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ABSTRACT In this paper we introduce an end-to-end deep learning (DL) framework for magnetic anomaly
detection (MAD) and denoising. This framework consists of two neural networks: a binary classification
network for magnetic anomaly detection and a regression network for geomagnetic noise suppression. The
two networks work in a cascade mode: the magnetic field measurement is first sent to the detection network
to check the existence of the anomaly signal, and then to the denoising network for extracting the signal
from the geomagnetic noise if the detection result is positive. The core idea of our proposed method is that
the characteristics of both the magnetic anomaly signal and the geomagnetic noise can be learned from
massive training data. The experimental results show that: (1) under the same false alarm rate constraint,
the probability of detection of our proposed method is above 80% when the signal-to-noise ratio (SNR)
equals —6 dB, while the orthogonal basis function (OBF) method fails when the SNR is below 0 dB; (2) for
geomagnetic noise suppression, an improvement of 10 to 15 dB is achieved for data with input SNRs between
—5 and 15 dB. Our results paved the way for data-driven magnetic anomaly detection and denoising.

INDEX TERMS Magnetic anomaly detection, geomagnetic noise suppression, convolutional neural net-

work, deep learning.

I. INTRODUCTION

Magnetic Anomaly Detection (MAD) has been one of the
most important methods for detecting ferromagnetic target
and is widely used in submarine detection, acromagnetic sur-
vey, etc. For airborne MAD systems, the typical operating fre-
quency band is 0.05Hz to 0.5Hz. Within this frequency range,
there are five main sources of magnetic noise [1]: (a) Inherent
sensor noise. It is the upper bound on the measurement capa-
bility and generally cannot be reduced or removed except by
improving the sensor or changing to a more advanced type
of sensor; (b) Platform interference noise which arises from
the ferromagnetic/conducting material of the platform and
its rotation in the Earth’s magnetic field. This kind of noise
is well modelled by the so-called Tolles-Lawson equations
proposed by Leliak in 1960s and can be largely reduced by
a set of sophisticated calibration procedures [2]; (c) Geo-
magnetic noise originated from the solar-activity induced
disturbance in the Earth’s magnetosphere; (d) Ocean swell
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noise generated from electrical currents induced by the ver-
tical motion of the conducting seawater, in the presence of
Earth’s magnetic field. It decays exponentially with altitude
and can be neglected when the platform is flying relatively
high [3]; (e) Geological noise which arises from the horizon-
tal motion of MAD system across submerged concentrations
of magnetic materials contained within or submerged below
the seabed or ground. It can be removed by a second-pass fly
or a pre-acquisition of magnetic map with high precision over
the surveyed area. Since the sensitivity of advanced magnetic
sensors and the performance of aeromagnetic compensation
equipment have improved substantially in past decades, envi-
ronmental geomagnetic noise now becomes the limiting fac-
tor of the detection range for magnetic anomaly detectors.
Many efforts have been made to improve the ability of sig-
nal detection in the presence of geomagnetic noise. The most
well-known signal detection method for MAD is the Orthog-
onal Basis Function (OBF) matched filter [4]. The magnetic
field of target, modelled as a magnetic dipole, is represented
by a linear combination of three parameterized orthogonal
basis functions, and then the standard matched filtering can
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be applied for signal detection. The OBF method is theoreti-
cally optimal under the white noise assumption. However, the
performance will be degraded for geomagnetic noise with a
power spectrum density of 1/f¢. In [5] a whitening filter is
used to flatten the noise spectrum before matched filtering.
The OBF method relies on the magnetic dipole model and the
straight-line moving assumption, which impose restriction on
its usage. Other methods such as minimum entropy filter [6]
and high order crossing method [7] are proposed. However,
most of the existing magnetic anomaly signal detection meth-
ods fail when the SNR is low.

Geomagnetic noise suppression is also of great concern
since important target information can be extracted from the
denoised signal. The majority of existing denoising methods
are based on the spatial coherence of the geomagnetic field.
As early as in 1960s, coherence of geomagnetic field had
been found between stations with distances up to 550 km [8].
In recent days, geomagnetic denoising experiments exploit-
ing spatial coherence of geomagnetic field show that an SNR
improvement of 10 to 20 dB can be achieved within the MAD
frequency band [9]-[11]. However, real-time spatial-coherent
geomagnetic noise reference data is very difficult to obtain for
airborne MAD systems especially when working in the vast
sea area.

Temporal coherence of geomagnetic field is implicitly
exploited for the first time in [12] to enhance the ship’s ELF
signal which is buried in the background noise. The noise
power spectrum is iteratively updated from previous data
frame when the target signal is absent and then subtracted
from the current data frame. The reduction of the background
noise is so substantial that the ELF radiation offers a clear
means of detection. However, the assumption that data frames
without targets can be found does not always hold true, which
limits its application in actual scenarios.

