(TLBO) [35], and multi-verse optimizer (MVO) [36].

The main contributions of this paper are described as
follows:

1) We propose a new ISSA-SFS algorithm, which ratio-
nally combines the spiral flight search (SFS) strategy,
the multiple leader (ML) strategy, and the random learn-
ing (RL) strategy with two improved evolution phases: the
improved lead phase (ILP) and the improved follow phase
(IFP). These strategies can effectively balance the exploita-
tion and exploration performance in the entire iteration
progress. The effectiveness of ISSA-SFS is extensively eval-
uated on two popular HAPF topologies to extract the corre-
sponding parameters effectively.

2) In the ILP, the spiral flight search (SFS) strategy is
introduced to enhance the global search capability and avoid
premature convergence, because the SFS strategy can enable
salps to move spirally towards the food target to update their
positions in the iterative process. Furthermore, in the ILP, dif-
ferent from the original SSA that uses a leader, the proposed
ISSA-SFS adopts a multiple leader (ML) strategy that selects
multiple leaders by the sorting mechanism to approach the
food source, which can further strengthen the global search
capability of the proposed algorithm.

3) In the IFP, a simple random learning (RL) strategy is
developed by enabling each follower to learn two different
random individuals instead of the previous individual from
the sorting mechanism [18], which can efficiently improve
the local exploitation and accelerate the convergence speed
to the global optimum solution.

4) The proposed ISSA-SFS is used for the parameter
extraction issue of two typical HAPF topologies. Further,
the ISSA-SFS algorithm is compared with other well-
established algorithms, which indicates that ISSA-SFS is

a promising alternative to parameter optimization issues of
HAPF.

The remainder of this paper is structured as follows:
Section II illustrates the HAPF configurations and the objec-
tive function. Section III introduces a brief introduction to
metaheuristic algorithms, the original SSA algorithm, and the
spiral flight search strategy. Section IV provides a detailed
description of the proposed algorithm ISSA-SFS. The exper-
imental results and discussion are given in Section V. Even-
tually, Section VI summarizes the paper and concludes the
work.

II. RELATED WORK OF HAPF TOPOLOGIES
Passive power filter (PPF) is a kind of filtering equipment
mainly made up of one or more sets of single-tuned fil-
ters. Specifically, it is a circuit wiring combination of a
filter capacitor, reactor, and resistor, so it is also known as
the LC filter. As is well-known, some drawbacks exist in
the passive filter, so the conventional PPF often connects
to the harmonic source in parallel to provide an effective
solution. Another kind of power electronic equipment active
power filter (APF) is also applied to eliminate grid harmonics.
It consists of a pulse width modulation (PWM) inverter,
which is mainly composed of giant transistors (GTR) [37].
The APF can achieve most functions of PPF in terms of
technical requirements.

As mentioned before, passive filters usually connect in
parallel with harmonic sources or loads in the circuit. Besides,
recent studies suggest that compared with traditional passive
filters, the use of parallel passive filters is more extensive. The
primary purpose of designing the parallel passive filters is to
reduce the harmonic current injected into the power supply,
and the performance of power systems can be improved by
suppressing harmonics [38]. This structure provides a low-
impedance parallel circuit for the harmonic current generated
by the load [39]. As for the active filter, it also includes
the series APF and the parallel APF [40]. The series APF
connects in series with loads through a coupling transformer,
while the parallel APF connects to the grid in parallel with
the system loads. Similarly, in practical applications, series
APFs are not as widely used as parallel APFs, because the
former may increase the loss of the line and the circuit is
inconvenient to inspect and maintain. In contrast, parallel
APFs can not only simply operated but also the number of fil-
ters can be controlled according to grid requirements. In this
way, the system can obtain sufficient compensation current.
However, the parallel APF also has certain limitations, when
only using the parallel APF in the power grid, the filter needs
a large capacity, and it will also encounter problems, such as
complex circuit structure and high operating cost [39].

As discussed above, whether the filter is series or parallel,
passive or active, there are still technical problems that cannot
be solved. This difficulty makes the research of hybrid active
filters more attractive. Generally, a hybrid active filter is
a series or parallel connection of two basic passive filters
and two basic active filters. Inheriting and combining the
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FIGURE 1. Circuit configurations of ‘APF in series with shunt passive filter.’

FIGURE 2. Circuit configurations of ‘combined series APF and shunt
passive filter.’

advantages of PPF and APF will lead to better solutions and
more stable performance, which is the significance of HAPF
research. In recent research, two topologies with ideal perfor-
mance are increasingly employed in a power system. They
are ‘APF in series with shunt passive filter’ and ‘combined
series APF and shunt passive filter’, these two types of HAPF
structure configurations are commonly applied in practical
problem solving and engineering applications. The above two
HAPF topologies are respectively illustrated in Figure 1 and
Figure 2 without indicating the matching transformers, note
that the point of common coupling (PCC) is the join points of
the passive filter and other linear loads [11]. In the following,
this paper will explore the filtering principle of the two con-
figurations and analyze the connection features of the circuit.

