
Received June 9, 2020, accepted June 28, 2020, date of publication July 3, 2020, date of current version July 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007028

Projection Based Large Scale High-Dimensional
Data Similarity Join Using MapReduce Framework
YOUZHONG MA 1,2, (Member, IEEE), RUILING ZHANG1, ZHANYOU CUI1, AND CHUNJIE LIN1
1School of Information and Technology, Luoyang Normal University, Luoyang 471934, China
2Henan Key Laboratory for Big Data Processing and Analytics of Electronic Commerce, Luoyang 471934, China

Corresponding author: Youzhong Ma (ma_youzhong@163.com)

This work was supported in part by the Training Plan for Young Backbone Teachers of Colleges and Universities in Henan under Grant
2017GGJS134, in part by the Science and Technology Research Plan Project of Henan Province under Grant 202102210357, in part by the
Science and Technology Opening Up Cooperation Project of Henan Province under Grant 172106000077 and Grant 152106000048, in part
by the National Natural Science Foundation of China under Grant 61602231, in part by the Outstanding Talents of Scientific and
Technological Innovation in Henan under Grant 184200510011, and in part by the National Key Research and Development
Program under Grant 2016YFE0104600.

ABSTRACT Similarity join has been widely used in many data analysis and data mining applica-
tions, we mainly focus on the scalability and performance problem of similarity join query on massive
high-dimensional data set. p-stable distribution based projection scheme can implement dimension reduc-
tion effectively. Three novel approaches based on projection scheme are proposed to deal with massive
high-dimensional data similarity join problem: Single projection method, Multiple projection method and
Projection space partitioning method. Comprehensive experimental tests were performed to evaluate the
performance of the above approaches. The experimental results show that the proposed approaches in this
paper have good performance and scalability.

INDEX TERMS Similarity join, MapReduce framework, high-dimensional data, p-stable distribution,
multiple projections.

I. INTRODUCTION
With the development of data acquisition technology and
data acquisition equipment, data size, data precision and
data dimension are increasing rapidly in an unprecedented
way.The dimensions of many types of data can reach thou-
sands or ten thousands of dimensions, such as image, video,
trajectory, time series and so on. High-dimensional data sim-
ilarity join can figure out all the similar data pairs whose
distance is not bigger than the predefined distance threshold
from the massive high-dimensional data set, which plays
an important role in many fields, such as image clustering,
document de-duplication, similarity video detection, etc.

The calculation cost of the similarity join on large scale
high-dimensional data is always very expensive. With the
increasing of data size and dimensionality, the traditional
centralized processingmethod and index-based algorithm can
no longer satisfy the performance requirements.

MapReduce [1] was first proposed by Google as a dis-
tributed and parallel computing model with high scalability,

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

fault tolerance and high availability which is used to deal
withmassive data analysis and processing attractingmore and
more attention from academia and industry. We try to deal
with the similarity join problem onmassive high-dimensional
data by usingMapReduce framework and provide the follow-
ing contributions:

• Multiple projections based filtering scheme was pro-
posed which can make sure that the recall and the fil-
tering effect are both relative higher;

• Three novel approaches based on projection scheme
were proposed which can deal with massive high-
dimensional data similarity join problem efficiently:
Single projection method, Multiple projection method
and Projection space partitioning method.

• Detailed experiments were performed to evaluate the
performance of the proposed approaches in this paper,
the results show that our proposed methods have better
performance and scalability compared with other exist-
ing methods.

This paper is organized as the following: Section 2 makes
a detailed survey about the related works on similarity

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121665

https://orcid.org/0000-0002-7359-6592
https://orcid.org/0000-0003-2601-9327

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

join, and analyzes their advantages and disadvantages; The
third section gives the definition of high-dimensional data
similarity join, introduces some relevant basic knowledge
and proves relevant theorems; Three novel similarity join
algorithms are proposed respectively in section 4, 5 and
6 which are Single Projection based Similarity Join Algo-
rithmUsingMapReduce,Multiple Projections based Similar-
ity Join Algorithm Using MapReduce, Projection Space Par-
titioning based Similarity Join Algorithm UsingMapReduce;
Section 7 conducts comprehensive experiments; In Section 8,
some conclusions and expectations about the work are made.

II. RELATED WORKS
Similarity join is an important operation which is widely used
in many applications, the scholars have conducted compre-
hensive research works on this problem. Pang et al. [2], Lin
and Wang [3] and Yu et al. [4] mainly review the research
works of similarity join in centralized environment. In view
of the performance and scalability problems faced by large
scale data similarity join, some research works attempted to
use MapReduce framework to solve them. Pang et al. [5]
summarizes the works of massive data similarity join based
on MapReduce framework, Silva et al. [6] and Kimmett et al.
[7] make experimental analysis and comparison of the typical
similarity join algorithms based on MapReduce framework.
Similarity join problem can be divided into the following cat-
egories according to the different types of data processed: set
similarity join, vector similarity join, spatial data similarity
join, probabilistic data similarity join, string similarity join
and graph data similarity join.

A. SET SIMILARITY JOIN
Lin [8] firstly exploited the similarity join problems based on
MapReduce framework and proposed brute force algorithm
and index-based algorithm. Each set pair needs to be com-
pared once according to the brute force algorithm because
it didn’t adopt any filtering scheme. Index-based algorithm
can achieve a certain degree of filtering, but the filtering
effect is not ideal and there are many duplicated calculations.
Vernica et al. [9] proposed a prefix filtering based massive
set similarity join approach. The improvement of literature
[10] compared to literature [9] is that besides prefix filtering
scheme, literature [10] also proposed length filtering scheme,
so the filtering effect is further enhanced. Rong et al. [11]
proposed a multiple prefix filtering technique which can
further reduce the number of the candidate pairs. A cost
model was also proposed to decide the prefix number. The
scheme based on prefix filtering technology also has some
shortcomings. Firstly, network communication cost is relative
high: each set has to be replicated many times, the number of
replications equals the length of the prefix, so for a longer
set, the data replication rate is too high, which will lead to
a higher network communication cost; secondly, there exist
too many duplicated comparisons: for any two sets, if there
are k common items in their prefix, the comparison will be
repeated k times.

Elsayed et al. [12] made full use of the characteristics
of MapReduce framework and the structure of Word-Count
MapReduce program, proposed a document similarity join
approach, which can effectively deal with the problem of
duplicated comparisons. Literature [13] extended the types of
data objects so that it can process set, multiple set and vector.
Similarity measures can be inner product, cosine similarity
and Jacquard similarity. Both of the solutions can effectively
avoid duplicated comparisons, do not need to transmit the
document itself, only transmit the corresponding weight of
each word, which can greatly reduce the cost of network
communication. However, there still exist some limitations
in this kind of scheme. Any two documents containing only
one common element need to be compared once, and the
filtering function of similarity threshold and prefix are not uti-
lized, so many unnecessary candidate pairs will be generated.
Baraglia et al. [14] proposed a hybrid solution by combining
the advantages of prefix filtering scheme with Word-Count-
Like scheme. This solution can effectively reduce the number
of candidate pairs and avoid duplicated computation. Each
pair is calculated only once, but additional data transmission
is needed.

Rong et al. [15] and Deng et al. [16] proposed
partition-based similarity join approached for set data. Based
on the traditional Locality Sensitive Hashing technology,
PLSH [17] proposed a new banding technique using flexible
thresholds, which can greatly reduce the number of false
positive examples, improve the computational efficiency, and
achieve the balance between false positive examples and false
negative examples. Amagata et al. [18] proposed a Local-
Index-based dynamic set kNN selfjoin approach(LI-DSN-
Join) which can deal with the KNN Join problem on dynamic
set more efficiently. Bellas and Gounaris [19] conducted a
comprehensive presentation and comparative evaluation of
GPU accelerated set similarity joins which provided a good
reference for other following related works.