To address the problems mentioned above, in this paper
we propose an end-to-end deep learning framework for mag-
netic anomaly detection and denoising by exploiting both
the unique signal characteristic and the temporal coherence
of geomagnetic noise. This framework consists of two neu-
ral networks: a binary classification network for magnetic
anomaly detection and a regression network for geomagnetic
noise suppression. The two networks work in a cascade mode:
the magnetic field measurement is first sent to the detec-
tion network to check the existence of the anomaly signal,
and then to the denoising network for extracting the signal
from the geomagnetic noise if the detection result is positive.
By feeding massive amount of training data, the networks are
trained to learn the statistical characterizations of data and
are able to detect/extract the magnetic anomaly signal from
geomagnetic noise.

The paper is organized as follows. The MAD model and
traditional methods are briefly introduced in Section II.
Detailed description of our proposed method and network
structures are given in Section III. In Section IV, the exper-
imental setup is explained in detail. Experiment results
are given in Section V, through which the comparisons
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FIGURE 1. Geometry for airborne magnetic anomaly detection.

among different methods and performance analysis are made.
Finally, a conclusion is drawn in Section VI.

Il. PROBLEM FORMULATION

A. MAGNETIC ANOMALY DETECTION

The platform with the MAD system moves along a straight
line and the ferromagnetic target of interest is assumed to be
approximately static, as shown in Fig.1. The distance between
sensor and target is r (¢), and ry is the shortest distance
which is also known as Closest Proximity Approach (CPA).
The configuration in Fig.1 is very common for most MAD
applications and can be adapted to the OBF detection method
which is the benchmark of our proposed method. How-
ever, our proposed method can be used in a wider range of
situations.

B. ORTHOGONAL BASIS FUNCTION METHOD

The magnetic field of the target is well modelled by a mag-
netic dipole when r (¢) is large compared with target’s size.
According to theory of OBF [4], the total magnetic field of the
magnetic dipole can be represented by (1) if the trajectory of
the relative movement between target and sensor is a straight
line:

3
Bior = Zai%‘ (t) (1
i=1

where T = vt/ry, v is the speed of sensor platform, a; are the
coefficients and ¢; (7) are the normalized orthogonal basis

functions:
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For any input signal S(¢) to be detected, the OBF method
computes

3 2
7= |50 00 3)
i=1

and compares it with a predetermined threshold value.
In section V, the threshold value of the OBF method is set
to be 30% where o% is the variance of results computed by
(3) with geomagnetic noise as the input signal. Since the
CPA is not known a priori, the matched filtering operation in
(3) is performed in a multi-channel manner where different
channels correspond to different CPA values.

The OBF method is an optimal linear signal detection
algorithm for white noise in theory. The geomagnetic noise,
however, is a kind of color noise with 1/f spectrum. The
performance of OBF degrades for MAD applications. One
popular solution is to place a whitening filter [5] before the
OBF matched filter. The effect of whitening filter on the
OBF method and our proposed method will be analyzed in
section V.

C. RELATED WORKS

While the spatial coherence of geomagnetic field is well
known to the MAD community, the temporal coherence
receives relatively little attention. In fact, the geophysical
community have been interested in the temporal statistical
characterization of geomagnetic field for a long time [13].
Geomagnetic pulsation in ultra-low frequency band are
divided and classified into different indexes which can be
forecast for days or even months [14], [15]. Our results in
section V also indicate the temporal coherence of geomag-
netic noise may last for a long period of time.

Deep learning is widely used in signal detection and
denoising in recent years. In speech denoising community,
the 1D speech signal is transformed into the time-frequency
domain to adapt the DL methods designed for image
processing [16]. However, these methods are not suited
for MAD processing because of the lack of informa-
tion in the time-frequency domain for magnetic anomaly
signal.

Signal detection and denoising of gravity wave data pro-
duced by the LIGO detector using deep learning meth-
ods are reported recently [17]. The gravity wave data are
similar to the magnetic data that both of them are 1D
time series which are suitable for processing in the time
domain. Our proposed method in this paper differs from [17]
with different network structures, more integrated processing
pipeline and an emphasize on the temporal coherence of
noise.

iIll. PROPOSED METHOD

We propose an end-to-end deep learning framework to simul-
taneously detect the presence of a target and extract the signal
from background geomagnetic noise. As depicted in Fig.2,
there are two neural networks in this framework: one is the
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FIGURE 2. DeepMAD framework for simultaneous magnetic anomaly
detection and denoising.
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FIGURE 3. The network structure of 1D CNN for magnetic anomaly
detection.

magnetic anomaly detection network, and the other is the
geomagnetic denoising network. The input one-dimensional
signal is first sent to the detection network, if the detection
result indicates that there is a target signal buried in the
noise, the original signal is sent to the denoising network to
extract the clean target signal. The denoised output can be
used for further processing like target localization, tracking
and inversion, etc.

