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ABSTRACT In this paper we investigate the problem of locating multiple non-cooperative radio fre-
quency (RF) emitters using only received signal strength (RSS) data. We assume that the number of emitters
is unknown and that individual emitters cannot be distinguished in the RSS data. Moreover, we assume
that the environment in which the data has been collected has not been mapped or ‘‘fingerprinted’’ by
the prior collection of RSS data. Our goal is to use knowledge of the data noise level, sensor geometry,
signal attenuation model, and other variables to quantify the limiting resolution that can be obtained with
this type of data, and to determine the lowest power emitters that can be detected. We use this analysis
to develop an efficient algorithm for estimating the number of emitters, their locations, and their transmit
powers.We approach this by formulating the recovery problem as one of sparse approximation or compressed
sensing. We illustrate the reasonableness of our assumptions and conclusions with both simulated and real
data.

INDEX TERMS Source localization, compressed sensing, detection algorithms, signal mapping, sensor
networks.

I. INTRODUCTION
Locating radio frequency (RF) sources from remotely col-
lected RF data is an important task in many settings, and
is commonly referred to as RF localization, or geolocation.
Applications are numerous, for example, the localization of
subscribers in cell phone or other wireless networks (indoor
or outdoor, see [1]–[5]). Localizing transmitters in a cognitive
radio network ( [6]–[8]) allows for the more efficient allo-
cation of network resources, for example, frequency bands.
Autonomous vehiclesmay rely on RF localization to augment
navigation [6]. In military applications one may be tasked
with geolocating RF transmitters that are non-cooperative
or evasive [6], [9]–[12]. The detection and localization of
drones flying in controlled or restricted airspace has become
a pressing issue in the past few years ( [13]–[16]). See [1] for
a number of other applications.

A variety of techniques for localizing RF emitters from
remote data have been developed. Some techniques use range
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information deduced from the signal time-of-arrival (TOA),
time-difference-of-arrival (TDOA), or the received signal
strength (RSS), perhaps collected from multiple sensors at
spatially diverse locations. Others, such as angle-of-arrival
(AOA), rely on directional information collected from sen-
sors. One may or may not have information about the nature
of the RF signals, e.g., emitted power or correlation of mea-
sured data from distinct sensors. The accuracy of the resulting
position estimates depends on uncertainties in the channel
models, sensor placement, and precision of the data collected.

The accuracy of RSS as a method for geolocation is known
to suffer from large and small-scale propagation effects
such as multipath and shadowing effects, but RSS-based
localization methods have the advantage that sensor design
can be low-complexity; complicated timing, synchroniza-
tion, or other sophisticated hardware is not needed. Thus,
the sensors can be relatively low-cost and low-power. The
availability of such sensors is particularly important when
many sensors are required, or the sensors are required to
be battery-powered (e.g., remote or mobile sensors). Since
received signal strength indicator (RSSI) values are available
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directly from systems implementing standard communication
protocols (see for example, [17]), many WLAN applications
do not need any additional hardware to implement RSS-based
localization algorithms.

In this work we examine the problem of geolocating mul-
tiple non-cooperative RF emitters using RSS measurements
from multiple sensors dispersed geographically. Our focus is
the case in which there are an unknown number of emitters
and these emitters cannot be distinguished by frequency band
or modulation scheme, or by decoding any signal informa-
tion. In particular, we are interested in methods for estimating
the number of emitters present, for quantifying the resolu-
tion one can obtain from RSS-based localization, and for
determining the lowest power emitters that can be detected.
These quantities depend on the number of sensors and their
placement, the accuracy of the pathloss model, and the noise
level in the data.We approach this analysis by formulating the
recovery problem in the framework of compressed sensing or
sparse approximation.We then use this analysis to inform and
improve a recovery algorithm based on orthogonal matching
pursuit (OMP). We emphasize that we assume the number
of emitters is not known a priori and so must be ascertained
from the data. Our methods are not tied to a specific scenario
or geometry, but for illustrative purposes we focus on the
setting of an outdoor environment in which a number of
RF sensors on the ground (with known locations) are used
to localize an unknown number of RF emitters mounted on
drones, the situation considered in references [13]–[16].

Localization of RF sources from RSS data has been con-
sidered before ( [2], [4], [18]–[20]) in a variety of scenarios.
Some ([2], [21]–[23]) have taken the rough approach we
use—a compressed sensing view that exploits spatial sparsity
by assuming a small number of emitters are present. Butmany
focus on situations in which the emitters are cooperative [18],
or only one emitter is present, or emitters can be distinguished
in some manner in the data ([19], [22], [24]). The interesting
recent paper [25] considers the problem of multiple direc-
tional RF emitters, although the authors assume the number
of emitters is known a priori, and they use an additive noise
model rather than the more conventional log-normal noise
model. They also provide a Cramer-Rao based estimate on
the accuracy that their methods might attain. The paper [26]
further develops Cramer-Rao bounds for emitter locations,
powers, directions, and for pathloss exponents, under the
assumption of a log-normal noise model. The authors also
propose additional algorithms, but still work with a known
number of emitters. They also appear to operate at a some-
what lower noise level than the scenarios presented in this
paper.

Since RSS-based localization relies on a propagation
model relating signal strength and distance to an emit-
ter(s), RSS-based methods suffer if the signal strength
model is inaccurate. Hence some prior work ([2], [18],
[21], [27]) assumes that the environment has been ‘‘finger-
printed,’’ that is, sensors have been placed in known loca-
tions (‘‘anchors’’, [28]), and then empirical measurements

are taken to map the RF environment. This improves the
channel model and accuracy of emitter location estimates.
Some methods focus on prediction of lower bounds for the
variance of location estimates from RSS data [29]–[31], and
the above-mentioned [25], [26].

In our analysis we assume:

• The number of emitters is not known a priori, but must
be determined from the data.

• Emitter signals cannot be distinguished by any charac-
teristics in the time or frequency domain, and the RSS
data collected by any sensor is the ‘‘aggregate’’ power
summed over all emitters.

• The RF sensors are ‘‘limited’’ in number and have
isotropic sensitivity, so no directional information is
available.

From such data we seek to recover the number of emit-
ters, the location of each, and the power at which each
emitter transmits. In our analysis we employ the accepted
log-normal noise model for RSS data with realistic noise
levels.