B. VECTOR SIMILARITY JOIN
Luo et al. [20] proposed a novel dimension reduction
scheme called Basic Dimension Aggregation Approxima-
tion(abbreviated as BDAA) which was motivated by Pairwise
Aggregation Approximation(abbreviated as PAA), the dis-
tance of the DAA representations is the lower bound of
the original distance of the vectors, so DAA can prune
unqualified pairs without calculating their original distances.
Luo et al. [20] also designed a parallel similarity join algo-
rithm based on MapReduce framework using BDAA which
can filter effectively at a lower cost, and the time complexity
is still O(n2), that is, any two vectors need to be compared
once in low-dimensional space.

Seidl et al. [21] proposed a massive vector similarity join
approach by using grid partitioning. This method has good
parallel characteristics and can be easily implemented in
MapReduce framework. The disadvantage of this method is
that it is only suitable for the situation of low dimension. Once
the dimension is high, its performance will degrade severely.

121666 VOLUME 8, 2020

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

Fries et al. [22] proposed a novelMapReduce based similarity
join method called PHiDJ which can improve the similarity
join speed through grouping dimensions and variable length
grid dividing. Seidl et al. [21] adopted uniform gird dividing
method (equal width), while Fries et al. [22] adopted variable
length grid dividing method, which has better adaptability
and filtering effect. Another similarity join algorithm called
MRSJ_IDS which can support incremental data sets was
proposed in [23].

SAX-Based HDSJ [24] conducted dimension reduction
for high-dimensional vectors using Piecewise Aggregate
Approximation technique, the original high-dimensional vec-
tor can be converted into PAA vector.The PAA vector is
converted into SAX string by using Symbolic Aggregate
Approximation(SAX) which can be used to filter effectively.
Ma et al. [25] proposed a multi-PAA based similarity join
approach called MP-V-SJQ which can further increase the
filtering effect and reduce the filtering cost on the basis of
SAX-Based HDSJ [24]. In order to reduce unnecessary com-
parisons and achieve load balancing among computing nodes,
Grid-Based SJ [26] proposed a similarity join approach based
on dynamic grid partition.

Zhang et al. [27] were the first to study the problem
of KNN join based on MapReduce framework. In order to
reduce the cost of the comparisons and network transimis-
sion,Zhang et al. [27] proposed a novel KNN join method
called zKNNJ which can return approximate results. Lu et al.
[28] proposed an exact KNN similarity join approach, which
partitions data mainly based on the Voronoi Diagram. Dai and
Ding [29] proposed exact KNN simialrity join algorithm and
the approximate KNN similarity join algorithm based on the
nested loop join framework.

Kim and Shim [30] and Ma and Ci [31] proposed
Top-k similarity join solutions respectively for massive
high-dimensional vectors using MapReduce framework.
Chen et al. [32] proposed a distance based on LSH for
high-dimensional data, and converted the distance based on
LSH into hamming distance of high-dimensional data sig-
nature. On this basis, it designed a top-k similarity join
algorithm using Spark. Compared with Hadoop based solu-
tions, Chen et al. [32] has faster computing speed and better
scalability. Rong et al. [33] proposed a new similarity join
algorithm called symbolic aggregation and vertical decom-
position(SAVD) using Spark.

C. SPATIAL DATA SIMILARITY JOIN
Zhang et al. [34] did some research works on spatial data sim-
ilarity join problem and proposed Spatial Join with MapRe-
duce(SJMR) algorithm which can divide the data uniformly.
A method based on pivot point is designed to ensure that
a pair of spatial data can only be compared once at most.
Liu et al. [35] proposed a novel Top-k spatial join algorithm
using MapReduce(TKSJMR) which can obtain the k spatial
objects with the largest overlapping number with other spatial
objects. Liu et al. [36] proposed a Map-Reduce-Filter-Merge
(MRFM) method under MapReduce framework which can

solve the problem of parallel spatial join aggregation under
non-index conditions. Liu et al. [37] proposed the paral-
lel R-tree index construction method based on MapReduce
framework, and then proposed the KNN similarity join algo-
rithm based on MapReduce by using R-tree index. A novel
‘‘controllable-replication’’ framework for spatial join prob-
lems was proposed by Gupta et al. [38] which can reduce
the network transmission costs between cluster nodes, and
deal with the spatial join problems effectively based on
‘‘overlap’’ and ‘‘inclusion’’ predicates. Zhang et al. [39]
studied the spatial keyword join query problem under
MapReduce framework, proposed the spatial text object fil-
tering algorithm based on the combination of prefix filtering
and grid partitioning technology, and proposed two opti-
mization methods which can improve the performance of
spatial keyword join query. Dan et al. [40] mainly focused on
spatial-temporal trajectory similarity join problem and pro-
posed a novel two-level grid index which takes both spatial
and temporal information into account. Zhu et al. [41] were
the first to exploit the Spatial Visual Similarity Join prob-
lem for Geo-Multimedia aiming to find similar geo-image
pairs in both aspects of geo-location and visual content.
Wan et al. [42] proposed hierarchical indexing structures
and Voronoi-based methods to deal with spatial range query
which maybe useful to solve the spatial data similarity join
problem.

D. SIMILARITY JOIN ON OTHER DATA TYPES
Lei et al. [43] and Huang et al. [44] proposed similarity join
algorithms based on EMD (Earth Mover’s Distance) Dis-
tance, mainly aiming at dealing with large-scale probabilistic
data. Ma and Meng [45] proposed two parallel similarity
join methods based onMapReduce framework for large-scale
probabilistic set data: Map side filtering based similarity join
and Reduce side filtering based similarity join.

Rheinlander and Leser [46], Deng et al. [47], Lin et al.
[48] and Li et al. [49] mainly conducted research works
on scalable similarity join problem on massive string data
based on MapReduce framework. Rheinlnder and Leser [46]
proposed a new index structure called PeARL based on trie
tree structure with edit distance as the similarity measure
between strings. Deng et al. [47] mainly extended the sig-
nature mechanism based on partition to support string join
based on set similarity measure(Jaccard similarity measure).
Lin et al. [48] extended PassJoin [49] algorithm, proposed
a faster algorithm PassJoinK, and combined with MapRe-
duce framework, parallelized PassJoinK algorithm, proposed
a new algorithm called PassJoinKMRS which can deal with
scalable string similarity join problem.

In order to deial with massive graph similarity similarity
join problem, Pang et al. [50] proposed a scalable prefix
filtering scheme which can reduce the number of compar-
isons. Based on MapReduce framework, an extensible graph
data similarity join algorithm was designed. Chen et al. [51]
mainly studied graph similarity join problem based on edit
distance. The author mainly proposed an algorithm called

VOLUME 8, 2020 121667

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

MGSJoin based on ‘‘filtering and verification’’ mechanism,
adopted bloom filter technology to reduce redundant comput-
ing and network transmission cost, and integrated multi-way
join strategy to enhance the efficiency of the verification
stage. Zhang et al. [52] did some research works on large
scale RDF data similarity join problem. The similarity join
on the uncertain graph database usually has more practical
application value and has higher time complexity compared
with the certain graph database. Miu et al. [53] and Miu and
Wang [54] have done some research works on the similarity
join problems on the uncertain graph database using MapRe-
duce.