A. MAGNETIC ANOMALY DETECTION NETWORK

Signal detection is equivalent to binary classification in
machine learning community. In [18], artificial feature
extraction of magnetic anomaly signal is applied to the
input data before the full connected neural network classifier.
Instead, in this paper we feed the neural network classi-
fier with original input data directly except some necessary
preprocessing. By this end-to-end processing, we can make
the best use of the modelling ability of neural network and
massive amount of data, and more importantly the noise
characteristic of geomagnetic field can be learned and utilized
which will be shown in Section V.

The magnetic anomaly detection network is a deep
one-dimensional (1D) CNN for binary classification, and it
learns a mapping from noisy measurement vector x to signal
detection result I, D : x — [I. The network structure is
illustrated in Fig.3. The input to the network is a 128 x 1 vector
which is the segmented measurement data of total magnetic
field. There are 5 convolutional layers, 1 flatten layer and
1 output layer in the network. Different types of layers are
represented by different arrows in Fig.3.
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TABLE 1. Implementation details of Fig.3.

Layer Parameter settings

Kernel number: 64; Kernel size: 4x1; Stride 2; Padding: “same”;
Leaky Relu (slope 0.2); Dropout rate: 0.25;

Kernel number: 128; Kernel size: 4x1; Stride 2; Padding: “same”;
C2 Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch normalization

(momentum 0.8)

Kernel number: 256; Kernel size: 4x1; Stride 2; Padding: “same”;
C3 Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch normalization

(momentum 0.8)

Kernel number: 512; Kernel size: 4x1; Stride 2; Padding: “same”;
C4 Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch normalization

(momentum 0.8)

Kernel number: 512; Kernel size: 4x1; Stride 2; Padding: “same”;
C5 Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch normalization

(momentum 0.8)

F1 Flatten the input to 1D vector

C1

D1 Full connection layer, activation: “sigmoid”

The convolutional layers use a 4 x 1 spatial filter with
stride 2 and a leaky ReL.U activation function with slope 0.2.
A dropout rate of 0.25 is applied for all the layers in the
training phase. Batch normalization with momentum 0.8 are
used in all convolutional layers except the input layer. The
flatten layer transforms the input high dimensional vector
to a 1D vector. The output layer is a fully connected layer
with a sigmoid activation. The parameters for each layer
of the detection network are listed in Table 1. The details
for implementation of the network layers in this section are
referred to [26].

B. GEOMAGNETIC DENOISING NETWORK

Traditional single-channel signal denoising algorithms
project the noisy signal into a lower-dimensional space, then
the target signal of interest is reconstructed by weighted
summation of some basis functions. However, magnetic
anomaly signal can hardly be denoised in this way since
the parameter of OBFs cannot be precisely determined. The
neural networks, known as universal function approximator,
are used to solve this problem.

The first network structure used for geomagnetic noise
suppression in this paper is the encoder-decoder network. Its
design philosophy coincides with the above-mentioned trans-
formation space projection method and is widely used for
signal/image denoising [19]. The denoising network, as illus-
trated in Fig.4, learns a mapping from noisy measurement
vector x to ‘““clean” target signal y, G : x — y. It consists
of 5 convolutional layers and 5 deconvolutional layers. The
deconvolutional layer differs from the convolutional layer
that there is an additional up sampling procedure and the
stride number for the convolutional kernel is 1. The parame-
ters for each layer of the network are listed in Table 2.

Another popular network structure for regression is
U-Net, which is proposed for medical image segmentation
and achieves great success [20]. The original U-Net struc-
ture is modified in this paper to adapt the 1D case of our
application. The network structure is almost identical with
the encoder-decoder network introduced above except for
the skip connections, which are copy and concatenation
operations as depicted in Fig.5. Note that in [21] the
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FIGURE 4. The network structure of 1D encoder-decoder for geomagnetic
noise suppression.

TABLE 2. Implementation details of Fig.4 and Fig.5.

Layer Parameter settings

Kernel number: 64; Kernel size: 4x1; Stride 2; Padding: “same”;
Leaky Relu (slope 0.2); Dropout rate: 0.25;