CONTRIBUTIONS
The unique contributions outlined in this paper are:

• A method to quantify the limiting resolution (ability
to distinguish two close emitters) for this type of data,
as a function of the data noise/uncertainty level, sensor
placement, channel attenuation model, and other rele-
vant physical parameters.

• A method to determine the limiting power thresh-
old for an emitter’s ‘‘detectability’’ (the lowest power
emitter than can be detected) as a function of the
above-mentioned quantities, and the emitter’s location.

• The development of an appropriate algorithm that makes
use of the above assumptions and can reliably estimate
the actual number of emitters present, as well as their
locations and powers.

• The use of this algorithm to illustrate our conclusions
on resolution and emitter detectability, using both simu-
lated and real data.

In Sections II and III below we formulate the problem
of locating RF emitters from RSS data as one of finding
a sparse solution to an underdetermined linear system of
equations, and include an appropriate noise model. We then
briefly review the notion of coherence, which plays a impor-
tant role in our analysis of resolution and emitter detectabil-
ity, and then briefly examine an appropriate algorithm for
solving the resulting system. In Section IV we analyze
the resolution that can be obtained with this type of data,
and the power limits on emitter detectability. We then use
this analysis to improve the algorithm and further illus-
trate our conclusions with computational examples. Finally,
in Section V we detail actual data we collected to vali-
date our model parameters, geolocate an emitter from mea-
sured RSS data, and provide additional illustrations of our
conclusions.
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II. PROBLEM FORMULATION
A. SYSTEM MODEL
Our analysis is not limited to any particular configuration of
emitters and sensors, but asmentioned, we focus on a scenario
in which one or more emitters are airborne, e.g., mounted on
drones, and we wish to detect them using RSS data from a
ground-based network of sensors. Specifically, let � ⊂ R2

and assume the emitters are at three-dimensional coordinates
(x, y, h) with (x, y) ∈ � and z = h ≥ 0. Note that we are
assuming the drones fly at a fixed, known altitude, but this
assumption is not essential to the analysis below.

When the number of emitters is sufficiently small, localiz-
ing them is a problem well-suited to formulation in the con-
text of compressed sensing, that of finding a sparse solution to
a linear system of equations, where ‘‘sparse’’ means that most
components in the relevant solution vector are zero (or close
to zero). Specifically, let S = ∪Ni=1ri, where ri = (xi, yi), be a
subset of N distinct points in �; the points (xi, yi, h) will be
the potential locations of any emitters, where h ≥ 0 is the
altitude at which the emitters operate. These points should
be chosen to provide a reasonable sampling of the potential
locations of any emitters. For example, if � is a rectangle it
may be convenient to define S as the nodes on a finely-spaced
rectangular grid. It is not important that emitters be located
precisely at any of these nodes.

Suppose there are M sensors that measure the RSS at
known (x, y) positions sj = (aj, bj), each at ground level
(altitude 0) in the xy-plane. We take each at the same altitude
only for simplicity; the sensors need not be at a single altitude
nor in �. We assume that the sensors’ antennas are isotropic,
though more realistic antenna patterns are easily accommo-
dated in the analysis. The distance rij from the jth sensor to

the ith potential emitter location is rij =
√
‖sj − ri‖22 + h

2

where ‖ · ‖2 denotes the usual Euclidean norm in the plane.
One common model for the power Pij received at sensor j

from an emitter at position ri is that Pij = pi(r0/rij)n where
pi ≥ 0 is a reference power measured at distance r0 from
the emitter i and n is the pathloss exponent that governs the
attenuation of the signal power as a function of distance;
see [10], [34]. In the ideal case the RSS at sensor j from all
emitters is then modeled as

dj =
N∑
i=1

Pij =
N∑
i=1

pi

(
r0
rij

)n
. (1)

This assumes receiver antennas are equally sensitive,
isotropic, and that the emitters are isotropic and incoherent.
If no emitter is present at position ri then pi = 0, so if few
emitters are present then we expect pi > 0 for only a few
indices i.
We amalgamate the data dj into a column vector d0 ∈ RM

and express the ideal RSS data (1) in matrix form,

d0 = 8p0. (2)

Here 8 is the measurement matrix, an M × N matrix with
known entry (r0/rij)n in row i, column j. The vector p0 ∈ RN

has ith entry pi, the reference power of the emitter at ri, and
is sparse if few emitters are present. Note that the entries
of 8 are known. The jth row of 8 embodies the data from
the sensor at position sj, and the ith column corresponds
to a potential emitter location ri. We assume that we can
measure the quantity d0, the power received by each sensor.
The problem of interest is to recover an estimate of p0 from
d0 and 8. Of course d0 will be corrupted by noise or other
error.

B. MEASUREMENT NOISE MODEL
Departure of measured RSS data from the ideal model above
is consider at length in, for example, [35]. We assume that
data has been suitably processed to eliminate the effects of
so-called ‘‘fast-fading’’ as recommended in [35] and that after
this processing the error that remains conforms to the stan-
dard log-normal noise model. Specifically, if an emitter with
reference power pi is present at location ri, the contribution
to the data dj collected at the jth sensor from this emitter is of
the form

dj = pi

(
r0
rij

)n
eηRi

where η = ln(10)/10 and Ri is a normal random variable with
mean 0 and standard deviation σdB. Note that eηRi = 10Ri/10.
Here σdB is the noise level in dB. Values for σdB vary widely
depending on the setting, but for the application of interest
here (outdoors, a relatively open and obstruction-free area)
values from 2 to 5 dB or higher are common; see [18] or our
data in Section V-A.

For multiple emitters we take

dj =
N∑
i=1

pi

(
r0
rij

)n
eηRij (3)

with the additional assumption that the Rij are independent.