In recent years, many other research works have been done
on different similarity join problems, such as similarity join
on time series [55], [56], approximate KNN similarity join
[57], [58], similarity join on data stream [59].

III. PRELIMINARIES
A. NOTATIONS
Table 1 describes the notations which are used in this paper:

TABLE 1. Notations.

B. PROBLEM DEFINITION
High-Dimensional Data Similarity Join Query is defined as
the following:
Definition 1 (High-Dimensional Data Similarity Join

Query(HDSJ)): Given two data sets Q and R, Q =

{q1, q2, . . . , qn1}, R = {r1, r2, . . . , rn2}, qi is ith data point
from Q, qi = 〈qi1, qi2, . . . , qid 〉, rj is jth data point from R,
rj = 〈rj1, rj2, . . . , rjd 〉, qi and rj are d-dimensional vector,
that is qi ∈ <d , rj ∈ <d . dist(.) represents the Euclidean
distance and ε refers to the distance threshold, then the
high-dimensional data similarity join query on Q and R
can figure out all the similar data pairs whose distance is
less than or equal to the predefined threshold ε. That can

be recorded as: HDSJ (Q FG R) = {〈qi, rj〉|qi ∈ Q, rj ∈
R, dist(qi, rj) ≤ ε}. The Euclidean distance between qi and
rj can be calculated as the following:

dist(qi, rj) =

√√√√ d∑
m=1

(qim − rjm)2 (1)

C. THEOREMS
Theorem 1: Given two d-dimensional vectors v1 and v2,

then g(v1)− g(v2) ∼ N(0, dist2(v1, v2)).
Theorem 2: Given two d-dimensional vectors v1 and v2,

v1, v2 ∈ <d ,
12
m(v1,v2)

dist2(v1,v2)
∼ χ2(m).

Theorem 1, 2 can be derived based on the properties of
p-stable distribution and Chi-squared distribution, and they
have been proofed in our previous work [60]. As described
in Table 1, g(v) = a · v, each element of a is a random
variable satisfied with p-stable distribution. We can project
d-dimensional vector v into m-dimensional space by using
πm(v) = 〈g1(v), g2(v), . . . , gm(v)〉 so as to achieve the goal
of dimension reduction.
Theorem 3: If 1m(v1, v2) > kε, then the probability that

dist(v1, v2) will be bigger than ε is bigger than 1 − P(χ2 >

k2), that is: P(dist(v1, v2) > ε|1m(v1, v2) > kε) > 1 −
P(χ2 > k2).

Proof:

P(dist(v1, v2) > ε|1m(v1, v2) > kε)

=
P(dist(v1, v2) > ε and 1m(v1, v2) > kε)

P(1m(v1, v2) > kε)
∵ 1m(v1, v2) > kε is given.

∴ P(1m(v1, v2) > kε) = 1

∵ dist(v1, v2) ≥ 0

∴ P(dist(v1, v2) > ε|1m(v1, v2) > kε)

= P(dist(v1, v2) > ε and 1m(v1, v2) > kε)

= P(dist2(v1, v2) > ε2 and 1m(v1, v2) > kε)

= P
(

1
dist2(v1, v2)

<
1
ε2

and 1m(v1, v2) > kε
)

∵ 1m(v1, v2) ≥ 0

∴ P(dist(v1, v2) > ε|1m(v1, v2) > kε)

= P
(
12
m(v1, v2)

dist2(v1, v2)
≤
12
m(v1, v2)
ε2

and 1m(v1, v2) > kε
)

= 1−P
(
12
m(v1, v2)

dist2(v1, v2)
>
12
m(v1, v2)
ε2

and 1m(v1, v2)>kε
)

∵ 1m(v1, v2) > mε and
12
m(v1, v2)

dist2(v1, v2)
∼ χ2(k)

∴ P
(
12
m(v1, v2)

dist2(v1, v2)
and 1m(v1, v2) > kε

)
< P

(
χ2 >

m2ε2

ε2

)
= P

(
χ2 > k2

)
⇒ 1− P

(
12
m(v1, v2)

dist2(v1, v2)
and 1m(v1, v2) > kε

)
121668 VOLUME 8, 2020

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

> 1− P
(
χ2 > k2

)
⇒ P(dist(v1, v2) > ε|1m(v1, v2) > kε) > 1− P(χ2 > k2)

According to the above theorems, we can find that if the
Euclidean distance between πm(v1) and πm(v2) is grater than
kε, then the Euclidean distance between v1 and v2 will be
greater than ε with the probability which is greater than 1 −
P(χ2 > m2). Based on this property, we can filter out the
dissimilar vectors at low computation cost by computing the
low dimensional space distance.
Theorem 4: If dist(v1, v2) > ε, then the probability that

1m(v1, v2) will be bigger than kε is bigger than P(χ2 > k2),
that is: P(1m(v1, v2) > kε|dist(v1, v2) > ε) > P(χ2 > k2).

Proof:

∵ 1m(v1, v2) ≥ 0

∴ P(1m(v1, v2) > kε|dist(v1, v2 > ε))

= P(12
m(v1, v2) > k2ε2|dist(v1, v2) > ε)

= P
(
12
m(v1, v2)

dist2(v1, v2)
>

k2ε2

dist2(v1, v2)
|dist(v1, v2) > ε

)

=

P
(
12
m(v1,v2)

dist2(v1,v2)
> k2ε2

dist2(v1,v2)
and dist(v1, v2) > ε

)
P(dist(v1, v2) > ε)

∵ P(dist(v1, v2) > ε) = 1

∴ P(1m(v1, v2) > kε|dist(v1, v2 > ε))

= P
(
12
m(v1, v2)

dist2(v1, v2)
>

k2ε2

dist2(v1, v2)
and dist(v1, v2) > ε

)
∵
12
m(v1, v2)

dist2(v1, v2)
∼ χ2(m)

∴ P(1m(v1, v2) > kε|dist(v1, v2 > ε))

> P
(
12
m(v1, v2)

dist2(v1, v2)
>
k2ε2

ε2

)
= P

(
12
m(v1, v2)

dist2(v1, v2)
> k2

)
= P

(
χ2 > k2

)
⇒ P(1m(v1, v2) > kε|dist(v1, v2 > ε)) > P(χ2 > k2)

Theorem 4 implies that if the distance between v1 and v2 is
greater than ε, then the distance between πm(v1) and πm(v2)
in the reduced dimensional space will be greater than kε with
the probability that is greater than P(χ2 > k2).

IV. SINGLE PROJECTION BASED SIMILARITY JOIN
ALGORITHM USING MapReduce
In order to deal with the massive high-dimensional data
similarity join more efficiently, we propose a novel paral-
lel similarity join approach according to the theorem 3 by
using MapReduce paradigm. Figure 1 displays the general
framework of the Single Projection based Similarity Join
Algorithm Using MapReduce(SPSJ), Algorithm 1 describes
the detailed procedure. Single projection means that we

project d-dimensional vector v into m-dimensional space by
using πm(v) = 〈g1(v), g2(v), . . . , gm(v)〉 and obtain a m-
dimensional vector πm(v).
The Nested Loop Join approach is used to perform the

similarity join query. All the vectors in data set Q are evenly
divided into c partitions, all the partitions need to be com-
pared with each other, so each vector has to be replicated c
times.