Kernel number: 128; Kernel size: 4x1; Stride 2; Padding: “same”;
C2 Leaky Relu (slope 0.2);Dropout rate: 0.25; Batch normalization
(momentum 0.8)
Kernel number: 256; Kernel size: 4x1; Stride 2; Padding: “same”;
C3 Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch normalization
(momentum 0.8)
Kernel number: 512; Kernel size: 4x1; Stride 2; Padding: “same”;
C4 Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch normalization
(momentum 0.8)
Kernel number: 512; Kernel size: 4x1; Stride 2; Padding: “same”;
C5 Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch normalization
(momentum 0.8)
Upsampling:2; Kernel number: 512; Kernel size: 4x1; Stride 1;
DC1 Padding: “same”; Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch
normalization (momentum 0.8)
Upsampling:2; Kernel number: 256; Kernel size: 4x1; Stride 1;
DC2 Padding: “same”; Leaky Relu (slope 0.2); Dropout rate: 0.25; Batch
normalization (momentum 0.8)
Upsampling:2; Kernel number: 128; Kernel size: 4x1; Stride 1;
DC3 Padding: “same”; Leaky Relu (slope 0.2); Dropout rate: 0.25;
Batch normalization (momentum 0.8)
Upsampling:2; Kernel number: 64; Kernel size: 4x1; Stride 1;
DC4 Padding: “same”; Leaky Relu (slope 0.2); Dropout rate: 0.25;
Batch normalization (momentum 0.8)
Upsampling:2; Kernel number: 1; Kernel size: 4x1; Stride 1;
Padding: “same”’; Tanh activation

C1

DC5

performance of encoder-decoder network and U-Net have
already been compared for image to image translation. In this
work, we compare their performances for 1D signal denoising
for the first time.

IV. EXPERIMENTAL SETUP

A. OVERVIEW OF THE EXPERIMENTS

The performances of the detection and denoising networks
introduced in Section III are verified by experiments. The
two kinds of networks are trained separately using different
datasets. In the training phase, the loss functions are min-
imized by the optimization algorithm to get optimal esti-
mates of the parameters of the networks. In the testing phase,
the samples for testing are fed to the networks to make
predictions. The performance metrics, such as probability of
detection (PD) and signal to noise ratio (SNR) are calculated
for further analysis. The complete processes of the experi-
ments are shown in Fig.6.
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FIGURE 5. The network structure of 1D U-Net for geomagnetic noise
suppression.
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FIGURE 6. Training and testing processes of the experiments.

B. DATA PREPARATION
The data used in this paper are obtained by simulation mod-
elling and experimental measurement.

1) MAGNETIC ANOMALY SIGNAL

The magnetic anomaly signal is simulated based on the
scenario depicted in Fig.1. Although there are mathemati-
cally rigorous methods, like integral equation and method
of moment, can be used for precise modelling of magnetic
anomaly field, the magnetic dipole model is chosen in this
paper for its simplicity and validity especially when the dis-
tance is greater than 3 times of the target size. The vector field
B and scalar field By, of magnetic dipole are expressed as
follows:

Mo 2
B(m,r) = W[Sr (m~r)r—m] @)
Biotal (M, ¥, Ueqry) = B (M, 1) - Uenrn (5)

where m and r are the magnetic moment and distance vector,
respectively, r = |r|, and u.q, iS the normalized geo-
magnetic field direction vector. The simulation of magnetic
anomaly signal is controlled by several parameters: the CPA
ro, the speed v, the magnetic moment m and the geomagnetic
direction vector u.q;. For simplicity and without loss of
generality, we fix the values of some unimportant parameters
and limit the values of others to a certain range. The settings
for simulation parameters are listed in Table 3.
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TABLE 3. Parameters used for signal simulation.

Parameters Value
Speed v (km/h) 240
Uearth (-0.025, 0.735, -0.677)
. Horizontal component (Am?) 100000
magnetic
moment Vertical component (Am?) 300000
m Horizontal direction (degree) [0,360]
CPA ry (m) [300,1000]

0.1

magnetic field (nT)

20 40 60 80 100 120
time (second)

FIGURE 7. Simulated magnetic anomaly signal using dipole model.

The magnetic anomaly signals are generated using (4),
(5) and Table 3. The values of parameters like horizontal
direction and CPA are uniformly and randomly sampled in the
predetermined intervals. The data length for each simulated
signal is 128 seconds. Fig.7 is a typical signal waveform plot.
The sampling frequency is set to be 1 Hz in accordance with
the data rate of geomagnetic noise measurement.

2) GEOMANETIC NOISE

The geomagnetic noise data are downloaded from the
INTERMAGNET website which is a global geomag-
netic observatory network that provides data for scientific
research [22]. The measurements are made in the station
of Cocos-Keeling Islands (CKI), Western Australia. The
instrument used for scalar magnetic field measurement is
the GSM90 overhauser magnetometer produced by the GEM
Systems. A piece of geomagnetic data with a sampling rate
of 1Hz and its power spectrum density are plotted in Fig.8 and
Fig.9, respectively. The data of the CKI station from Jan-
uary 1, 2019 to December 31, 2019 are downloaded to con-
struct the data set.