A. APF IN SERIES WITH SHUNT PASSIVE FILTER
As shown in Fig. 1, in this HAPF topology, the filtering
system is a series connection of the active filter and passive
filters, and the system connects in parallel with loads. The
passive filter in this topology is a parallel passive filter, also
a single tuned passive filter combined with its inductance XL
and capacitive reactance XC . The basic principle of APF is to
inject the compensation current generated by the compensa-
tion device into the grid. When the compensation current is
equal to the harmonic current of the compensated object but
flows in the opposite direction, the harmonic current in the

power grid can be eliminated, only the fundamental wave of
the power system remains. In this structure, the APF forces
all harmonic currents from the load to the parallel PPF, in this
way, not only the load harmonic current is compensated, but
also no amplified harmonic current flows in the source. As a
result, the compensation performance of passive components
is improved. At the same time, the active filter will provide the
fundamental currency of the system, and then the line voltage
is applied to the PPF, which means that the rated voltage
required for the active filter will be significantly reduced [41].

The single-phase equivalent circuit at the fundamental
frequency of this HAPF topology indicates in Fig. 3 [11].
In Fig. 3, the parameter value at the fundamental frequency
takes the index h equal to ‘1’. At harmonic frequencies,
the single-phase equivalent circuit of the first configuration
shows in figure 4.

FIGURE 3. Single-phase equivalent circuit at the fundamental frequency.

FIGURE 4. Single-phase equivalent circuit for config.1 ‘APF in series with
shunt passive filter’ at harmonic frequencies.

Assume that a non-linear load appears as a voltage source,
the voltage of the load can be counted into VLh, and when
the non-linear load appears as a current source, the load’s
current can be represented by ILh. It can be seen that the load
harmonic source in this topology behaves as a current source,
so it is called a current-source non-linear load. The current
flowing through the load is accounted in ILh and the voltage
across the load is accounted in VLh, where the subscript h
is the order of harmonics. Additionally, Vh and Ih stand for
harmonic voltage and current of non-linear power supply,
respectively. The active power filter in this topology operates
as a controlled voltage source VAF which applies a voltage
signal to its terminal, the applied voltage signal equals to
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K times as large as the harmonic component of the system
supply current, i.e. VAF = KIh. The proportionality constant
‘K ’ denotes the filter gain that exists only at harmonic fre-
quencies, the gain of the filter plays an important role as a
harmonic resistance.

Inspired by reference [42], the Thevenin voltage source
representing the utility supply voltage and the harmonic cur-
rent source representing the non-linear load are:

v(t) =
∑
h

vh(t) (1)

iL(t) =
∑
h

iLh(t) (2)

Rh, Xh and Zh denote the transmission system resistance,
inductive reactance, and impedance at h-th harmonic. The
relationship between the three parameters can be indicated
to the following formula:

Zh = Rh + jXh (3)

Similarly, RLh,XLh and ZLh represent the non-linear load
resistance, inductive reactance, and impedance at h-th har-
monic. GLh, BLh and YLh represent the non-linear load con-
ductance, susceptance, and admittance at h-th harmonic. The
equivalent load impedance and admittance can be expressed
as below, respectively:

ZLh = RLh + jXLh (4)

YLh = GLh − jBLh (5)

From the equivalent circuit for config.1 ‘APF in series with
shunt passive filter’, the compensated utility supply current
Ih and the compensated load voltage VLh can be acquired via
equations (6) and (7):

Ih =
A+ jB
C + jD

(6)

VLh =
E + jF
C + jD

(7)

where we can observe that the equations introduce some
intermediate variable as follows:

XPh=hXL −
XC
h

(8)

A = VhRLh − ILhXLhXPh (9)

B = Vh(XLh + XPh)+ ILhRLhXPh (10)

C = RhRLh − XhXLh + KRLh − (XLh + Xh)XPh (11)

D = RLhXh + RhXLh + KXLh − (RLh + Rh)XPh (12)

E = Vh(KRLh−XLhXPh)+ ILh(RLhXh + RhXLh)XPh (13)

F = Vh(KXLh + RLhXPh)− ILh(RhRLh − XhXLh)XPh (14)

B. COMBINED SERIES APF AND SHUNT PASSIVE FILTER
Fig. 2 indicates the second discussed HAPF topology,
in which the active filter is coupled in the system through
an interface transformer and connected in series with the
non-linear load in the grid, the passive filter in the circuit is

connected in parallel across the load. From Fig. 2, the passive
filter of this topology is a shunt passive filter cascaded an
inductor XL and a capacitive reactance XC , it is in common
with the passive filter of the first topology. Furthermore,
the active filter coupled in the power grid is a series active
filter.

In order to improve the compensation performance of the
system, the series active filter needs to eliminate the influ-
ence of resonance and source impedance by providing zero
impedance at the fundamental wave and high impedance at
the harmonics. Similar to the first topology, the load harmonic
current is also absorbed by the parallel passive filter. The
series APF is referred to as ‘‘harmonic isolator’’ because
the harmonic current between the supply source and loads
is isolated by the active filter. As a result, the rating current
of this series active filter is much smaller than conventional
active filters. This HAPF topology is suitable for improving
power quality and eliminating harmonic pollution.

For the fundamental frequency and harmonic frequencies,
the single-phase equivalent circuits of this HAPF topology
are illustrated in Figures 3 and 5, respectively. The equivalent
circuits of the two topological structures under the fundamen-
tal wave are identical, and the symbols of circuit parame-
ters are also the same as those in the first HAPF topology.
However, due to the different positions of the active filter,
the equivalent circuits under harmonics are different, which
results in the differences in the filtering principle between the
two topologies.

FIGURE 5. Single-phase equivalent circuit for config.2’ combined series
APF and shunt passive filter’ at harmonic frequencies.