Algorithm 1 has two phases: map phase and reduce phase.
The main task of the map phase is to divide all the vec-
tors in Q evenly into c partitions and assign a random
partition id(≤c) to each vector(line 2), πm(value) repre-
sents the m-dimensional projection of each vector. Then
construct the newKey (line 5, 9) and the newValue(line
6, 10) by combining pid , πm(value) and value, finally
emit the 〈newKey, newValue〉 pairs(line 7, 11) for c times
totally(line 4-11). In the reduce phase, we firstly obtain the
Euclidean distance between πm(v1) and πm(v2), recorded as
temp(line 14), if temp is bigger than ε, we can filter out
〈v1, v2〉 safely in advance(line 15), otherwise, the Euclidean
distance between v1 and v2 in d-dimensional space needs to
be computed again, recorded as dist(line 16), if dist ≤ ε,
〈v1, v2〉 is the final answer, and will be emitted(line 17-18).

Algorithm 1 Single Projection Based Similarity Join
Algorithm Using MapReduce

1 map(key, value)//each value is a vector
2 pid ←Math.abs(random.nextInt())%c +1;//assigning a
random partition id to each vector.

3 πm(value)←Mapping(value);//πm(value) =
〈g1(value), g2(value), . . . , gm(value)〉.

4 for i = 1; i ≤ pid; i++ do
5 newKey← ‘‘p’’ + i + ‘‘p’’ + pid ;
6 newValue← 〈‘‘p’’+ pid, πm(value), value〉
7 output(newKey, newValue);

8 for i = pid + 1; i ≤ c; i++ do
9 newKey← ‘‘p’’ + pid + ‘‘p’’ + i;
10 newValue← 〈‘‘p’’+ pid, πm(value), value〉
11 output(newKey, newValue);

12 reduce(newKey, newValues)
13 foreach vector pairs 〈v1, v2〉 ∈ newValues do
14 temp← 1m(v1, v2);
15 if temp ≤ kε then
16 dist ← dist(v1, v2);
17 if dist ≤ ε then
18 output(〈v1, v2〉, dist);

V. MULTIPLE PROJECTIONS BASED SIMILARITY JOIN
ALGORITHM USING MapReduce
According to Theorem 3 and 4, the lower bound of the recall
and filter effect of the single projection based similarity join
algorithm are 1 − P(χ2 > k2) and P(χ2 > k2) respectively.

VOLUME 8, 2020 121669

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

FIGURE 1. General framework of single projection based similarity join algorithm.

The filter effect will decrease as the recall increases, so if
we want to obtain high recall, the filter effect may be low,
for example, if the lower bound of the recall is 0.9, that
is 1 − P(χ2 > k2) = 0.9, then the lower bound of the
filter effect will be 0.1, that is P(χ2 > k2) = 0.1. In such
case, the performance of the single projection based similarity
join algorithm will be affected. In most cases, we want to
make sure that the recall and the filter effect are both relative
higher. A novel similarity join approach based on multiple
projections according to theorem 5 and theorem 6 can achieve
the objective. Multiple projections mean that we project d-
dimensional vector v into multiple m-dimensional vectors by
using π im(v) = 〈g

i
1(v), g

i
2(v), . . . , g

i
m(v)〉, and obtain several

m-dimensional vector π1
m(v), π

2
m(v), . . . , π

k
m(v).

Theorem 5: If 11
m(v1, v2) > kε or 12

m(v1, v2) > kε or
13
m(v1, v2) > kε, then the probability that dist(v1, v2) will

be bigger than ε is greater than 3(1− P(χ2 > k2))− 3(1−
P(χ2 > k2)2 + (1 − P(χ2 > k2)3, that is: P(dist(v1, v2) >
ε|11

m(v1, v2) > kε or 12
m(v1, v2) > kε or13

m(v1, v2) >
kε) > 3(1−P(χ2 > k2))−3(1−P(χ2 > k2)2+(1−P(χ2 >

k2)3.
Proof: Supposing that A represents dist(v1, v2),

11
m(v1, v2) > kε, 12

m(v1, v2) > kε and 13
m(v1, v2) > kε are

recorded as B,C and D respectively. According to theorem 3,
we can obtain, P(A|B),P(A|C),P(A|D),P(B),P(C)P(D),
P(A|B ∪ C ∪ D),∵ P(B),∴ P(AB),∴ P(AC),∴ P(AB),∴
P(ACD),P(ABD),P(ABC),P(ABCD),∵ P(A|B), and ∴
P(A|B ∪ C ∪ D), as shown at the bottom of the next page.

Theorem 6: If dist(v1, v2) > ε, then P(11
m(v1, v2) > kε ∪

12
m(v1, v2) > kε ∪ 13

m(v1, v2) > kε|dist(v1, v2) > ε) >
3P(χ2 > k2)− 3P(χ2 > k2)2 + P(χ2 > k2)3

The proof procedure of theorem 6 is the same as that of
theorem 5.

According to theorem 5 and theorem 6, we can obtain that
the lower bound of the recall and filter effect are 3(1−P(χ2 >

k2))− 3(1− P(χ2 > k2)2 + (1− P(χ2 > k2)3 and 3P(χ2 >

k2)− 3P(χ2 > k2)2 + P(χ2 > k2)3 respectively. Supposing
that P(χ2 > k2) = 0.3, so the lower bound of the recall will
be 3∗ (1−0.3)−3∗ (1−0.3)2+ (1−0.3)3, that is 0.973. and
the lower bound of the filter effect will be 3∗0.3−3∗0.32+
0.33, that is 0.657. Compared with the previous algorithm,
the higher filter effect can be obtained when the recall is
approximately the same. We propose Multiple Projection
based Similarity Join Algorithm Using MapReduce(MPSJ)
based on theorem 5 and theorem 6, Figure 2 displays the
general framework of MPSJ.

There are two main improvements compared to SPSJ
algorithm, the first improvement is: at map phase, we gen-
erate multiple m-dimensional projections for each vector
v(supposing that l times) which are π1

m(v), π
2
m(v), · · · , π

l
m(v)

(line 3), then combing the partition id, l times
m-dimensional projections and the original vector v together
as the value of the output of map phase(line 4 - 11), that
is: 〈pid, π1

m(v), π
2
m(v), · · · , π

l
m(v), v〉. the second improve-

ment is: at reduce phase, Block Nested Loop Join
approach is adopted to conduct the similarity join, for
each vector pair 〈vi, vj〉, we compute the distance of their
m-dimensional projections, if dist(π1

m(vi), π
1
m(vj)) > kε,

〈vi, vj〉 can be filtered out in advance, otherwise, the dis-
tance of the next m-dimensional projections will be figured
out again, and so on(line 15 - 18). If dist(π1

m(vi), π
1
m(vj)),

dist(π2
m(vi), π

2
m(vj)), . . . , dist(π

l
m(vi), π

l
m(vj)) are all less than

or equal to kε, 〈vi, vj〉 will be the candidate pair. Finally we

121670 VOLUME 8, 2020

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

need to verify the original Euclidean distance between vi and
vj, if dist(vi, vj) ≤ ε, 〈vi, vj〉 will be the final similar vector
pair(line 19 - 22).

VI. PROJECTION SPACE PARTITIONING BASED
SIMILARITY JOIN ALGORITHM USING MapReduce
SPSJ algorithm and MPSJ algorithm can filter out some vec-
tor pairs which are impossible similar through computing the
m-dimensional distance, every pair of the vectors still needs
to be compared in m-dimensional space, the time complexity
is O(n2). A novel parallel similarity join algorithm based
on Projection Space Partitioning scheme(PSPSJ) is proposed
which can reduce the comparison times effectively, Figure 3
shows the General Framework of PSPSJ Algorithm.