3) DATA PREPROCESSING

The downloaded geomagnetic noise time series data
are divided into 128-second segments without overlap-
ping. A total of 243154 pieces of noise segments are
obtained after discarding those with outliers or interfer-
ences. We randomly select a half of the noise samples
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and add them to the simulated magnetic anomaly sig-
nal. The final dataset contains 121577 noisy samples with
Geomagnetic-noise-contaminated magnetic anomaly signal
and 121577 geomagnetic-noise-only samples. Bandpass fil-
tering is applied to all the samples in the dataset with a
passband from 0.05 to 0.5 Hz.

4) DATASET FOR MAGNETIC ANOMALY DETECTION

The first 120000 samples in the dataset are used for training
the magnetic anomaly detection network. Since our samples
are indexed in the time order of geomagnetic noise, the first
120000 samples correspond to the geomagnetic data in the
first 6 months. The 7" month data, or samples index from
120001 to 140000, are used for testing the detection network.
In Section V.A, the 12" month data are also used for testing
to find out how long the temporal coherence of geomagnetic
noise might last.

5) DATASET FOR GEOMAGNETIC DENOISING

The samples with a SNR greater than —5 dB are used to
construct the dataset for the denoising networks, i.e. encoder-
decoder in Fig.7 and U-net in Fig.8. A total of 55000 samples
are found. The first 40000 samples are used for training and
the left 15000 samples are used for testing.

C. SETTINGS FOR NETWORK TRAINING

1) LOSS FUNCTIONS

The binary cross entropy Jp (@) and the mean squared error
Ji (0) are used as the loss functions for the detection network
and denoising network, respectively.

Ip (8) = _zlv 3 [N) InD (x<">; 0)

+(1=1")m (1-D(x":8))]  ©

o= LSl o

where D (-) and G (-) are nonlinear functions representing the
detection network and denoising network, respectively, 6 is
the parameters of each layer, x is the input signal to be
detected or denoised, 1™ is 0 or 1 which indicates whether
there is an anomaly signal in x™, y™ is the output of the
denoising network.

2) PARAMETER INITIALIZATION

The parameters 6, including weights and biases in each net-
work layer, should be initialized properly to accelerate the
optimization procedure. The Glorot’s method [24] is used to
initialized the weights:

W~U|:— vo 6 } (8)
N R TSN/ R TE|

where U [-] is the uniform distribution, n; and n;;; are the
number of connections in the jth and the j+1th layer, respec-
tively. The biases in all the layers are initialized to be 0.
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FIGURE 9. Spectrum density of geomagnetic field measurements.

3) OPTIMIZATION ALGORITHM

The RMSProp algorithm, which stands for root mean squared
prop, is an adaptive learning rate optimization algorithm
designed for neural networks [25]. The main operations in
each iteration are expressed as follows:

st <~ ysi1+(1—-y)g Og

n
9
s O ©)

where s, is a state variable, n is the learning rate, ¢ is a
small number for keeping numerical stability, and g, is the
mini-batch gradient in step ¢.

The detection and denoising networks are trained with the
RMSProp algorithm for 100 epochs with early stopping, and
the mini-batch size for each epoch is 50.

0[ < 0[_1 -

D. PERFORMANCE METRICS

In order to describe the performance metrics conveniently,
we introduce 4 terms about the detection result: (a) true posi-
tive (TP), which means the sample data contains a signal and
is correctly classified; (b) true negative (FN), which means
the sample data contains a signal and is wrongly classified;
(c) false positive (TN), which means the sample data contains
only geomagnetic noise and is correctly classified; (d) false
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FIGURE 10. Signal detection performance comparison: CNN vs. OBF.

negative (FP), which means the sample data contains only
geomagnetic noise and is wrongly classified.

The Probability of Detection (PD) is used for performance
assessment of signal detection:

number of TPs
PD = (10)
number of TPs + number of FNs
In order to make comparisons between different signal
detection methods, the Probability of False Alarm (PFA) rate
is set to be a fixed value throughout the experiment. The PFA
is defined as follows:

number of FPs
PFA = (11)
number of FPs + number of TNs
The SNR improvement is used for performance assessment

of geomagnetic noise suppression:

SNRimprovement = SNRafter - SNRbefore (12)

where SNRpefore and SNRfer are the SNRs of input and
output data of the denoising network, respectively.

V. EXPERIMENT RESULTS AND ANALYSIS

A. MAGNETIC ANOMALY DETECTION

We use the OBF method as the benchmark of our proposed
method for magnetic anomaly detection. The first 6 months
data are used for training and validating, and the 7" month
data are used for testing. The detection results of the CNN
and OBF are illustrated in Fig.10. For comparison purposes
the PFAs are fixed to be 1% throughout the experiments. The
OBF method fails when the input SNR is below 0 dB, while
the CNN method still maintains a relatively high PD value
even for —5 dB of SNR. This 5-dB improvement of SNR
implies a 21% improvement of detection range according to
the magnetic dipole model.