According to the equivalent circuit in Fig. 5, the com-
pensated utility supply current Ih for config.2’ combined
series APF and shunt passive filter’ is obtained via for-
mula (15) and the compensated load voltage VLh is calculated
by formula (16).

Ih =
A+ jB
C + jD′

(15)

VLh =
E + jF ′

C + jD′
(16)

Note that A, B, C and D are given in the previous section,
so there are another two equations:

D′ = D+ KXPh (17)

F ′ = F + VhKXPh (18)
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C. CONSTRAINTS AND OBJECTIVE
FUNCTION FORMULATION
The analysis presented above suggests that HAPF can effec-
tively overcome the obstacles encountered by only using the
active filter or the passive filter, and it can achieve voltage
control of the power line, thereby verifying the practical fea-
sibility of HAPF topology. Recalling reference [11], the anal-
ysis of HAPF topology focuses on optimizing XL , XC and K
with consideration of non-linear loads and sources, the ulti-
mate goal of optimization is to stabilize system performance.
Previous research revealed that system performance is closely
related to the following indicators:

The compensated load power factor (PF),

PF =
PL
VLI
=

GL1V 2
L1 +

∑
h≥2GLhV

2
Lh√(

I21 +
∑

h≥2 I
2
h

) (
V 2
L1 +

∑
h≥2 V

2
Lh

) (19)

The compensated load-displacement power factor (DPF),

DPF =
PL1
VL1I1

=
GL1VL1
I1

(20)

Transmission loss is calculated as,

PLOSS =
∑
h

I2hRh (21)

Transmission efficiency is obtained by,

η =
PL

PL + PLOSS
(22)

Compensated VTHD at the load terminals,

VTHD =

√∑
h≥2 V

2
Lh

VL1
(23)

Similarly, compensated ITHD for the utility supply current
is given below,

ITHD =

√∑
h≥2 I

2
h

I1
(24)

According to [43], harmonic pollution (HP) can be approx-
imated as follows:

HP =
√
VTHD2 + ITHD2 (25)

The smaller the HP value, the better the filtering effect of
the harmonic power filter. Therefore, based on meeting all
the variable constraints, this paper searches for the optimal
solution to reduce harmonic pollution as much as possible.
In the following work, we list the constraint conditions in
detail.

On the one hand, the present study selects a certain range
of values as below to limit the filter compensation parameters
(XL , XC , and K ):
• 0 ≤ XL ≤ 1
• 0 ≤ XC ≤ 10
• 0 ≤ K ≤ 20
On the other hand, the limitation of the harmonic level is

also required by the IEEE standard 519-2014 [44]:

• VTHD ≤ VTHDlim, VTHDlim is set to limit VTHD,
which expresses the rated voltage percentage corre-
sponding to the bus voltage level at the PCC.

• ITHD ≤ ITHDlim, ITHDlim expresses a standard current
percent relates to the system short circuit ratio for limit-
ing ITHD value.

Furthermore, there is another parameter ε(<10−2) that
cannot be ignored in this research, the parameter stands for
the error value between the desired power factor (PFgoal)
and the actually returned power factor (PF), the definition
is indicated as formula (26).

PF = PFgoal ± ε (26)

With regards to the optimization objective, we introduce
the parameter HPAPP in [11] proposed by Biswas et al.
Asmentioned in previous studies,HPAPPmeans the deviation
between THD values and their control boundaries as written
below:

HPAPP = |VTHDlim − VTHD| + |ITHDlim − ITHD|

(27)

f (XL ,XC ,L) = −HPAPP (28)

From formula (27), we can observe that the larger the
HPAPP, the smaller the values of THD (i.e., VTHD and
ITHD) since they are within the corresponding range of
positive values and have a tendency to move away from the
control boundaries. Moreover, it is clear from formula (28)
that when the system meets the constraint conditions, there
is an optimization function with ‘−HPAPP’ (negative) as the
single objective, the function variables include the passive
inductance (XL), the capacitance reactance (XC ), and the gain
of the active filter (K ). Furthermore, the value of HP is
calculated by the system compensator parameters (XL ,XC ,
and K ) determined in the above function, so the harmonic
pollution (HP) is related to HPAPP.

In this paper, the heuristic search scheme is adopted to
achieve the minimum of the optimization function which is
to maximize HPAPP. As a result, the THD value is reduced
effectively, and then the original aim of diminishing the har-
monic pollution (HP) in this study is realized.

III. RELATED WORK OF ALGORITHMS
A. META-HEURISTIC ALGORITHMS
Meta-heuristic algorithms fall in the category of stochastic
optimization, and they are not dependent on the surface
gradient for optimization [45]. All meta-heuristics are con-
structed based on intuitive or empirically. They combined a
random algorithm and a local search algorithm, most of them
draw inspiration from nature. Although there are specific
differences in the optimization mechanism of various meta-
heuristic algorithms, the optimization process is relatively
similar [45].