C. UNDERDETERMINED SYSTEMS, COHERENCE, AND
SPARSE SOLUTIONS
Let d ∈ RM denote the noisy data vector with components
given by (3). Under the assumption that the number of sensors
is much smaller than the number of potential emitter locations
(M � N ), the system8p = d to be solved for p (an estimate
of p0) is underdetermined, and so almost certainly possesses
infinitely many solutions. However, as noted we will make
the reasonable assumption that there are few emitters, so that
the solution vector p0 is sparse. More specifically, a vector p
is said to be k-sparse if p has at most k nonzero components.
Under the assumption that p0 is k-sparse for sufficiently
small k , it is highly likely that a physically relevant solution
can be found, although the existence of a unique sparse
solution and the ease with which it can be found depend on
the measurement matrix 8.
One property that 8 can possess that leads to favorable

recovery results is that of low ‘‘mutual coherence.’’ First,
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the coherence of vectors x, y ∈ RN is the quantity

µ(x, y) =
|x · y|
‖x‖2‖y‖2

. (4)

The Cauchy-Schwarz inequality shows that 0 ≤ µ(x, y) ≤ 1,
with µ(x, y) = 0 when x and y are orthogonal and
µ(x, y) = 1 when one vector is a scalar multiple of another.
The mutual coherence of an M × N matrix 8 with columns
8i is the quantity

µ(8) = max
i6=j

µ(8i,8j). (5)

Again, 0 ≤ µ(8) ≤ 1. If µ(8) = 1 then two or more
distinct columns of 8 are scalar multiples of each other,
while µ(8) = 0 means 8 is an orthogonal matrix, which
is impossible in the present situation sinceM < N .
Low coherence matrices are desirable when seeking sparse

solutions to a linear system 8p = d. It can be shown that if
µ(8) < 1/(2k−1) then any k-sparse solution p is unique and
many compressed sensing algorithms will converge to this
solution (see Section 5.1 of [36]). Lowmutual coherence also
leads to more favorable bounds on the error in the presence
of noisy data [37].

Unfortunately, for the localization problem described
above, low mutual coherence will not hold for any realis-
tic sensor configuration. First, our measurement matrix has
entirely positive entries, so no cancelation occurs in the dot
product of columns of 8; as a result, the pairwise coherence
for any two columns is likely to be larger than for a matrix
with mixed sign entries. Also, if potential emitter locations
(xi, yi) and (xj, yj) are closely spaced, then the ith and jth
columns8i and8j of the measurement matrix will be nearly
identical, and so have high pairwise coherence. Thus, if we
work on a fine grid (to obtain higher source resolution) we
confront measurement matrices with high mutual coherence.
This presents a challenge for the finding the correct sparse
solution.

III. ALGORITHM FOR SPARSE SOLUTIONS
In this section we briefly detail an algorithm appropriate for
finding sparse solutions to the problem at hand. We then
use this algorithm to gain insight into the ill-posedness of
this inverse problem, and provide examples that illustrate the
analysis for resolution and clearance. In Section IV-E we use
our analysis to propose an improvement to this algorithm,
which we illustrate with simulated and real data.

A. BLOOMP
Finding the sparsest solution to a linear system of equa-
tions is, in general, computationally intractable, even if a
sparse solution is known to exist [38]. However, a number of
efficient computational approaches have been devised that,
under the right conditions, find such a sparse solution with
high probability. In this section we justify use the algorithm
‘‘Band-excluded Locally Optimized Orthogonal Matching
Pursuit’’ (BLOOMP, see [39]) for the present problem, and
include an illustrative computational example.

Briefly, the BLOOMP algorithm is a modification of
Orthogonal Matching Pursuit (OMP). OMP is a ‘‘greedy’’
algorithm that iteratively builds up a sparse solution to8p =
d one nonzero component at a time. Let p0 = 0 denote
our initial guess at a solution, pk the kth iterate (at most
k-sparse) in OMP, and Sk = {i : pki 6= 0}; Sk is called the
support set of pk . The set Sk indexes those columns of 8
that are being used to synthesize the data d. OMP constructs
pk+1 by augmenting the support Sk with a new index ik
chosen so that the residual ‖8pk+1−d‖2 is minimized. This
continues until a maximum sparsity bound or a termination
criterion is met. One common stopping criterion takes the
form ‖8pk−d‖2 ≤ Cε where ε is comparable to the expected
noise level in the data as measured in the Euclidean norm
and C ≈ 1; see [36]. We say more on this in our specific
application below in Section III-B and Appendix VI.

A drawback of OMP is that once an index has been added
to the support set Sk , it is never removed at a later iteration,
so sub-optimal early choices cannot be undone. Many modi-
fications to OMP have been proposed to overcome this prob-
lem.We have adopted one suchmodification, BLOOMP [39],
because it is particularly suited to ‘‘high-coherence’’ mea-
surement matrices. Like OMP, BLOOMP builds a sparse
solution by adding one index at each iteration to the potential
support set. In our application this means adding one esti-
mated emitter at each iteration. However, in the BLOOMP
algorithm the column in8 corresponding to the emitter added
at a given iteration cannot have high coherence with any
column of 8 corresponding to previously added emitters.
Physically, the next estimated emitter location cannot be too
close to those already determined to be present—this is the
‘‘band exclusion’’ modification of OMP. Moreover, at each
iteration the emitters currently estimated to be present are
subject to local adjustments in location and power to better
fit the data; this is the ‘‘local’’ optimization portion of the
algorithm.

The authors in [39] show that in situations such as these—
high coherence matrices, but in which the correct solution
index support corresponds to columns with lower pairwise
coherence, such as well-separated emitters on a finely-spaced
grid—the BLOOMP modifications to OMP increase the
probability of recovering the correct solution support indices,
or in the setting of this paper, the correct emitter number
and location(s). In our setting this strategy gives a substantial
improvement in the recoveries, compared to OMP. We also
add a constraint to the algorithm to require that at each iter-
ation the emitter power estimates must remain nonnegative,
which further stabilizes recoveries.

EFFICIENCY AND TIMING
Standard OMP for anM×N measurement matrix has a com-
plexity of aboutO(sMN ) operations, where s is the sparsity of
the solution recovered by OMP (also the number of iterations
taken by OMP) [40]. In our setting s would be comparable
to the maximum number of emitters we expect to be present.
The additional steps taken to modify OMP into BLOOMP do
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not affect this asymptotic complexity. The execution times
for the BLOOMP algorithm on this problem are quite small.
In the computational experiments detailed in the next section
reconstructions were performed in Matlab running on an
i7 laptop. In this setting, when seeking s = 3 emitters using
M = 30 sensors and N = 2500 potential emitter locations,
a complete reconstruction takes approximately 0.4 seconds.