Firstly, figuring out the 1-dimensional projection and
m-dimensional projection of the original d-dimensional

vectors respectively using p-stable distribution, recorded
as π1(v) and πm(v). Then partitioning the data set in 1-
dimensional space, the partitioning scheme is as the follow-
ing: ε represents the d-dimensional distance threshold, then
the distance threshold in 1-dimensional space is ε1 = k1ε,
the distance threshold in m-dimensional space is εm = kmε.
All the vectors can be partitioned into several sub partitions
which have the same width (ε1) according to their projected
value in 1-dimensional space.

For each sub partition Si, the vectors in itself and its two
adjacent sub partitions(Si−1 and Si+1) are more likely to be
similar with the vectors in Si, but the vectors in other sub
partitions are not, that is: Si only needs to join with S̃i, S̃i =
Si−1

⋃
Si
⋃
Si+1. Then for each vector pair 〈v1, v2〉, v1 ∈

Si, v2 ∈ S̃i, the distance of πm(v1) and πm(v2) is figured
out firstly, recorded as 1m(v1, v2), if 1m(v1, v2) > kmε,

P(A|B) > 1− P(χ2 > k2)

P(A|C) > 1− P(χ2 > k2)

P(A|D) > 1− P(χ2 > k2)

P(B) = 1

P(C) = 1

P(D) = 1

P(A|B ∪ C ∪ D) =
P(A(B ∪ C ∪ D))
P(B ∪ C ∪ D)

=
P(AB ∪ A(C ∪ D))

P(B)+ P(C ∪ D)− P(B(C ∪ D))

=
P(AB)+ P(A(C ∪ D))− P(ABA(C ∪ D))

P(B)+ P(C ∪ D)− P(B(C ∪ D))

=
P(AB)+ P(AC ∪ AD)− P(ABC ∪ ABD))

P(B)+ P(C)+ P(D)− P(CD)− P(BC ∪ BD)

=
P(AB)+ P(AC)+ P(AD)− P(ACD)− P(ABC)− P(ABD)+ P(ABCD)

P(B)+ P(C)+ P(D)− P(CD)− P(BC)− P(BD)+ P(BCD)
∵ P(B) = 1, P(C) = 1, P(D) = 1

∴ P(AB) = P(B)P(A|B) = P(A|B)

∴ P(AC) = P(C)P(A|C) = P(A|C)

∴ P(AB) = P(D)P(A|D) = P(A|D)

∵ B,C,D are independent of each other

∴ P(ACD) = P(CD)P(A|CD) = P(C)P(D)P(A|C)P(A|D) = P(A|C)P(A|D)

P(ABD) = P(BD)P(A|BD) = P(B)P(D)P(A|B)P(A|D) = P(A|B)P(A|D)

P(ABC) = P(BC)P(A|BC) = P(B)P(C)P(A|B)P(A|C) = P(A|B)P(A|C)

P(ABCD) = P(B)P(C)P(D)P(A|B)P(A|C)P(A|D) = P(A|B)P(A|C)P(A|D)

⇒ P(A|B ∪ C ∪ D)

=
P(A|B)+ P(A|C)+ P(A|D)− P(A|C)P(A|D)− . . .+ P(A|B)P(A|C)P(A|D)
P(B)+ P(C)+ P(D)− P(B)P(C)− P(B)P(D)− P(C)P(D)+ P(B)P(C)P(D)

=
P(A|B)+ P(A|C)+ P(A|D)− P(A|C)P(A|D)− . . .+ P(A|B)P(A|C)P(A|D)

1+ 1+ 1− 1 ∗ 1− 1 ∗ 1− 1 ∗ 1+ 1 ∗ 1 ∗ 1
∵ P(A|B) > 1− P(χ2 > k2),P(A|C) > 1− P(χ2 > k2),P(A|D) > 1− P(χ2 > k2)

∴ P(A|B ∪ C ∪ D) > 3(1− P(χ2 > k2))− 3(1− P(χ2 > k2)2 + (1− P(χ2 > k2)3

VOLUME 8, 2020 121671

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

FIGURE 2. General framework of multiple projection based similarity join algorithm.

FIGURE 3. General framework of projection space partitioning based similarity join algorithm.

〈v1, v2〉 can be filtered out. Otherwise, 〈v1, v2〉 will become
the candidate vectors pair. Finally, we need to verify the
candidate vectors pair 〈v1, v2〉 by computing their original
d-dimensional distance.

Algorithm 3 displays the detailed procedure of the sim-
ilarity join algorithm using MapReduce based on pro-
jection space partitioning scheme. In the map phase,
we firstly obtain the 1-dimensional projection π1(value) =
g(value) and m-dimensional projection πm(value) =

〈g1(value), g2(value), . . . , gm(value)〉 for each vector respec-
tively(line 2-3), π1(value) is used to divide the vectors and
πm(value) is used to filter the vectors. A partition id recorded

as pid = dπ1(value)/ε1e will be created for each vector
making sure that all the partitions have the same with ε1. Line
5-21 can make sure that each sub partition Si needs only to
be compared with itself and its adjacent sub partitions(Si−1
and Si+1). The main task of the reduce phase is to conduct
secondary filtering and verification for each candidate vector
pair 〈v1, v2〉, the distance of πm(v1) and πm(v2) is firstly
computed(line 24), if 1m(v1, v2) is bigger than εm = kmε,
then 〈v1, v2〉 can be dismissed safely(line 25). Otherwise,
the original d-dimensional distance recorded as dist needs to
be computed again(line 26), if dist ≤ ε, then 〈v1, v2〉 will be
the final answer(line 27-28).

121672 VOLUME 8, 2020

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

Algorithm 2 Multiple Projection Based Similarity Join
Algorithm Using MapReduce

1 map(key, value)//each value is a vector
2 pid ←Math.abs(random.nextInt())%c +1;//assigning a
random partition id to each vector.

3 generating l times m-dimensional projections for each
vector value: π1

m(value), π
2
m(value),

· · · , π lm(value)//π
i
m(value) =

〈gi1(value), g
i
2(value), . . . , g

i
m(value)〉.

4 for i = 1; i ≤ pid; i++ do
5 newKey← ‘‘p’’ + i + ‘‘p’’ + pid ;
6 newValue← 〈‘‘p’’+ pid, π1

m(value), π
2
m(value),

· · · , π lm(value), value〉
7 output(newKey, newValue);

8 for i = pid + 1; i ≤ c; i++ do
9 newKey← ‘‘p’’ + pid + ‘‘p’’ + i;
10 newValue← 〈‘‘p’’+ pid, π1

m(value), π
2
m(value),

· · · , π lm(value), value〉
11 output(newKey, newValue);

12 reduce(newKey, newValues)
13 foreach vector pairs 〈v1, v2〉 ∈ newValues do
14 i← 1;
15 for i = 1; i ≤ l; i++ do
16 temp← 1i

m(v1, v2);
17 if temp > kε then
18 break;

19 if i > l then
20 dist ← dist(v1, v2);
21 if dist ≤ ε then
22 output(〈v1, v2〉, dist);

VII. RESULTS
Detailed experiments are performed to validate our pro-
posed approaches’ performance: Single Projection based
Similarity Join(SPSJ), Multiple Projections based Similarity
Join(MPSJ) and Projection Space Partitioning based Similar-
ity Join(PSPSJ).