The earliest meta-heuristic algorithm that has become a
research hotspot may be the genetic algorithm (GA) proposed
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by Holland in 1975 [46]. GA is a global parallel search algo-
rithm inspired by the biological evolution and genetic meth-
ods of survival of the fittest. Another typical meta-heuristic
algorithm PSO with global optimization performance was
proposed byKennedy and Eberhart in 1995 [34]. It is a global
random optimization algorithm based on swarm intelligence,
which imitates the foraging behavior of birds. In 1997 [47],
Storn et al. proposed a stochastic search algorithm differential
evolution algorithm (DE) for real variable function optimiza-
tion, which is a further expansion of genetic algorithms, using
selection, crossover, and mutation to update population indi-
viduals. Similar to PSO, the artificial bee colony algorithm
(ABC) is also a swarm intelligence algorithm proposed by
simulating the behavior of biomeswhich simulates the behav-
ior of bees. It was first proposed by Karaboga in 2005 [48],
and it is also one of the most popular meta-heuristic algo-
rithms. In 2011 [35], Rao et al. proposed the TLBO which
simulates the traditional classroom teaching process, and it
does not require any algorithm-specific parameters. The opti-
mization process of the algorithm is divided into the teacher
phase and the learner phase. Another popular meta-heuristic
algorithm moth-flame optimization algorithm (MFO) was
proposed byMirjalili in 2015 [33], theMFO algorithm is also
a new swarm intelligence bionic algorithm which has been
successfully applied for many problems.

In recent years, more and more new meta-heuristic algo-
rithms have been proposed and widely used in engineering
and artificial intelligence. Most recently proposed new algo-
rithms are improved algorithms for specific problems, such as
L-SHADE [11], MLBSA [17], CSSA [32], etc. Nevertheless,
there are still many algorithms inspired by nature, such as
multi-verse optimizer (MVO) [36], grasshopper optimisation
algorithm (GOA) [49], and so on.

B. SALP SWARM ALGORITHM (SSA)
The salp swarm algorithm proposed by Mirjalili is a group
algorithm based on salps behavior [18]. Salps belonging to
the Salpidae family, its body construction is transparent and
bucket. Besides, the swarming behavior of salps looks like a
chain, so the salp swarm is called the salp chain.

The salp chain can be divided into a leader and follow-
ers, corresponding to two different stages called LP and FP,
respectively. The basic introduction to these two phases is as
follows.

1) LEAD PHASE (LP)
The inspiration of the algorithm was the salps’ behavior and
the synergy effect for searching the food target in the abyssal
sea. The target of the salps population is the food source
inside the deep water. In the LP, the salp of the leader group
only moves based on the food source, then the position of
leader is updated as follows:

X1
j =

{
Fj + c×

[(
ubj − lbj

)
× r1 + lbj

]
r2 ≤ 0

Fj − c×
[(
ubj − lbj

)
× r1 + lbj

]
r2 > 0

(29)

where X ij represents the position of the ith salp in the jth
dimension, there is only a leader in this algorithm, so X1

j
shows the leader slap’s position in the jth dimension. Fj indi-
cates the food target position in the jth dimension; ubj is
the upper bound in the jth dimension when lbj is the lower
bound in the jth dimension. The factor cwhich can be counted
as Eq. (30) is set to balance exploration and exploitation;
r1 and r2 are two random numbers between 0 and 1.

c = 2e
−

(
4l
L

)2
(30)

where l shows the current iteration and L shows themaximum
iteration. These parameters and equations determine the posi-
tion of the updated leader in the jth dimension. Thementioned
above position update process is the lead phase (LP).

2) FOLLOW PHASE (FP)
After updating the position of the leader, the SSA began
to update the followers’ position during the FP. In the FP,
the salps of the follower group update their positions accord-
ing to the positions of other salps. Here we can calculate the
next position for each follower by using Eq. (31):

X ij = X ij +
1
2

(
X i−1j − X ij

)
(31)

As described in the LP, X ij means the ith salp in the jth
dimension,X i−1j represents the previous salp in the jth dimen-
sion. This equation is derived from Newton’s laws of motion,
and through Eq. (31) the follower group can be regenerated.
The above process is the original FP.

C. SPIRAL FLIGHT SEARCH (SFS) STRATEGY
The spiral flight search strategy was formulated in the MFO
algorithm proposed in 2015 [33]. The MFO algorithm is
a new swarm intelligence bionic algorithm, and the whole
population is composed of a swarm ofmoths. The spiral flight
search strategy acts as a navigation behavior in the group,
which simulates the process of moths circling towards the
flame.

In MFO, each moth flies to its matching flame through
a spiral shape. The helix line should meet the conditions
that start from moth and end to the flame. Also, the floating
range cannot exceed the search space. Based on these three
conditions, the mathematical simulation of the spiral flight
behavior in the MFO algorithm can be concluded as the SFS
strategy, which can be mathematically described as:

X ij = F ij + e
bt
· cos 2π t ·

∣∣∣F ij − X ij ∣∣∣ (32)

where X ij means the ith moth in the jth dimension which is
similar to the expression in the salp algorithm; F ij means the
corresponding flame of the ith moth in the jth dimension, and
b is a constant coefficient defining the flight search’s helix
shape; t is a uniformly distributed random number among
[−1, 1]. In the case of different t values, different moths fly
helically towards the matching flame in one dimension are
illustrated in Fig. 6.

154822 VOLUME 8, 2020



L. Zhang et al.: ISSA With SFS for Optimizing HAPFs’ Parameters

FIGURE 6. SFS strategy of moths, the helix of flight search.

IV. THE PROPOSED ALGORITHM
Asmentioned above, the original SSA divides the salp swarm
into two groups for seeking the optimal solution, and the two
groups correspond to two different phases, respectively. In the
LP, the leader salp approaches the food source according
to the upper and lower limit of variables. Although the LP
attempts to optimize by moving towards the food source,
the randomness of random numbers (r1, r2) may have a
significant impact on the optimization effect. Furthermore,
during the FP, the follower salp only selects the previous
one salp to switch information. As a result, the exchanged
information may be limited, which may limit the exploitation
capability of the followers, and lead to poor local searching
ability. To optimize the performance of SSA, we propose the
ISSA-SFS algorithm.