The OBF method is often accompanied with the whiten-
ing filter to achieve better detection results as stated in
section II.B. We evaluate the effect of whitening filter on OBF
and CNN methods. The input data are pre-whitened before
sending to the OBF and CNN detectors for both training and
testing, and the results are illustrated in Fig.11 and Fig.12,
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FIGURE 11. OBF signal detection performance comparison: with
whitening vs. without whitening.
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FIGURE 12. CNN signal detection performance comparison: with
whitening vs. without whitening.

respectively. No significant performance improvements are
found in either methods. Note that in order to keep the PFA
fixed, we use different threshold values from that of Fig.10.
The whitening operation tends to decrease the noise variance
and thus a smaller threshold value is used.

As mentioned before, we argue that the DeepMAD frame-
work can learn and utilize the characteristics of geomagnetic
noise. Experiments are conducted to support our assump-
tions. We substitute the geomagnetic noise used in train-
ing/validating with gaussian white noise of the same variance.
The other settings and data for testing are kept the same. The
detection results are illustrated in Fig.13. The PD value is
significantly lower when training with gaussian white noise
especially for input SNR below O dB. This result shows the
proposed method can indeed distinguish the geomagnetic
noise and other noises. Besides, the PD performance of CNN
trained with gaussian white noise is still better than that of
the OBF method shown in Fig.11, which indicates the CNN
method makes better use of the anomaly signal feature than
that of the OBF method. The reason is that the magnetic
dipole model is a nonlinear function about the magnetic
moment, position, and other parameters, although the OBF
method is optimal among all linear methods, the CNN method
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FIGURE 13. CNN signal detection performance comparison: train with
geomagnetic noise vs. Gaussian white noise.
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FIGURE 14. CNN signal detection performance comparison: test with the
7t month data vs. the 12th month data.

is a nonlinear method which has more powerful modelling
ability.

The persistence of the temporal coherence of geomagnetic
noise is also of interest to us. We use the 12" month of data
for testing instead of the 7" month data while keeping all
the other settings the same. The detection result is shown in
Fig.14. The PD performance remains almost unchanged. This
result is so inspiring that the pre-acquisition of geomagnetic
background noise may be useful for more than half a year.
This is of great significance for practical MAD applications.

B. GEOMAGNETIC NOISE SUPPRESSION

Now we analyze the noise suppression performance of the
denoising networks. The input data with SNR above —5 dB
are used for training and testing the denoising network. The
statistics of SNR improvement are calculated for different
input SNR levels, as depicted in Fig.15. For data with input
SNR below 15 dB, an SNR improvement of 10 to 15 dB
is achieved for both the encoder-decoder network and the
U-Net. This performance is comparable to that of the far
reference method which uses an additional reference sen-
sor [9]-[11]. Fig.15 also shows that the performance of the
encoder-decoder network is slightly better than that of the
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FIGURE 15. Noise suppression performance comparison:
encoder-decoder network vs. U-Net.
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FIGURE 16. Noise suppression result for data with low input SNR.
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FIGURE 17. Noise suppression result for data with high input SNR.

U-Net. Although the skip connections used in U-Net have
achieved great success for image segmentation, it seems to
deteriorate the denoising performance in our application.

An illustration of denoising result is shown in Fig.16. The
SNR of input data is —3.76 dB and the target signal can hardly
be seen from the plot. After the input data passes through
the denoising network, the SNR increases to 6.75 dB and the
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denoised signal can be found easily which is almost a clean
copy of the ground truth.

However, from Fig.15 we also find that for data with
input SNR above 15 dB, the SNR improvement decreases
dramatically to nearly —20 dB. This phenomenon can be
explained with Fig.17. The input and output SNRs of the
data are 18.22 dB and 13.99 dB, respectively, and the SNR
improvement is —4.23 dB. The reason is that compared with
the ground truth, some details are lost in the denoised signal.
The distortion is relatively larger than the noise component
thus the denoising seems to be a disservice. This will not be
a problem for practical use since the input data is very clean
and requires no further processing.

VI. CONCLUSION

We have reported DeepMAD, an end-to-end deep learn-
ing framework, to tackle the problem of magnetic anomaly
detection and denoising. Our integrated MAD framework is
composed of two dedicated deep CNNS, a detection network
for magnetic anomaly detection and a denoising network
for geomagnetic noise suppression. Both of the two above
CNNss fully exploit the structure of magnetic anomaly signal
and temporal coherence of geomagnetic field. As a result,
the DeepMAD framework with cascaded signal detection
and noise suppression procedures yields a superior perfor-
mance compared with conventional MAD signal detection
and denoising methods that exploit only the signal structure
or noise characteristic. The performance improvements are
particularly large when the SNR of input magnetic measure-
ments is below 0 dB, as we have experimentally demon-
strated. Besides, the DeepMAD framework is not restricted to
the experimental scenario in this paper and can be adapted to a
more general setting. Our work paved the path for data-driven
magnetic signal detection and denoising with improved per-
formance.