B. RECOVERY EXAMPLE
To illustrate, let � be the 50 × 50 meter region {(x, y); 0 ≤
x, y ≤ 50} and consider a 50 × 50 rectangular grid for
potential emitter locations, of the form (xi, yj) where xi =
(i− 0.5), yj = (j− 0.5) for 1 ≤ i, j ≤ 50, so here N = 502 =
2500. In many settings it is the case that randomness in the
construction of the measurement matrix is an asset in using
sparsity or compressed sensing recovery algorithms [41].
We thus consider M = 30 RSS data points collected from
30 RSS sensors on the ground in �. The sensor locations
are displayed as crosses in Fig. 1. We use pathloss exponent
n = 3.5 in equation (1) (assumed known for now) and noise
level σdB = 3 dB in equation (3); this corresponds to a signal-
to-noise ratio of about 1 : 1 in the log-normal noise model.
See Section V for data that supports these parameter choices,
and for a recovery from measured data.

FIGURE 1. Average recovered power from 500 simulation runs (white is 0
power, black is power 1 or higher). The true emitters are marked as stars,
sensor locations as crosses. The log-normal randomized noise is
simulated with σdB = 3.

Three emitters with unit power at reference distance r0 = 1
meter are present at (x, y) positions (24.0, 41.0), (19.3, 20.1),
and (36.4, 12.8), at a known altitude of 10 meters (hereafter
referred to as emitters 1, 2, and 3, respectively); these could
correspond to emitters associated with drones in the area.
Note that these (x, y) coordinates are not themselves grid
points, nonetheless one would hope to recover emitter esti-
mates that correspond to nearby grid points. We then simulate
noisy data d using equation (3) and perform a reconstruction
from d using the BLOOMP algorithm, to recover an estimate

of the emitter number, location(s), and power(s). This process
of generating noise and reconstructing is repeated 500 times,
each with a different noise realization. We emphasize that the
number of emitters is not assumed a priori.

One can show (see Appendix VI) that for a modest noise
level σdB ≤ 5 dB the expected value of ‖d−d0‖22 is bounded
by and comparable to the quantity ε = (µ2

0 + σ
2
0 )‖d0‖

2
2

where µ0 = eη
2σ 2dB/2 − 1 and σ 2

0 = eη
2σ 2dB (eη

2σ 2dB − 1) (recall
η = ln(10)/10). Of course the noiseless data d0 is unknown,
but the noisy data d provides a reasonable estimate. We thus
terminate the iteration when the fit to the data is comparable
to (or a bit smaller than) this noise level, specifically, when

‖d− dk‖2 ≤ C
√
(µ2

0 + σ
2
0 )‖d‖2 (6)

where dk = 8pk denotes the estimated data at the kth
iteration of BLOOMP and C is a constant less than or equal
to 1 (we use C = 1/4). For high noise levels the random
variable ‖d−dk‖2 is more highly skewed to the right, and so

E(‖d − dk‖2) may be somewhat smaller than
√
‖d− dk‖22.

In this case a value of C somewhat less than 1 can be helpful
to prevent the iterative algorithm from terminating too early.

As mentioned above, all simulations were performed in
Matlab running on an i7 laptop computer, with each indi-
vidual reconstruction of emitter locations requiring about
0.4 seconds. A typical reconstruction does 4 to 6 iterations of
the BLOOMP algorithm. The results of these 500 simulated
cases are shown in Fig. 1. The image is an average of the
recovered power at each grid location, coded so 0 recovered
power is white, 1 or higher is black. The sensor locations are
illustrated as crosses and the true position of each emitter
is represented by a star. The average estimated power for
each of the three emitters is 1.7424, 0.8830, and 1.1712
for emitters 1, 2, and 3. The gray areas indicating positive
power recovery clustered around the three emitters, which are
reasonably well resolved. An analysis of this resolution is the
focus of the next section.

It should also be emphasized that Fig. 1 is an average
of 500 reconstructions; any individual reconstruction yields
only a few estimated emitters. In this case the average number
of emitters per reconstruction was 5.17. In Section IV-E we
propose a strategy for ‘‘cleaning up’’ any given reconstruction
by eliminating emitters that are likely spurious estimates.

Onemight expect that the pathloss exponent n to be a rather
critical value in estimating the number and position of the
emitters, but we find that this is not the case. Specifically,
an incorrect pathloss exponent has little effect on the recovery
of the emitter count and locations, but does significantly
affect the estimated power of each emitter. As an illustration,
in Fig. 2 is shown a recoverywith exactly the same parameters
as Fig. 1, but with the (erroneous) assumption of a pathloss
exponent of 2.5 (whereas n = 3.5 was used to simulate the
data). The average estimated power is 0.1368, 0.0595, and
0.0612 for emitters 1, 2, and 3, respectively; this is consider-
ably off from the correct values of 1 for each. Nonetheless,
the number and location are quite accurate.
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FIGURE 2. Average recovered power from 500 simulation runs (white is 0
power, black is power 1 or higher), erroneous pathloss exponent. The true
emitters are marked as stars, sensor locations as crosses. The log-normal
randomized noise is simulated with σdB = 3.

IV. ANALYSIS OF RESOLUTION AND DETECTION LIMITS
The goal in this section is to develop a method for quantifying
the local resolution one can obtain at any fixed potential
emitter location from RSS data for a given noise level and
sensor configuration, and to provide a bound on the weakest
emitters that can be reliably detected. We then consider how
this analysis can be used to improve the location algorithm.

A. RESOLUTION ANALYSIS
Suppose an emitter lies at one of two potential locations, say
q1 = (x1, y1) or q2 = (x2, y2). We collect noisy RSS data
from M sensors. The goal is to determine at which location
the emitter actually lies, with sufficiently high probability
(to be specified). If this can be done we will say the two
potential locations are ‘‘resolvable.’’

Let dk ∈ RM denote the noiseless RSS data we would
collect from an emitter at location qk , where k = 1 or k = 2.
This data vector is assumed to obey the model (1), with a
single nonzero power location. For convenience we define
normalized data vectors

b1 =
d1
‖d1‖2

and b2 =
d2
‖d2‖2

(7)

so ‖bk‖2 = 1 for k = 1, 2. Note that the reference power pk
will not matter in either case.