A. EXPERIMENTAL SETUP
The experiments are implemented on Hadoop-2.7.3, the clus-
ter contains 11 nodes in which one node is Master node and
the other 10 nodes are slave nodes. the configuration for each
node is described in Table 2. The distance thresholds are 0.1,
0.2, 0.3 0.4 and 0.5 respectively. The data sets used in our
experiments are the same with [20] which can be downloaded
from the internet,1 table 3 describes the details of the datasets.

B. PERFORMANCE VS. DISTANCE THRESHOLD
Figure 4 shows the performance of BDAA, SPSJ, MPSJ
and PSPSJ on image-128-5 which contains 500 thousand

1http : //corpus− texmex.irisa.fr/

Algorithm 3 Projection Space Partitioning Based HDSJ

1 map(key, value)//each value is a vector
2 π1(value)←Mapping1(value);//π1(value) = g(value).
Being used to divide the vectors into several partitions
with equal-sized width in the projected 1-dimensional
space.

3 πm(value)← Mappingm(value);//πm(value) =
〈g1(value), g2(value), . . . , gm(value)〉.

4 pid ← dπ1(value)/ε1e;
5 if pid == 1 then
6 newValue← 〈pid, 〈πm(value), value〉〉
7 newKey← ‘‘S’’ + pid ;
8 output(newKey, newValue);
9 pidRight← pid + 1;
10 newKey← ‘‘S’’ + pid + ‘‘S’’ + pidRight;
11 output(newKey, newValue);

12 else
13 newValue← 〈pid, 〈πm(value), value〉〉
14 newKey← ‘‘S’’ + pid ;
15 output(newKey, newValue);
16 pidRight← pid + 1;
17 newKey← ‘‘S’’ + pid + ‘‘S’’ + pidRight;
18 output(newKey, newValue);
19 pidLeft← pid − 1;
20 newKey← ‘‘S’’ + pidLeft + ‘‘S’’ + pid ;
21 output(newKey, newValue);

22 reduce(newKey, newValues)
23 foreach vector pairs 〈v1, v2〉 ∈ newValues do
24 1m(v1, v2)← dist(πm(v1), πm(v2));
25 if 1m(v1, v2) ≤ εm then
26 dist ← dist(v1, v2);
27 if dist ≤ ε then
28 output(〈v1, v2〉, dist);

vectors with 128 dimensions under different distance thresh-
old. Although BDAA, SPSJ and MPSJ adopt respective
dimension reduction techniques, every pair of the vectors
needs to be compared once, so the time complexity is square.
While PSPSJ can divide the data set into several partitions,
it is easy to determine which partitions need to be compared
that some vectors pais can be filtered out in advance at a
lower cost. So the performance of PSPSJ is the best when
the distance threshold is less than 0.3. However, when the
distance threshold ε > 0.3, the number of the partitions
which can be divided into will be small, each partition con-
tains more vectors accordingly. On the one hand, the filtering
effect will decrease, on the other hand, every partition pair
needs to be processed by one Map task, because the partition
pais number becomes smaller, the parallelism decreases and
the computing power of the cluster can not be fully utilized.
So when the distance threshold ε > 0.3, the performance
of PSPSJ decreases dramatically. In conclusion, when the

VOLUME 8, 2020 121673

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

TABLE 2. Cluster configuration.

TABLE 3. Datasets details.

distance threshold is bigger than 0.3, MPSJ has the best
performance, otherwise, PSPSJ has the best performance.

Figure 5 shows the performance of the above proposed
methods on image-960-5 which contains 500 thousand vec-
tors with 960 dimensions under different distance threshold.
Because the dimensionality of image-960-5 is bigger than
that of image-128-5, the time cost of the above proposed
methods on image-960-5 is higher than which on image-
128-5. However, the trend of the proposed methods with the
distance threshold on image-128-5 and image-960-5 is the
same.

C. PERFORMANCE VS. DATA SIZE
Figure 6 shows the performance of BDAA, SPSJ, MPSJ
and PSPSJ on image-128-2, image-128-3, image-128-4 and
image-128-5 whose dimensionality is 128 and the distance
threshold is set to 0.1. The experimental results show that
the run time of BDAA, SPSJ, MPSJ and PSPSJ increase
approximate linearly with the data size increasing, the growth
rate of PSPSJ is minimal and it has the best performance
among BDAA, SPSJ, MPSJ and PSPSJ. The main reason is
that all the projected vectors still need to be compared with
each other when using algorithm BDAA, SPSJ and MPSJ,

121674 VOLUME 8, 2020

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

FIGURE 4. Performance with different threshold ε (dim = 128, data size =
500× 103).

FIGURE 5. Performance with different threshold ε (dim = 960, data size =
500× 103).

FIGURE 6. Performance with different data size (dim = 128, ε = 0.1).

the time complexity isO(n2). However, PSPSJ approach can
divide the vectors into several disjoint partitions at a lower
cost, the vectors coming from two non-adjacent partitions
can be filtered in advance according to Theorem 3, so it can
reduce the comparison times effectively. Figure 7 displays the
experimental results when the distance threshold is set to 0.3,
and the results are like with the case in Figure 6.

FIGURE 7. Performance with different data size (dim = 128, ε = 0.3).

D. PERFORMANCE VS. DIMENSION
Figure 8 and Figure 9 display the performance of
BDAA, SPSJ, MPSJ and PSPSJ on data set image-128-5,
image-256-5, image-512 and image-960-5 which all con-
tain 500 thousand vectors. The experimental results show that
the performance of PSPSJ is the best under different dimen-
sions. The run time of the above methods increase as the data

FIGURE 8. Performance with different dimension (data size = 500× 103,
ε = 0.1).

FIGURE 9. Performance with different dimension ε (data size =
500× 103, ε = 0.3).

VOLUME 8, 2020 121675

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

size increases, and the run time increases dramatically when
the dimensionality is more than 512, while the growth rate of
PSPSJ is minimal. The main reason is that the dimensionality
of the projected vectors will increase as the dimensionality of
the original vectors increases, however, the projected vectors
coming from two non-adjacent partitions do not need to be
compared with each other, so the size of the dimensions has
a relatively small impact on time performance when using
PSPSJ algorithm.

E. ALGORITHM PERFORMANCE ANALYSIS
The above experimental results show that the performance
of different algorithms is related to the distance threshold ε,
The algorithm PSPSJ works best when the distance threshold
ε ≤ 0.3, however, when the distance threshold ε is over 0.3,
the algorithm MPSJ becomes the best one. Given the fixed
threshold ε, the data size and the data dimensionality have
little influence on the performance of different algorithms.

VIII. CONCLUSION
In this paper we mainly conduct research on large scale
high-dimensional data similarity joins using p-stable based
projection scheme and propose parallel approaches under
MapReduce framework in order to improve the efficiency.
We perform enough experiments to verify the performance of
our proposedmethods, the experimental results prove that our
proposed methods have better performance and scalability.
In the future, we plan to extend our work to deal with other
complicated data types, such as graph similarity join, time
series similarity join and trajectory similarity join. We also
plan to exploit the similarity join under Spark paradigm.

REFERENCES
[1] J. Dean and S. Ghemawat, ‘‘Mapreduce: Simplified data processing on

large clusters,’’ in Proc. 6th USENIX Symp. Oper. Syst. Des. Implement.
(OSDI). San Francisco, CA, USA, 2004, pp. 137–150.

[2] J. Pang, Y. Gu, J. Xu, and G. Yu, ‘‘Research advance on similarity join
queries,’’ Frontiers Comput. Sci. Techn., vol. 7, no. 1, pp. 1–13, 2013.