For making a better tradeoff between exploration and
exploitation of the newly proposed algorithm, the two phases
are improved to exploit and explore the salp population,
respectively. So, the leader group should improve its global
search capability, while the follower group should enhance
the diversity and local search capability of the population.

A. IMPROVED LEAD PHASE (ILP)
During the LP of the original SSA, the leader salp is the
individual with the currently best fitness value. Note that only
one single leader in the leader group is led by the food source
and limited by boundary conditions. Moreover, due to the
structure of the search space is similar to chain structure,
the updating degree of salp search positions in the LP is
still low, and the uncertainty is large. After the analysis,
the original SSA can be optimized by improving its search
space.

The ISSA-SFS adopts a multiple leader (ML) strategy
that multiple leaders are selected to lead the salp swarm
approaching the food target, and then this strategy evolves the

single-chain structure to a multi-chain structure. Therefore,
the algorithm reduces the uncertainty of the search process
and avoids the population being stuck in local optimization
due to a single search space direction. At the same time,
we introduce the spiral flight search (SFS) strategy in the
MFO algorithm to find new promising areas and make the
population find a better position more efficiently.

Note that the number of leaders in the leader group is
denoted as N1. The value of N1 can be adjusted as a param-
eter that is always greater than one.

The improved lead phase (ILP) is given as:

X ij = F ij + 4e2bt · cosπ t ·
∣∣∣F ij − X ij ∣∣∣ (33)

where X ij represents the ith salp’s position in the jth dimen-
sion. Fj indicates the food target position in the jth dimension.
The constant b is the coefficient defining the flight search’s
helix shape, the parameter is set to balance exploration and
exploitation; t is a random number in the range [−1, 1] can
be counted as Eq. (35), it is related to an adaptive parameter
‘a’ which can be formulated by Eq.(34) as follows:

a = −1−
nfes

max _nfes
(34)

t = rand · (a− 1)+ 1 (35)

B. IMPROVED FOLLOW PHASE (IFP)
As mentioned above, selecting only the previous one salp in
FP for information exchange may lead to poor local search
capabilities and limited capabilities to follow. In order to
overcome these shortcomings, we develop a random learn-
ing (RL) strategy for the following new phase IFP.

In the FP of the original SSA, the new position of each salp
is only related to the previous one salp’s position, the position
of each follower is updated according to its distance from
the last individual. By this inspiration, in order to enhance
the diversity of the population, we spread different samples
across the solution space. The new algorithm ISSA-SFS
employs two other salps to update the salp’s position as sam-
ples, and then each follower moves according to the distance
between the two salps. The above operation is the proposed
RL strategy which enables the improved follow phase (IFP)
to prevent salps from repeatedly searching the same solution
area, and the exploitation ability of follower group individuals
with poor fitness value is enhanced.

The IFP is formulated as:

X ij = X ij +
1
2

(
X s1j − X

s2
j

)
(36)

where s1, s2 are random integers in {1, NP, and they are all
different from i, and they are different from each other.

C. PROCEDURE OF ISSA-SFS
The execution procedure of ISSA-SFS is described by the
pseudo-code in Algorithm 1 and the flow chart in Fig. 7 as
follows. Here, the parameter ‘‘N1’’ is set to the integer clos-
est to the value of NP/3, which means the leader group is
approximately the first third of the entire salp swarm.
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Algorithm 1 ISSA-SFS Algorithm
INPUT: Control parameters: NP, max_nfes
OUTPUT: The optimal solution F, the best fitness

value f [F]
1: /∗Initialization∗/
2: Set nfes = 0;
3: Randomly initialize each salp Xi, i ∈ {1, 2, . . . ,NP}

considering ub and lb;
4: Evaluate the fitness value f [Xi] of each salp,

i ∈ {1, 2, . . . ,NP}
5: nfes = nfes + NP;
6: Ranking the whole NP individuals salps’ fitness values;
7: F = the best search agent;
8: /∗Main Loop∗/
9: while (end condition is not satisfied) do

10: l = l + 1;
11: update parameters a and t
12: for each individual (Xi)
13: //improved lead phase
14: if (i >= 1 && i < N1+ 1)
15: update the position of the leader group individuals

by Eq. (33)
16: //improved follow phase
17: else if (i > N1 && i < NP+ 1)
18: Update the position of the follower group

individuals by Eq. (36)
19: end if
20: end for
21: Modify the salps according to ub and lb
22: nfes = nfes + NP
23: Compare the fitness values of the salps and return the

best salp F
24: end while

D. TIME COMPLEXITY ANALYSIS OF ISSA-SFS
The computational complexity of the original SSA mainly
relies on two parts, namely the position updating pro-
cess O(PUP) and the position evaluating process O(PEP).
Suppose that D, N , and L are the number of dimensions,
the solution number, and the maximum number of iterations,
respectively. Therefore, O(PUP) and O(PEP) are assessed as
O(L∗N ∗D) andO(L∗N ∗Cof ), whereCof indicates the cost
of the objective function. The total computational complexity
of the SSA algorithm can be formulated as:

O(SSA) = O(L ∗ (N ∗ D+ N ∗ Cof )) (37)

In order to enhance the searching ability of the population,
we used the Quicksort algorithm in ISSA-SFS to sort the
salp swarm according to the fitness value. In ISSA-SFS, its
computational complexity mainly depends on three parts:
position updating process O(PUP), position evaluating pro-
cess O(PEP), and sorting mechanism of salps O(SORT ).
Similarly, O(PUP) and O(PEP) are also assessed as O(L ∗
N ∗ D) and O(L ∗ N ∗ Cof ). Particularly, the sorting
algorithm is executed in each iteration, and O(SORT ) is

between O(NlogN ) and O(N 2) corresponding to the best
and worst case, respectively. Therefore, in the worst case,
the overall computational complexity of ISSA-SFS can be
assessed as:

O(ISSA− SFS) = O(L ∗ (N ∗ D+ N ∗ Cof + N 2)) (38)

From the above analysis, the computational cost of the
proposed ISSA-SFS is slightly more than the SSA algorithm,
which is a reasonable price to pay for better performance.

V. EXPERIMENTAL RESULT AND DISCUSSION
A. TEST CASES AND DATASET
For the two HAPF configurations mentioned in section 2 of
this article, four case studies are conducted using ISSA-SFS,
respectively. The specific dataset is listed as Table 1 below,
where the supply bus voltage is 4.16kV, and the total three-
phase apparent load is (5100 + j4965) kV. Furthermore,
the system’s short-circuit capacity is 80MVA. The first three
cases mentioned above are from the actual plant within an
example of IEEE [50], and the last one is the same as [11].
The source and load harmonics of these cases are higher than
in many other cases, so it is difficult to obtain appropriate
optimized parameters relatively, which implies considerable
research significance.

TABLE 1. Cases studies of an industrial plant under study [11].

In this work, we assume that the source harmonics and
load harmonics are time-invariant. Additionally, the source
resistances Rh and load resistances RLh denote unrelated to
frequency, their values are illustrated in Table 1 which cor-
responds to R1 and RL1 respectively. In the uncompensated
system, the displacement power factor of 71.65% is linked
to the total apparent load value, and it can be enhanced to
95% by adding 3289 kvar reactive power. The power factor
value of 95% is selected as PFgaol in this study. Moreover,
the total harmonic distortion factor is limited under 5% in
this low-voltage system under study, so both the value of
VTHDlim and ITHDlim are considered to be 5% for lower
THD. Note that meeting these constraints are essential for
evaluating the objective function, as a numerical optimization
technique, the evaluation process included an exact penalty
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FIGURE 7. Flow Chart of ISSA-SFS.

VOLUME 8, 2020 154825



L. Zhang et al.: ISSA With SFS for Optimizing HAPFs’ Parameters

FIGURE 8. Harmonic content for all cases with compensated config.1 ‘APF in series with shunt passive filter.’

FIGURE 9. Harmonic content for all cases with compensated config.2 ‘combined series APF and shunt passive filter.’

function which is used for penalizing the violations of con-
straints by discarding the abnormal solutions. For this reason,
we propose a concept of pass rate, which is counted based
on the rate of obtaining feasible solutions that satisfy the
boundaries. The pass rate is an assessment indicator that
can be utilized for analyzing the stability of optimization
techniques.

B. COMPENSATING EFFECT OF HAPF CONFIGURATIONS
HAPF optimization aims to suppress the harmonics in the
power system by determining the compensator parameters.
Therefore, the better the parameters of the compensator,
the better the effect of harmonic suppression. In general,
the determination of the control gain is complicated, but it
has a more obvious impact on the effect because the gain K
of the active filter has an inverse relationship with the voltage
harmonics on the system bus. When the gain increases, the
reduction of voltage harmonics will lead to a better com-
pensation effect directly [42]. According to the test results,
although the circuits and filtering principles of the discussed
HAPF topologies are different, the system parameters of the
two HAPF topologies are almost similar when studying the
medium voltage system.

For the discussed config.1 ‘APF in series with shunt pas-
sive filter’ and config.2’ combined series APF and shunt
passive filter’, the optimized total harmonic distortion is
decreased obviously as Figures 8 and 9 show, respectively.
The individual harmonics of case 3 and case 4 are signifi-
cantly higher than the first two cases, whichmeans challenges
to some extent. Nevertheless, the illustrated technique has
still provided possible results that the compensated individual
harmonics of load voltage and supply current are within the
IEEE standard [44].

C. RESULTS OF THE COMPARED ALGORITHMS
1) PARAMETER SETTINGS
In ISSA-SFS, the number of leaders is adjustable, and the
value of N1 plays an important role in balancing the explo-
ration and exploitation of ISSA-SFS. Thus, it is necessary
to determine a suitable N1 value for obtaining more sat-
isfactory results. For intuitive comparison, we evaluate the
ISSA-SFS with three different N1 values shown in Table 2.
It can be observed that ISSA-SFS is slightly sensitive to
the value of N1. Although the results under different con-
ditions are different, the performances of ISSA-SFS with
different parameters are comparable. In terms of the HAPF
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TABLE 2. Statistical results of ISSA-SFS with different settings of N1
values.