Suppose we collect noisy data d ∈ RM from the sensors,
stemming from an emitter at location q1; the components
of d are given by (3) (with only a single nonzero summand).
The goal is to use d to correctly assign the emitter to loca-
tion q1, as opposed to q2. If we formulate this as a compressed
sensing problem as above in equation (2) then we obtain
linear system [

b1 b2
] [ p1

p2

]
= d

(equivalently, p1b1 + p2b2 = d) in which the sensing matrix
8 is M × 2 with unit norm columns b1 and b2. We seek a
1-sparse solution to this system. In this very simple case OMP
or any standard sparse solver (e.g., basis pursuit) will provide
a 1-sparse solution consisting of a multiple of that column
of 8 which has the highest coherence with the data d, with
power estimate p̃k = bk ·d for either k = 1 or k = 2. That is,
the emitter is correctly assigned to location b1 if

µ(b1,d) > µ(b2,d) (8)

and incorrectly to location p2 otherwise. Condition (8) is
quite natural—the emitter is assigned to a location according
to which vector b1 or b2 best matches the collected data d
after normalizing for power. This notion of resolution is not
wedded to a compressed sensing approach to the problem, nor
any particular algorithm.
Equation (8) is equivalent to

c · d > 0 (9)

where

c = b1 − b2. (10)

Equations (9) and (10) can be written equivalently as Q > 0
where

Q =
M∑
j=1

wjeηRj (11)

with wj = cj/rn1j and where cj denotes the jth component of c.
For a given sensor configuration thewj are known.Wewant to
compute the probabilityP(Q > 0), so that we correctly assign
the emitter to location q1. It should be noted that we will have
0.5 ≤ P(Q > 0) ≤ 1, with P(Q > 0) = 1 as the best case—
the emitters are certainly resolvable—and P(Q > 0) = 0.5
as the worst case, in which resolving the emitter locations
becomes a ‘‘coin toss.’’

The random variable Q is a signed linear combination of
log-normal random variables (the wi are generally of mixed
sign). The next section is devoted to accurately approximating
the probability P(Q > 0) in an easily computable fashion.

B. APPROXIMATING A SIGNED SUM OF LOG-NORMAL
RANDOM VARIABLES
ThoughQ has coefficients of mixed sign, we first consider the
case in which all coefficients are positive. The distribution of
such a sum of log-normals is a well-studied problem, though
such a sum has no closed-form density function. However,
it has long been noted that such a sum is itself approximately
log-normal, and so can be characterized as being of the form
eN (µ,σ 2) for suitableµ and σ . Note thatµ stands for the mean
of the noise distribution here, not mutual coherence.

In [42] the authors provide a simple and effective method
for fitting µ and σ to such a sum. The individual log-normals
in the sums they consider are of the form eN (µj,σ 2j ) with
varying µj and σj, and are assumed independent. For a linear
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combination of the form (11) with weights wj that are posi-
tive, the weighted sum in Q is easily adapted to this setting,
by absorbing the wj into the Rj (we can shift the mean of Rj
by ln(wj)). If we split the sum defining Q into a piece with
positive weights and a piece with negative weights, we can
write Q = Q+ − Q− where

Q+ =
∑
wj≥0

wjeηRj and Q− =
∑
wj<0

(−wj)eηRj . (12)

The method of [42] provides a log-normal random variable
approximation for Q+ in the form eR where R = N (µ+, σ+),
by determining an appropriate mean and varianceµ+ and σ 2

+.
A similar approximation is made to obtainµ− and σ− forQ−.
The probability density function (pdf) and cumulative den-

sity function (cdf) for the log-normal random variable are
well-known. Moreover, if a random variable X has cdf F(x)
and random variable Y has pdf g(x) then the cdf H (x) for
X − Y is given by

H (x) =
∫
∞

−∞

F(x + y)g(y) dy.

Then, for example, P(X−Y > 0) is given by 1−H (0). In the
present case the cdf H for Q = Q+−Q− can be expressed as

H (x) =
∫
∞

max(0,−x)

[
1
2
+

1
2
erf

(
ln(x + y)− µ+

σ+
√
2

)]

×

 1

yσ−
√
2π

e
−

(ln(y)−µ−)2

2σ2
−

 dy. (13)

The max(0,−x) lower limit in the integral in (13) cuts off the
integral as soon as the cdf or pdf of either random variable
equals zero. The value we are interested in is P(Q > 0) =
1− H (0), and this can be computed easily from (13).

The overall procedure is as follows: Given potential emit-
ter locations q1 and q2, we compute c as in (10) and set
wj = cj/rn1j with r1j as the distance from location q1 to the
jth sensor. We then use the procedure in [42] to estimate
µ+, σ+, µ−, and σ− for Q+ and Q− and compute P(Q > 0)
using (13). If P(Q > 0) exceeds some threshold probability
pmin we will say the emitter location q1 is resolvable from
location q2.
To illustrate the accuracy of the approximation based

on (13), Fig. 3 shows the quantity P(Q > 0) = 1−H (0) com-
puted by this procedure versus the simulated probability of
correctly resolving the emitter locations for a variety of sensor
counts and noise levels. In each basewe use q1 = (24.5, 41.5)
and q2 = (19.5, 20.5), altitude h = 10, with sensors at
random (x, y) locations in 0 < x, y < 50. We generate 104

realizations of synthetic noisy data d for a sensor at location
q1 and assign it to location q1 ifµ(d,b1) > µ(d,b2), location
q2 otherwise. The pathloss exponent is 3.5.

To illustrate how this can be used to quantify local resolu-
tion, consider the three-emitter configuration of Fig. 1, with
the same noise level and other parameters. What local resolu-
tion might we expect near the emitter at location (24, 41)?
Let p1 = (24, 41) and p2 = (x, y) for 0 < x, y < 50,

FIGURE 3. Simulated and approximated resolution probability for various
sensor counts and noise levels.

FIGURE 4. Probability of successful resolution as function of (x, y ). Red
oval is a 95 percent confidence region from the Cramer-Rao bounds.

so that P(Q > 0) as computed above is a function of (x, y).
In Fig. 4 we show a contour plot of this function. The red oval
delineates, for comparison, the Cramer-Rao lower bounds
on the uncertainty in estimating the location of the emitter
(further discussed in Subsection IV-C below).

To illustrate the validity of the resolution analysis, in Fig. 5
is shown a situation similar to that of Fig. 1, but in which
the emitter at position (19.3, 20.1) has been moved to
(19.0, 36.0), which is only 7 meters away from the emitter at
position at (24, 41). The newly moved emitter lies outside the
Cramer-Rao bounds, on about the P(Q > 0) = 0.85 contour.
The emitters are not as reliably resolved.

This analysis makes it clear that, for a given noise level
(and other parameters) the resolution obtainable with RSS
data is limited, and can be quantified. In particular, in a
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FIGURE 5. Average recovered power from 500 simulation runs (white is 0
power, black is power 1 or higher). The true emitters are marked as stars,
sensor locations as crosses.

compressed sensing approach there are little improvements
in resolution to be obtained by using too fine of a grid.