[3] X.-M. Lin and W. Wang, ‘‘Set and string similarity queries: A survey,’’
Chin. J. Comput., vol. 34, no. 10, pp. 1853–1862, Oct. 2011.

[4] M. Yu, G. Li, D. Deng, and J. Feng, ‘‘String similarity search and join:
A survey,’’ Frontiers Comput. Sci., vol. 10, no. 3, pp. 399–417, Jun. 2016.

[5] J. Pang, G. Yu, J. X, and Y. Gu, ‘‘Similarity joins on massive data based on
mapReduce framework,’’ Comput. Sci., vol. 42, no. 1, pp. 1–5, 2015.

[6] Y. Silva, J. Reed, B. K. W. , and C. Rong, ‘‘An experimental survey of
mapReduce-based similarity joins,’’ in Proc. SISAP, 2016, pp. 181–195.

[7] B. Kimmett, V. Srinivasan, and A. Thomo, ‘‘Fuzzy joins in mapReduce:
An experimental study,’’ in Proc. VLDB Endowment, vol. 8, no. 12,
pp. 1514–1517, 2015.

[8] J. Lin, ‘‘Brute force and indexed approaches to pairwise document similar-
ity comparisons with mapReduce,’’ in Proc. 32nd Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr., New York, NY, USA, 2009, pp. 155–162.

[9] R. Vernica, M. J. Carey, and C. Li, ‘‘Efficient parallel set-similarity joins
using mapReduce,’’ in Proc. SIGMOD, 2010, pp. 495–506.

[10] L. Shen and Q. X. Peng, ‘‘Near duplicated text detection based on mapRe-
duce,’’ Appl. Mech. Mater., vols. 427–429, pp. 2618–2621, Sep. 2013.

[11] C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, and A. K. H. Tung, ‘‘Efficient
and scalable processing of string similarity join,’’ IEEE Trans. Knowl. Data
Eng., vol. 25, no. 10, pp. 2217–2230, Oct. 2013.

[12] T. Elsayed, J. Lin, and D. W. Oard, ‘‘Pairwise document similarity in large
collections withmapReduce,’’ inProc. 46th Annu.Meeting Assoc. Comput.
Linguistics Hum. Lang. Technol. Short Papers, 2008, pp. 265–268.

[13] A. Metwally and C. Faloutsos, ‘‘V-SMART-join: A scalable mapReduce
framework for all-pair similarity joins of multisets and vectors,’’ Proc.
VLDB Endowment, vol. 5, no. 8, pp. 704–715, Apr. 2012.

[14] R. Baraglia, G. De Francisci Morales, and C. Lucchese, ‘‘Document sim-
ilarity self-join with mapReduce,’’ in Proc. IEEE Int. Conf. Data Mining,
Dec. 2010, pp. 731–736.

[15] C. Rong, C. Lin, Y. N. Silva, J. Wang,W. Lu, and X. Du, ‘‘Fast and scalable
distributed set similarity joins for big data analytics,’’ in Proc. IEEE 33rd
Int. Conf. Data Eng. (ICDE), Apr. 2017, pp. 1–12.

[16] D. Deng, G. Li, H. Wen, and J. Feng, ‘‘An efficient partition based method
for exact set similarity joins,’’ Proc. VLDB Endowment, vol. 9, no. 4,
pp. 360–371, 2015.

[17] J. Wang and C. Lin, ‘‘MapReduce based personalized locality sensitive
hashing for similarity joins on large scale data,’’ Comput. Intell. Neurosci.,
vol. 2015, Oct. 2015, Art. no. 217216.

[18] D. Amagata, T. Hara, and C. Xiao, ‘‘Dynamic set kNN self-join,’’ in Proc.
IEEE 35th Int. Conf. Data Eng. (ICDE), Apr. 2019, pp. 818–829.

[19] C. Bellas and A. Gounaris, ‘‘An empirical evaluation of exact set sim-
ilarity join techniques using GPUs,’’ Inf. Syst., vol. 89, Mar. 2020,
Art. no. 101485.

[20] W. Luo, H. Tan, H. Mao, and L. M. Ni, ‘‘Efficient similarity joins on
massive high-dimensional datasets usingMapReduce,’’ in Proc. IEEE 13th
Int. Conf. Mobile Data Manage., Jul. 2012, pp. 1–10.

[21] T. Seidl, S. Fries, and B. Boden, ‘‘MR-DSJ: Distance-based self-join for
large-scale vector data analysis with mapReduce,’’ in Proc. BTW, 2013,
pp. 37–56.

[22] S. Fries, B. Boden, G. Stepien, and T. Seidl, ‘‘PHiDJ: Parallel similarity
self-join for high-dimensional vector data with mapReduce,’’ in Proc.
IEEE 30th Int. Conf. Data Eng., Mar. 2014, pp. 796–807.

[23] Y. Xu and H. Chen, ‘‘MapReduce-based similaroty join for incremental
data set,’’ Appl. Res. Comput., vol. 31, no. 11, pp. 3369–3384, 2014.

[24] Y. Ma, X. Meng, and S. Wang, ‘‘Parallel similarity joins on massive
high-dimensional data using MapReduce,’’ Concurrency Comput., Pract.
Exper., vol. 28, no. 1, pp. 166–183, Jan. 2016.

[25] Y. Ma, S. Jia, and Y. Zhang, ‘‘‘A novel approach for high-dimensional
vector similarity join Query,’’ Concurrency Comput., Pract. Exper., 2017,
vol. 29, no. 5, pp. 1–12.

[26] M. Jiang, Y. Song, and J. Chang, ‘‘A density-aware similarity join Query
processing algorithm on mapReduce,’’ Advanced Multimedia and Ubiq-
uitous Engineering (Lecture Notes in Electrical Engineering), vol. 393.
Singapore: Springer, 2016, pp. 469–475.

[27] C. Zhang, F. Li, and J. Jestes, ‘‘Efficient parallel kNN joins for large data in
MapReduce,’’ in Proc. 15th Int. Conf. Extending Database Technol., 2012,
pp. 38–49.

[28] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, ‘‘Efficient processing of k nearest
neighbor joins usingMapReduce,’’Proc. VLDBEndowment, vol. 5, no. 10,
pp. 1016–1027, Jun. 2012.

[29] J. Dai and Z. Ding, ‘‘MapReduce Based Fast kNN Join,’’ Chin. J. Comput.,
vol. 38, no. 1, pp. 99–108, 2015.

[30] Y. Kim and K. Shim, ‘‘Parallel Top-K similarity join algorithms using
MapReduce,’’ in Proc. IEEE 28th Int. Conf. Data Eng., Apr. 2012,
pp. 510–521.

[31] Y. Ma and X. Ci, ‘‘Parallel top-K join on massive high-dimensional vec-
tors.,’’ Chin. J. Comput., vol. 38, no. 1, pp. 86–98, 2015.

[32] D. Chen, C. Shen, J. Feng, and J. Le, ‘‘An efficient parallel top-K similarity
join for massive multidimensional data using spark,’’ Int. J. Database
Theory Appl., vol. 8, no. 3, pp. 57–68, Jun. 2015.

[33] C. Rong, X. Cheng, Z. Chen, and N. Huo, ‘‘Similarity joins for high–
dimensional data using spark,’’ Concurrency Comput., Pract. Exper.,
vol. 31, no. 20, Oct. 2019, Art. no. e5339.

[34] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu, ‘‘SJMR: Parallelizing
spatial join with MapReduce on clusters,’’ in Proc. IEEE Int. Conf. Cluster
Comput. Workshops, Oct. 2009, pp. 1–8.