TABLE 3. Control parameter setting of different algorithms.

parameter extraction problem studied in this paper, we
set N1 = [NP/3].
In Section 5.1 and 5.2, the filtering effect of ISSA-SFS

is verified. To verify the competitiveness, we compared the
experimental statistical results of ISSA-SFS and various other
well-established algorithms. Including the original SSA [18],
MFO [33], MVO [36], PSO [34], TLBO [35], and a recent
proposed high-performance method (L-SHADE) [11]. Note
that MFO and MVO have been proved to be competitive in
solving real problems with unknown search spaces [48]. Both
PSO and TLBO are classic and popular algorithms widely
used in diverse fields. As for L-SHADE, it is a recently
developed competitive algorithm that performs well in HAPF
parameter estimation. Specifically, Table 3 shows the param-
eter settings of the above algorithm. These parameters are
selected through multiple tests to obtain relatively good
parameters, and some of these basic algorithms have more
than one form of search space. For example, concerning the
PSO algorithm, the test is adopted with the linear decreasing
inertia weight (LDIW), which is recognized to be the best
dynamic strategy.

For the above algorithms, the maximum number of
function evaluations is equally set to 50000 in each run.
Simultaneously, the obtained data can guarantee the con-
sistency of the output results when we run 31 times for
each algorithm. Furthermore, all the comparative algo-
rithms are implemented in Matlab R2018b and then exe-
cuted on a PC with an Intel Core i5-8265U CPU @
3.40 GHz with 8GB RAM, under the Windows 10 64-bit OS.
Thus, the comparison between the optimization algorithms
is fair.

2) STATISTICAL ANALYSIS
In this part, the mentioned harmonic pollution (HP) in equa-
tion (25) is reported in Tables 4 and 5 as follows. Table 4
shows the statistical results of the HAPF config.1, includ-
ing the best, worst, mean, standard deviation of HP values,
and the total CPU time for the seven algorithms shown
in Table 4. Likewise, these values of HAPF config.2 are
reported in Table 5. As is well known, the best value means
the accuracy, and the mean value means the reliability of the
technique, so the following data can reflect the algorithms’
performance straight. For the sake of intuitive compari-
son, the minimum of best, worst, mean, standard deviation,
the least running time, and the maximum passing rate are all
highlighted in boldface.

As can be seen from Table 4, in terms of the best value, the
ISSA-SFS can reach the optimum solution when the algo-
rithm is used to optimize the HAPF configuration 1. Further
analysis finds that the best value of almost all algorithms
except the original SSA in case 1 can obtain the minimum
(0.236), and only SSA and TLBO cannot reach the best value
in cases 3 and 4. Nevertheless, a significantly optimal value
(2.726) is achieved only by ISSA-SFS in case 2, which shows
the excellent accuracy of ISSA-SFS. For the worst value,
L-SHADE takes the minimum of worst values in case 2, and
ISSA-SFS provides the second-best results simultaneously.
Furthermore, ISSA-SFS provides the optimum HP values
under other study cases which is significantly lower than
other algorithms. As for the mean level of HP, ISSA-SFS
outperforms other algorithms obviously in all cases. The
standard deviations of ISSA-SFS are also smaller than other
algorithms in cases 1 and 4.

For the HAPF configuration 2, the best, worst, mean,
and standard deviation results are not significantly changed,
the performance of each algorithm can also be indicated
in Table 5. Based on these statistical results, obviously
that ISSA-SFS causes significant control upon HP percent,
the accuracy, and robustness of ISSA-SFS are better than
other algorithms. MFO and L-SHADE are also highly com-
petitive for attaining the best values. However, their mean
level and worst level are not good indeed. As for MVO
and TLBO, their results are unstable, but the overall per-
formance of TLBO is better than MVO due to the apparent
difference between their passing rates. Another comparable
algorithm, PSO, can provide the optimal values as data shows,
but its passing rate is the lowest among these discussed
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TABLE 4. Statistical results for different algorithms with HAPF config.1.

TABLE 5. Statistical results for different algorithms with HAPF config.2.

algorithms, which means that the algorithm is difficult to
meet the constraints, so PSO is unsuitable for this specific
problem.

With respect to the total CPU time, SSA takes significantly
less operational time than other comparative algorithms in all
cases. According to the results, ISSA-SFS cannot spend the
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TABLE 6. Compensated parameters of best results obtained by ISSA-SFS.

TABLE 7. Effects of different strategies in ISSA-SFS for all cases.

least amount of running time, because we employed a sorting
mechanism to improve performance. Despite this, ISSS-SFS
can still provide better results in the case of relatively little
time-consuming.

To fully assess the performance of ISSA-SFS, the
Wilcoxon signed-rank test [51] with a significance level
of 0.05 between ISSA-SFS and each of the other algorithms
are illustrated in Tables 4 and 5, which is a famous nonpara-
metric statistical hypothesis test. Symbol ‘‘+1’’ and ‘‘−1’’
denotes that ISSA-SFS has obviously better and worse per-
formance in the same case, symbol ‘‘0’’ means that there is no
significant difference between ISSA-SFS and the compared
algorithm. For example, the comparative results between
ISSA-SFS and L-SHADE include five symbols ‘‘1’’, two
symbols ‘‘0’’, and one symbol ‘‘−1’’ in the eight cases. Five
symbols ‘‘1’’ indicate that ISSA-SFS provides 5 consider-
ably superior solutions out of the 8 cases compared with
L-SHADE; two symbols ‘‘0’’ mean that ISSA-SFS supplies
two statistical equivalent results to L-SHADE on 2 out of
the 8 cases; one symbol ‘‘−1’’ indicates that ISSA-SFS has
significantly worse solutions than L-SHADE on one out of
the 8 cases.