C. COMPARISON TO CRAMER-RAO BOUNDS
Other authors (e.g., [29]–[31]) have examined statistical
bounds, for example, Cramer-Rao bounds, on the minimum
variance that can obtained by using RSS data to estimate the
distance to or position of an emitter. Such a bound provides a
natural way to quantify resolution. However, as noted in [30]
and [31], the Cramer-Rao bounds in this setting cannot be
attained by any unbiased estimator, and so are too optimistic,
especially at higher noise levels. It should also be noted that
our estimates are almost certainly biased.

To illustrate and comparewith the current analysis, we con-
sider a single emitter of unknown power p0 at true location
(22, 41), altitude zero, with the 30 sensor locations as used
in Figs. 1, 4, and 2, pathloss exponent 3.5, and noise level
3 dB. Following the computations of Section 3.2 in [31]
we establish a Cramer-Rao lower bound on the minimum
covariance of any unbiased estimator of the emitter location
and power. The red elliptical region in Fig. 4 is a 95 percent
confidence region with respect to the spatial variables for an
emitter with p0 = 1, though the bounds do not depend on
the unknown power p0. These limits are considerably smaller
than those given by our procedure, which more accurately
reflect what to expect.

D. DETECTABILITY AND CLEARANCE
In this section we consider the problem of when we can
be reasonably certain that we have detected all the emitters
above a given power threshold in a region of interest; this
could be the entire region � or some subregion thereof. The
bounds so established can be used to determine when a recov-
ered emitter is spurious, and likely due solely to noise. Such
a bound can also be used to inform a termination criterion in
the search for emitters.

For a given configuration ofM sensors,N potential emitter
locations and correspondingM × N measurement matrix 8,
suppose that p0 ∈ RN embodies the true emitter power vector.
The noise-free data d0 ∈ RM is given by (2); let d ∈ RM

be the collected (noisy) data vector. Suppose that pr is an
estimate of p0 based on the data d, computed using BLOOMP
or any other recovery algorithm. We assume, however, that
the algorithm produces an estimate pr for which an error
bound of the form ‖8pr−d‖ ≤ ε holds, for some tolerance ε,
where ‖ · ‖ can denote any norm, e.g., the L2 or supremum
norm. Typically ε is comparable to the expected noise level
in the data in the appropriate norm.

Now suppose that a single additional emitter were present
at location ri, with powerP. Let p̃ = pr+Pei denote resulting
power vector (ei is the ith standard basis vector in RN ). This
would yield data d̃ = 8p̃ = 8pr + P8i. We will consider
the additional emitter at ri to be detectible if

‖d̃− d‖ > ε. (14)

That is, the presence of this additional emitter would yield
reconstructed data d̃ that is inconsistent with the measured
data at the given tolerance level. But we do not require that
the reconstructed emitter power configuration pr be accurate,
in that ‖pr − p0‖ need not be small.
The value of P that assures ‖d̃ − d‖ > ε holds can be

estimated. We have, using the reverse triangle inequality,

‖d̃− d‖ = ‖P8i +8pr − d‖

≥ |P‖8i‖ − ‖8pr − d‖|

≥ P‖8i‖ − ε.

Inequality (14) must hold if P‖8i‖ − ε > ε or

P >
2ε
‖8i‖

. (15)

The threshold on the right in (15) depends on the precision
to which we fit the measured data, i.e., the noise level in the
data, the norm we use, and on 8. By taking the maximum of
the right side of (15) over all locations ri in a given region
�′ ⊆ � we obtain a threshold of the weakest emitters that
can be reliably identified in�′. If a lower threshold is desired,
it would be necessary to alter the number and/or placement of
sensors. Inequality (15) quantifies what is required. Of course
the estimates leading to (15) are likely pessimistic—an emit-
ter may well be detected below this power threshold—but it
does provide a rough lower bound for emitter detectability.

To illustrate, again consider the setting of Fig. 1. Let us
consider the power threshold for detectability of the emitter
at location (19.3, 20.1). The closest grid location is r1020 =
(19.5, 20.5) (that is, index location i = 1020 in our indexing
scheme). We iterate BLOOMP until ‖d̃ − d‖2 ≤ 2 × 10−4

and compute ‖81020‖2 ≈ 3.56 × 10−4, leading to a power
bound P ≈ 1.1 for the emitter in this location. As is obvious
in Fig. 1, the emitter is clearly detectable at power level 1.
However, under the same conditions but with power level 0.5
the result is as shown in Fig. 6. At power level 0.25 the emitter
becomes essentially invisible.
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FIGURE 6. Setting of Fig. 1, but with emitter at (19.3,20.1) at power 0.5.

FIGURE 7. Clearance power threshold as function of position, setting of
Fig. 8.

For reference, Fig. 7 shows the power threshold quantified
by the right side of (15) for this sensor configuration (sen-
sors again shown as diamonds), as a grayscale map in the
region �, with the sensors positions shown as diamonds.

E. AN ALGORITHMIC IMPROVEMENT
The clearance criterion (15) can be used to improve the results
of reconstructions. Specifically, we:

1) Run the BLOOMP algorithm with a given termina-
tion tolerance of the form (6). Let ε denote the toler-
ance used on ‖d − dk‖2 to terminate the iterations in

BLOOMP, e.g., ε = C
√
(µ2

0 + σ
2
0 )‖d‖2 for some C .

2) Apply the clearance criteria (15) to each potential emit-
ter location, using the 2-norm for ‖8i‖, eliminating any
recovered emitter that does not exceed the threshold.

The effect of Step 2 above is to ‘‘clean up’’ reconstruc-
tions, by eliminating estimated emitters that are more likely
the result of noise. This threshold can applied more or less

aggressively in the form

P > C ′
2ε
‖8i‖

(16)

by choosingC ′ to be something other than 1. A larger value of
C ′ more aggressively eliminates spurious emitter estimates.
To illustrate, we reconsider the reconstruction of Fig. 1,

using the termination criterion (6) with C = 0.25 (the same
aswas used in Fig. 1.) In Fig. 8 we show the recovery obtained
without using the clearance criteria; this figure would be
identical to Fig. 1, but here we display only the ‘‘low power’’
emitter recoveries, those with power less than 0.5. Moreover,
all such emitters are shown at the same gray-level.