[35] Y. Liu, L. Chen, N. Jing, and L. Liu, ‘‘Parallel top-K spatial join Query
processing on massive spatial data,’’ J. Comput. Res. Develop., vol. 48,
no. 3, pp. 163–172, 2011.

[36] Y. Liu, L. Chen, N. Jing, and W. Xiong, ‘‘MRFM: An efficient approach
to spatial join aggregate,’’ in Proc. WAIM Workshops, 2012, pp. 140–150.

[37] Y. Liu, N. Jing, L. Chen, and W. Xiong, ‘‘Algorithm for processing k-
Nearest join based on R-Tree in MapReduce,’’ J. Softw., vol. 24, no. 8,
pp. 1836–1851, Jan. 2014.

[38] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subramaniam, and
M.Mohania, ‘‘Processingmulti-way spatial joins onmap-reduce,’’ inProc.
16th Int. Conf. Extending Database Technol., 2013, pp. 113–124.

121676 VOLUME 8, 2020

Y. Ma et al.: Projection Based Large Scale High-Dimensional Data Similarity Join Using MapReduce Framework

[39] Y. Zhang, Y. Ma, and X. Meng, ‘‘Efficient spatio-textual similarity join
using MapReduce,’’ in Proc. IEEE/WIC/ACM Int. Joint Conferences Web
Intell., Aug. 2014, pp. 52–59.

[40] T. Dan, C. Luo, Y. Li, B. Zheng, and G. Li, ‘‘Spatial Temporal Trajectory
Similarity Join,’’ in Proc. APWeb-WAIM, 2019, pp. 251–259.

[41] L. Zhu, W. Yu, C. Zhang, Z. Zhang, F. Huang, and H. Yu, ‘‘SVS-JOIN:
Efficient spatial visual similarity join for geo-multimedia,’’ IEEE Access,
vol. 7, pp. 158389–158408, 2019.

[42] S. Wan, Y. Zhao, T. Wang, and Z. Gu, ‘‘Multi-dimensional data indexing
and range Query processing via Voronoí diagram for Internet of Things,’’
Future Gener. Comput. Syst., vol. 91, pp. 382–391, Oct. 2019.

[43] B. Lei, J. Xu, Y. Gu, and G. Yu, ‘‘Parallel top-K similarity join algorithm
on probabilistic data based on Earth mover’s distance,’’ J. Softw., vol. 24,
no. 2, pp. 188–199, 2013.

[44] J. Huang, R. Zhang, R. Buyya, and J. Chen, ‘‘MELODY-JOIN: Efficient
Earth Mover’s distance similarity joins using MapReduce,’’ in Proc. IEEE
30th Int. Conf. Data Eng., Mar. 2014, pp. 808–819.

[45] Y.Ma andX.Meng, ‘‘Set similarity join onmassive probabilistic data using
MapReduce,’’ Distrib. Parallel Databases, vol. 32, no. 3, pp. 447–464,
Sep. 2014.

[46] A. Rheinlander and U. Leser, ‘‘Scalable sequence similarity search and
join in main memory on multi-cores,’’ in Proc. Euro-Par Workshops, 2011,
pp. 13–22.

[47] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng, ‘‘MassJoin: A mapreduce-
based method for scalable string similarity joins,’’ in Proc. IEEE 30th Int.
Conf. Data Eng., Mar. 2014, pp. 340–351.

[48] C. Lin, H. Yu, W. Weng, and X. He, ‘‘Large scale similarity join with edit-
distance constraints,’’ in Proc. DASFAA, 2014, pp. 328–342.

[49] G. Li, D. Deng, J.Wang, and J. Feng, ‘‘Pass-join: A partition-basedmethod
for similarity joins,’’ Proc. VLDB Endowment, vol. 5, no. 3, pp. 253–264,
Nov. 2011.

[50] J. Pang, Y. Gu, J. Xu, Y. Bao, and G. Yu, ‘‘Efficient graph similarity join
with scalable prefix-filtering using mapReduce,’’ in Proc. WAIM, 2014,
pp. 415–418.

[51] Y. Chen, X. Zhao, B. Ge, C. Xiao, and C.-H. Chi, ‘‘Practising scalable
graph similarity joins in mapReduce,’’ in Proc. IEEE Int. Congr. Big Data,
Jun. 2014, pp. 112–119.

[52] X. Zhang, L. Chen, and M. Wang, ‘‘Towards efficient join processing over
large RDF graph using mapReduce,’’ in Proc. SSDBM, 2012, pp. 250–259.

[53] F. Miu, H. Wang, and Q. Ruan, ‘‘Methodof similarityJoinon uncertain
graphs using mapReduce,’’ Comput. Sci., vol. 45, no. 12, pp. 299–307,
2018.

[54] F. Miu and H. Wang, ‘‘Method for similarity join on uncertain graph
database,’’ J. Softw., vol. 29, no. 10, pp. 3150–3163, 2018.

[55] N. Zhou, X. Zhang, C. Liu, and S. Wang, ‘‘Similarity join on time
series under dynamic time warping,’’ Chin. J. Comput., vol. 41, no. 8,
pp. 1798–1813. 2018.

[56] G. Chatzigeorgakidis, K. Patroumpas, D. Skoutas, S. Athanasiou, and
S. Skiadopoulos, ‘‘Scalable hybrid similarity join over geolocated time
series,’’ in Proc. 26th ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf.
Syst., Nov. 2018, pp. 119–128.

[57] S. Ferrada, B. Bustos, and N. Reyes, ‘‘An efficient algorithm for approxi-
mated self-similarity joins in metric spaces,’’ Inf. Syst., vol. 91, Jul. 2020,
Art. no. 101510.

[58] P. Čech, J. Lokoč, and Y. N. Silva, ‘‘Pivot-based approximate K-NN sim-
ilarity joins for big high-dimensional data,’’ Inf. Syst., vol. 87, Jan. 2020,
Art. no. 101410.

[59] J. Xu, C. Song, P. Lv, and T. Li, ‘‘Distributed similarity join over data
streams based on Earth mover’s distance,’’ Chin. J. Comput., vol. 42, no. 8,
pp. 1779–1796, 2019.

[60] Y. Ma, S. Jia, and Y. Zhang, ‘‘Chi-square distribution based similarity
join Query algorithm on high-dimensional data,’’ J. Comput. Appl., vol. 7,
pp. 1993–1997, Oct. 2016.

YOUZHONG MA (Member, IEEE) received
the Ph.D. degree in computer software and
theory from the Renmin University of China,
in June 2014. He is currently an Associate Profes-
sor with the Academy of Information Technology,
Luoyang Normal University, Henan, China. His
research interests include big data management
and analysis, and Web data integration.

RUILING ZHANG received the M.S. degree from
Northwestern Polytechnical University, Xi’an,
China, in 2007. She is currently a Professor with
LuoyangNormalUniversity. Her research interests
include intelligent information processing, data
mining, and rough set.

ZHANYOU CUI received the Ph.D. degree in
mechanical engineering from Xi’an Jiaotong Uni-
versity. He is currently anAssociate Professor with
theAcademy of Information Technology, Luoyang
Normal University, Henan, China. His research
interests include simulation algorithm and big data
mining.

CHUNJIE LIN received the M.S. degree in com-
puter application technology from the Henan Uni-
versity of Science and Technology, in June 2011.
He is currently a Lecturer with the Academy
of Information Technology, Luoyang Normal
University, Henan, China. His research inter-
ests include data mining and semantic network
analysis.

VOLUME 8, 2020 121677