REFERENCES

[1] M. L. Webb and A. C. White, “Environmental noise reduction for magne-
tometry,” U.S. Patent 8 786277, Jul. 22, 2014.

[2] P.Leliak, “Identification and evaluation of magnetic-field sources of mag-
netic airborne detector equipped aircraft,” IRE Trans. Aeronaut. Navigat.
Electron., vol. 8, no. 3, pp. 95-105, Sep. 1961.

[3] J. T. Weaver, ‘“Magnetic variations associated with ocean waves and
swell,” J. Geophys. Res., vol. 70, no. 8, pp. 1921-1929, Apr. 1965.

[4] A. Sheinker, L. Frumkis, B. Ginzburg, N. Salomonski, and B.-Z. Kaplan,
“Magnetic anomaly detection using a three-axis magnetometer,” [EEE
Trans. Magn., vol. 45, no. 1, pp. 160-167, Jan. 2009.

[5] A. Sheinker, A. Shkalim, N. Salomonski, B. Ginzburg, L. Frumkis, and
B.-Z. Kaplan, “Processing of a scalar magnetometer signal contaminated
by 1/f* noise,” Sens. Actuators A, Phys., vol. 138, no. 1, pp. 105-111,
Jul. 2007.

[6] A. Sheinker, N. Salomonski, B. Ginzburg, L. Frumkis, and B.-Z. Kaplan,
“Magnetic anomaly detection using entropy filter,” Meas. Sci. Technol.,
vol. 19, no. 4, Feb. 2008, Art. no. 045205.

[71 A. Sheinker, B. Ginzburg, N. Salomonski, P. A. Dickstein, L. Frumkis,
and B.-Z. Kaplan, “Magnetic anomaly detection using high-order crossing
method,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1095-1103,
Apr. 2012.

[8] M. J. Davidson and J. R. Heirtzler, “Spatial coherence of geomag-
netic rapid variations,” J. Geophys. Res., vol. 73, no. 6, pp. 2143-2162,
Mar. 1968.

VOLUME 8, 2020

[9] J. B. Nelson, ‘“Preliminary results from the Sable Island geomag-
netic coherence experiment,” DRDC Atlantic, Dartmouth, Canada,
Tech. Rep. NS TM 2006-004, Jan. 2006.

[10] C.E.LucasandR. Otnes, ‘“Noise removal using multi-channel coherence,”
DRDC Atlantic, Dartmouth, Canada, Tech. Rep. TM 2010-302, Dec. 2010.

[11] D. Liu, X. Xu, C. Huang, W. Zhu, X. Liu, G. Yu, and G. Fang, “Adap-
tive cancellation of geomagnetic background noise for magnetic anomaly
detection using coherence,” Meas. Sci. Technol., vol. 26, no. 1, Jan. 2015,
Art. no. 015008.

[12] B. Marius, “Vessel detection using extremely low frequency mag-
netic anomaly detection signal,” DRDC Atlantic, Dartmouth, Canada,
Tech. Rep. DRDC-RDDC-2017-N034, Nov. 2017.

[13] M. A. Vallée, L. Newitt, I. R. Mann, M. Moussaoui, R. Dumont, and
P. Keating, “The spatial and temporal characteristics of PC3 geomagnetic
activity over Canada in 2000, as a guide to planning the times of aero-
magnetic surveys,” Pure Appl. Geophys., vol. 164, no. 1, pp. 161-176,
Jan. 2007.

[14] G. Pallocchia, E. Amata, G. Consolini, M. F. Marcucci, and 1. Bertello,
“Geomagnetic DST index forecast based on IMF data only,” Annales
Geophysicae, vol. 24, no. 3, pp. 989-999, May 2006.

[15] G. Gonzalez and K. Schatten, “Using geomagnetic indices to forecast the
next sunspot maximum,” Sol. Phys., vol. 114, no. 1, pp. 189-192, 1988.

[16] Y. Xu,J. Du, L.-R. Dai, and C.-H. Lee, ““An experimental study on speech
enhancement based on deep neural networks,” IEEE Signal Process. Lett.,
vol. 21, no. 1, pp. 65-68, Jan. 2014.

[17] D. George and E. A. Huerta, “Deep learning for real-time gravitational
wave detection and parameter estimation: Results with advanced LIGO
data,” Phys. Lett. B, vol. 778, pp. 64-70, Mar. 2018.

[18] S.Liu,J. Hu, P. Li, C. Wan, Z. Chen, M. Pan, Q. Zhang, Z. Liu, S. Wang,
D. Chen, J. Hu, and X. Pan, “Magnetic anomaly detection based on full
connected neural network,” IEEE Access, vol. 7, pp. 182198-182206,
2019.