FIGURE 8. Setting of Fig. 1, no clearance threshold used, recovered
emitters of power less than 0.5 only shown.

If we apply the clearance criteria (16) withC ′ = 1 (applied
to each of the 500 reconstructions individually) we obtain
the analogous result of Fig. 9. As one might expect based
on Fig. 7, the areas far from any sensor have higher power
thresholds; emitters recovered in these areas must be stronger
to exceed the threshold, since they are more likely spurious,
many of the erroneously estimated emitters of small power
in Fig. 8 have been removed in Fig. 9.

Figs. 10 and 11 illustrate the same situation but in which
the log-normal noise is at 5 dB (in this case the signal-to-noise
ratio is about 3.4, or −10.6 dB.) As in the previous setting,
the clearance criteria (16) is applied with C ′ = 1, to each of
the 500 reconstructions individually.

V. ILLUSTRATION WITH MEASURED DATA
In this section we briefly detail an experiment that we, with
the aid of our students, performed to collect actual RSS data
under conditions that were only simulated above. Our goal
here is not to reproduce the resolution or clearance analysis
with experimentation, but rather to estimate realistic noise
and pathloss parameters under relatively ideal conditions, and
then perform a reconstruction for a single emitter, to illustrate
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FIGURE 9. Setting of Fig. 1, clearance threshold used, recovered emitters
of power less than 0.5 only shown.

FIGURE 10. Setting of Fig. 1 with 5 dB log-normal noise, no clearance
threshold used, recovered emitters of power less than 0.5 only shown.

the effectiveness of the proposed algorithms andmodification
via (16).

A. MEASUREMENT OF RSS IN OPEN AIR
An experiment to collect RSS data from a single emit-
ter using 13 sensors was conducted in the open-air on a
flat grass-covered field of 90 × 120 meters with no over-
head obstructions. The transmitter was placed at location
(12.4, 17.5) meters relative to an origin on a cartesian grid,
at a height of 70 cm. Thirteen different receivers were scat-
tered within a 50× 50 meter square area to collect RSS sam-
ples at 13 different positions sj. The height of the receivers
was 50 cm. The xy locations of the receivers and emitter are
plotted in Fig. 13. This is similar to the configurations we
simulated in Sections IV, though with the emitter and sensors
at approximately the same height.

FIGURE 11. Setting of Fig. 1 with 5 dB log-normal noise, clearance
threshold used, recovered emitters of power less than 0.5 only shown.

The emitter transmitted a continuous-wave, unmodulated
signal, centered at 925 MHz (in the ISM band) using a Soft-
ware Defined Radio (SDR) transceiver (USRP E100, Ettus
Research). An omnidirectional vertical dipole antenna was
used for the transmitter (VERT900, Ettus Research). The
transmitted signal was sampled at each sensor position at a
rate of 1.152 Msamples/s, for a duration of one second, using
an SDR radio (receiver only) device with a USB interface
(R820T NESDR Mini, Noo Electric). The RTL-SDR has
the capability to tune over the range 25 MHz to 1.75 GHz,
producing raw, 8-bit IQ data samples, at a programable, base-
band sampling rate of up to 2.8MHz [43]. However, the data
acquisition sampling rate was set lower to ensure the accuracy
of the rate. The gain was set to 32.8 for each of the receivers,
which was tuned so that the receiver closest to the transmitter
(≈ 6.5 meters away) did not experience saturation. Without
automatic gain control, we found the useful dynamic range
of the RTL-SDR is around 45 dB. The receivers used an
omnidirectional vertical dipole antenna, approximately 14 cm
in length with an MCX connection.

The raw IQ data were processed using the procedures
recommended in [35]. The RSS was calculated by first apply-
ing a Chebyshev Type I IIR filter of order 1 to remove
most of the fast-fading variations. A least-squares fit to the
log-normal distance trend is used to estimate the path-length
exponent, n ≈ 3.45 for our data. The standard deviation
of the log-normalized uncertainty term (long-term fading
uncertainty) was computed from the variation from the fitted
data, σdB = 1.86 dB. The decimated RSS values and fit are
plotted in Fig. 12.

B. A SAMPLE RECONSTRUCTION FROM DATA
In the reconstructions that follow the RSS values were nor-
malized to correspond to an emitter power (non-dimensional)
of 1 at a distance of 1 meter, as in the simulations above.
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FIGURE 12. The normalized RSS measured from sensors randomly placed
in a 50× 50 meter search area are plotted (dots). Measurements were
repeated to obtain a better estimate of the channel propagation variance.
The log-linear fit is displayed as the dashed line. The pathloss trend
predicted by the free-space approximation is displayed as a solid black
line.

FIGURE 13. The emitter was placed at the position (12.41 m, 17.56 m) as
indicated by the red asterisk. The sensor locations are marked by blue
crosses. An estimate of the emitter’s location as computed by the
BLOOMP algorithm is at the position (12.50 m,15.50 m), indicated by a
black square.

To begin, we show a reconstruction of the emitter location
using the BLOOMP algorithm with data from all 13 sensors.
Band exclusion is applied to the modified BLOOMP algo-
rithm according to [39] with a exclusion parameter set to 0.95.
We use the pathloss exponent n = 3.45 estimated above and
assume noise level σdB = 2 dB. The BLOOMP termination
criteria is as given in (6) withC = 0.25. The algorithm in fact
terminates in one iteration (and as a result, estimates that only
one emitter is present). In Fig. 13, the estimated location of
the emitter is plotted as the single black square, with the true
emitter indicated by the red asterisk. The estimate falls on the
closest grid point at (12.50 m,15.50 m) which is 1.1 meters

away from the position of the true emitter’s location (12.41m,
17.56 m). It should be noted that the true emitter itself is not
on a grid point. The recovered power estimate was 1.15.

C. CLEARANCE THRESHOLD APPLIED TO DATA
In this section we illustrate the reconstruction of the emitter
location using relatively few sensors, and how the clearance
criterion can be used to ‘‘clean up’’ reconstructions and elim-
inate (likely) spurious emitter estimates.

An often cited rule-of-thumb regarding compressed sens-
ing estimates for sparse solutions is that the number of
data points should be at least four times the sparsity of
the unknown solution [41]. However, this rule applies to
situations in which the measurement matrix has relatively
low coherence—not the present case. As such, we expect
that the reliable recovery of even a single emitter from RSS
data should require somewhat more than 4 sensors. In the
examples that follow we used subsets of 7 sensors, chosen
from the 13 we have available, so approximately half of the
sensors are involved in any given reconstruction.