From the test results, it can be observed that ISSA-SFS sup-
plies considerably better results than all competitors in most
cases discussed. The results further confirm that ISSA-SFS
achieves the best overall performance among the compared
algorithms.

Based on the above data obtained in the experiment, we can
list the harmonic distortion values, and the compensated
parameters corresponded to the lowest harmonic pollution
illustrated in Table 6. By using these HAPF compensated
parameters, we can achieve the goal of suppressing harmonic
pollution in the design of the HAPF filter procedure, thereby
reducing the power system loss and improving the quality of
power owned by the user.

D. EFFECTS OF DIFFERENT STRATEGIES IN ISSA-SFS
To verify the impact of the three new strategies in ILP
and IFP on ISSA-SFS, we conducted some experiments
based on ISSA-SFS and three ISSA-SFS variants (denoted as
ISSA-SFS-1, ISSA-SFS-2, and ISSA-SFS-3, respectively).
The proposed algorithm ISSA-SFS integrates three different
strategies: the spiral flight search (SFS) strategy, the multiple
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FIGURE 10. Convergence curves of all algorithms in study cases.

leader (ML) strategy, and the random learning (RL) strategy.
Particularly, different from ISSA-SFS that combines three
strategies, the ISSA-SFS-1 combines the ML strategy and
the RL strategy, the ISSA-SFS-2 combines the SFS strategy
and the RL strategy, and the ISSA-SFS-3 combines the SFS
strategy and the ML strategy. The update processes of the
mentioned algorithms are summarized and listed in Table 7.
Additionally, their experimental results, the rank of mean
values are also illustrated in Table 7. Note that the parameter
setting and other conditions are the same as the preceding
experiments. Furthermore, the average rank (i.e., the average
of the ranks corresponding to the eight cases) and the final
rank on all cases of HAPF configurations are listed in Table 8.

TABLE 8. Rankings of ISSA-SFS and its variants.

From Tables 7 and 8, ISSA-SFS can be seen to achieve
the best or second-best results for most cases. In terms of all
criteria, ISSA-SFS is superior to ISSA-SFS-1, ISSA-SFS-2,
and ISSA-SFS-3. The satisfactory results indicate that the
combination of the three different strategies dramatically
improves the performance of ISSA-SFS.

As for the three ISSA-SFS variants, their results are all
worse than ISSA-SFS, which means the three strategies are
beneficial to seek out the optimal solution. In summary,
all three new strategies are indispensable, removing any

strategy is inadequate to achieve promising results, but inte-
grating them will lead to excellent performance. The superior
performance of ISSA-SFS confirms the appropriate balance
between exploration and exploitation capability indeed ben-
efits from the three strategies introduced by this research.

From the above experimental analysis, the accuracy and
robustness of ISSA-SFS are verified. In order to analyze
the superiority of ISSA-SFS further, the convergence curves
of each comparison algorithm on the best value perfor-
mance based on the 31 independent runs are described
in Figure 10. Although PSO converges faster than ISSA-SFS
in cases 3 and 4 of the two configurations, ISSA-SFS finds a
smaller value than PSO. It is obviously seen that ISSA-SFS
can achieve the best convergence characteristic among the
mentioned seven algorithms in most study cases.

In conclusion, the above comparable results illustrated that
the ISSA-SFS outperforms over the original SSA and other
algorithms. Besides, the ISSA-SFS features superior search-
ing accuracy, stronger robustness, and faster convergence
speed when used to optimize the parameters of HAPF, its
performance is confirmed to be satisfactory overall.

VI. CONCLUSION
The parameter identification of HAPF topologies is a com-
plex multimodal issue involving numerous local optima, so it
is very tricky for most existing algorithms to find the opti-
mal global solution. To determine the optimal compensator
parameters for HAPF configurations, we propose a novel
application of an improved SSA called ISSA-SFS. The exper-
imental results show that the proposed ISSA-SFS obtains
the promising performance for recognizing the optimal
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parameters of HAPF. The reason behind this fact that is
given as follows. (1) In the ILP, the spiral flight search
(SFS) strategy is used to improve the global search capability
and avoid premature convergence. (2) In the ILP, a multiple
leader (ML) strategy is developed to select multiple leaders
for approaching the food source, which further improves the
global search capability. (3) In the IFP, a simple random learn-
ing (RL) strategy is presented to learn two different random
individuals, efficiently improving the local exploitation and
accelerate the convergence speed. (4) By rationally combing
the SFS strategy, the ML strategy, and the RL strategy with
ILP and IFP, the proposed ISSA-SFS can effectively balance
the exploitation and exploration perform in the entire iteration
progress and find the optimal parameters of HAPF.

However, the proposed algorithm ISSA-SFS is relatively
higher time consuming than SSA because of a sorting mech-
anism of salps in the ISSA-SFS. Therefore, the ISSA-SFS
algorithm takes longer CPU time than the original SSA. In the
future, we can conduct the sorting mechanism intermittently
to decrease the computational of the sorting mechanism in
each iteration. Furthermore, the new strategies from other
meta-heuristic algorithms can be introduced into the pro-
posed ISSA-SFS to replace the three proposed strategies of
the ISSA-SFS and further improve the performance. In addi-
tion, the ISSA-SFS will be applied for optimizing the renew-
able energy system, photovoltaic cells system, and power
point tracking issues.
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