[19] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371-3408, Dec. 2010.

[20] O. Ronneberger, P. Fischer, and T. Brox, ““U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent., 2015, pp. 234-241.

[21] P.Isola,J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967-5976.

[22] J.J.Love and A. Chulliat, “An international network of magnetic observa-
tories,” EOS, Trans. Amer. Geophys. Union, vol. 94, no. 42, pp. 373-374,
Oct. 2013.

[23] S. M. Kay, “Statistical decision theory 1,” in Fundamentals of Statistical
Signal Processing (Detection Theory), vol. 2, 1st ed. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1998.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249-256.

[25] T. Tieleman and G. Hinton, “Lecture 6.5-RMSPROP: Divide the gradient
by a running average of its recent magnitude,” COURSERA, Neural Netw.
Mach. Learn., vol. 4, no. 2, pp. 26-31, 2012.

[26] I.1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

XIN XU received the B.S. degree in electrical engi-
neering from Wuhan University, Wuhan, China,
in 2008, and the M.S. degree in electrical engi-
neering from the University of Chinese Academy
of Sciences, Beijing, China, in 2011, where he is
currently pursuing the Ph.D. degree. He is cur-
rently an Assistant Professor with the Key Labo-
ratory of Electromagnetic Radiation and Sensing
Technology, Institute of Electronics (IE), Chinese
Academy of Sciences (CAS). His research inter-
ests include electromagnetic detection and imaging, signal processing, and
machine learning.

121265



IEEE Access

X. Xu et al.: DeepMAD: DL for MAD and Denoising

LING HUANG received the M.S. and Ph.D.
degrees in geophysical prospecting and informa-
tion technology from Jilin University, Changchun,
China, in 2007 and 2010, respectively. He is
currently an Associate Professor with the Key Lab-
oratory of Electromagnetic Radiation and Sens-
ing Technology, Institute of Electronics (IE),
Chinese Academy of Sciences (CAS). He is cur-
rently focusing on geophysical electromagnetic
detection method research, data processing soft-
ware development, and geophysical exploration equipment design and
testing.

XIAOJUN LIU received the Ph.D. degree from
the Chinese Academy of Sciences (CAS), Beijing,
China, in 2001. He is currently a Professor with
the Institute of Electronics (IE), CAS. His research
interests include instrument development, and data
and image processing.

121266

GUANGYOU FANG received the B.S. degree
in electrical engineering from Hunan University,
Changsha, China, in 1984, and the M.S. and
Ph.D. degrees in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, in 1990 and
1996, respectively. From 1990 to 1999, he was an
Engineer, an Associate Professor, and a Professor
with the China Research Institute of Radiowave
Propagation. From 2000 to 2001, he was a Visiting

; Scholar with the University of Trieste, Trieste,
Italy, and the International Center for Science and High Technology, United
Nations Industrial Development Organization, Trieste. From 2001 to 2003,
he was a Special Foreign Research Fellow of the Japan Society for the
Promotion of Science, working with Tohoku University, Sendai, Japan. Since
2004, he has been a Professor with the Institute of Electronics, Chinese
Academy of Sciences (CAS), Beijing, China, and the Director of the Key
Laboratory of Electromagnetic Radiation and Sensing Technology. Since
2019, he has also been with the Aerospace Information Research Institute,
CAS. He has authored or coauthored more than 400 publications. His
research interests include ultrawideband radars, ground-penetrating radar
signal-processing and identification methods, terahertz imaging technology,
and computational electromagnetics.

VOLUME 8, 2020



	INTRODUCTION
	PROBLEM FORMULATION
	MAGNETIC ANOMALY DETECTION
	ORTHOGONAL BASIS FUNCTION METHOD
	RELATED WORKS

	PROPOSED METHOD
	MAGNETIC ANOMALY DETECTION NETWORK
	GEOMAGNETIC DENOISING NETWORK

	EXPERIMENTAL SETUP
	OVERVIEW OF THE EXPERIMENTS
	DATA PREPARATION
	MAGNETIC ANOMALY SIGNAL
	GEOMANETIC NOISE
	DATA PREPROCESSING
	DATASET FOR MAGNETIC ANOMALY DETECTION
	DATASET FOR GEOMAGNETIC DENOISING

	SETTINGS FOR NETWORK TRAINING
	LOSS FUNCTIONS
	PARAMETER INITIALIZATION
	OPTIMIZATION ALGORITHM

	PERFORMANCE METRICS

	EXPERIMENT RESULTS AND ANALYSIS
	MAGNETIC ANOMALY DETECTION
	GEOMAGNETIC NOISE SUPPRESSION

	CONCLUSION
	REFERENCES
	Biographies
	XIN XU
	LING HUANG
	XIAOJUN LIU
	GUANGYOU FANG