FIGURE 14. Average of 146 reconstructions using 7 emitters in each case,
with emitter power rescaled logarithmically. No clearance power
threshold applied.

In Fig. 14 is shown the average of 146 reconstructions
using the 146 subsets of our 13 sensors that satisfy the criteria
of being ‘‘spatially diverse.’’ Specifically, we require that no
two sensors are closer than 10 meters, and at least two are
separated by 50 meters or more, in order to provide adequate
coverage of the 50× 50 meter field. For each reconstruction
we iterate the BLOOMP algorithm with a rather stringent
termination criterion, (6) with C = 0.1. This has the effect
of causing the algorithm to overfit the data and gives rise to
spurious small emitters. We then plot the recovered emitter
powers with the rescaling p → log(1 + 100p)/ log(101),
in order show the low power emitter estimates that are recov-
ered. We do not apply the clearance threshold (15) in this
reconstruction.
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FIGURE 15. Average of 146 reconstructions using 7 emitters in each case,
with emitter power rescaled logarithmically and clearance power
threshold applied.

In Fig. 14 we see numerous spurious emitter estimates.
In fact, the algorithm recovers an average of 1.62 emitters
per reconstruction, generally one emitter of power approx-
imately 1, others with much smaller power. In Fig. 15 we
show the result of applying the clearance criterion (16) with
C ′ = 1 to each reconstruction individually. The application of
the clearance criterion effectively eliminates many spurious
emitter estimates, in a way that incorporates the position of
the emitters relative to the sensor geometry and the noise level
in the data. This also has the benefit of taking some of the
premium off of choosing precisely the correct tolerance on the
right in the termination criterion (6), since spurious estimates
are eliminated. In fact, the average sparsity of the data after
application of the clearance criterion is exactly 1.0 (though
clearly not all reconstructions are perfect).

VI. CONCLUSION
We have considered the problem of using a limited number
of low-capability sensors to geolocate an unknown number of
RF emitters with indistinguishable transmission characteris-
tics in a given region. We have formulated this as a problem
in compressed sensing. We then used this formulation to
quantify the limits on resolution and emitter detectability
as a function of the data noise level, sensor number and
placement, as well as other relevant variables, for example,
the pathloss exponent. This analysis also allows us to imple-
ment an effective algorithm for recovering multiple emitters,
both their location and power, from relatively few sensors,
in the presence of realistic noise. We have demonstrated the
effectiveness of this algorithm on both synthetic and real data.

Several natural extensions and refinements of this tech-
nique suggest themselves. The model can be easily adapted
to directional sensor antennas, and emitters (or sensors) at
nonuniform altitude. Also of interest, but more challenging,
is the problem of locating anisotropic, intermittent, or moving
emitters, and operating in an environment in which sensor

positions themselves are not known and must be estimated.
We also intend, in future work, to validate this approach using
real data collected from multiple emitters.

APPENDIX A
As noted in Section III-B, we iterate the BLOOMP algorithm
until the fit squared residual is comparable to E(‖d− d0‖22).
The latter quantity can be estimated from d (the measured
data) and the noise level σdB.
From the noise-free model (1) and noisy model (3) we

compute

‖d− d0‖22 = d2n0
∑M

i=1

(∑N
j=1

pj
rni,j
Xi,j

)2

(17)

where Xi,j = eηRi,j/10 − 1 with Ri,j normal with mean zero,
variance σ 2

dB. The random variable Xi,j is log-normal with
mean and variance given by

µ0 = eη
2σ 2dB/2 − 1, σ 2

0 = eη
2σ 2dB (eη

2σ 2dB − 1). (18)

Since the expected value is linear we have

E(‖d− d0‖22) = d2n0
∑M

i=1 E

[(∑N
j=1

pj
rni,j
Xi,j

)2
]
. (19)

A little algebra shows that

E


 N∑
j=1

pj
rni,j

Xi,j

2
=E

 N∑
j,k=1

pjpk
rni,jr

n
i,k
Xi,jXi,k


=

N∑
j,k=1

pjpk
rni,jr

n
i,k
E(Xi,jXi,k )

=

N∑
j=1

p2j
r2ni,j

E(X2
i,j)

+

N∑
j,k=1,j6=k

pjpk
rni,jr

n
i,k
E(Xi,jXi,k ). (20)

Since the Xi,j are independent we have

E(Xi,jXi,k ) = E(Xi,j)E(Xi,k ) = µ2
0

E(X2
i,j) = µ

2
0 + σ

2
0 .

Then some mundane algebra shows that

E(‖d− d0‖22)

= d2n0

M∑
i=1

(µ2
0 + σ

2
0 )

N∑
j=1

p2j
r2ni,j

+ µ2
0

N∑
j,k=1,j6=k

pjpk
rni,jr

n
i,k


= d2n0

M∑
i=1

µ2
0

N∑
j,k=1

pjpk
rni,jr

n
i,k
+ σ 2

0

N∑
j=1

p2j
r2ni,j


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= d2n0

M∑
i=1

µ2
0

 N∑
j=1

pj
rni,j

2

+ σ 2
0

N∑
j=1

p2j
r2ni,j


= µ2

0‖d0‖
2
2 + σ

2
0 d

2n
0

M∑
i=1

N∑
j=1

p2j
r2ni,j

≤ µ2
0‖d0‖

2
2 + σ

2
0 d

2n
0

M∑
i=1

N∑
j,k=1

pjpk
rni,jr

n
i,k

= µ2
0‖d0‖

2
2 + σ

2
0

M∑
i=1

dn0 N∑
j

pj
rni,j

2

= µ2
0‖d0‖

2
2 + σ

2
0 ‖d0‖

2
2

= (µ2
0 + σ

2
0 )‖d0‖

2
2. (21)

This provides the basis for the termination criterion (6)
(replacing d0 with d).

Note however that E(‖d− d0‖22) ≥ E(‖d− d0‖2)2, so the
termination criterion (6) may result in under-fitting the data.
When σdB ≤ 5 the quantities E(‖d−d0‖22) and E(‖d−d0‖2)

2

are comparable in magnitude, but for larger noise levels the
random variable ‖d − d0‖2 is skewed heavily higher, to the
right. In such a case a smaller value of C in (6) is appropriate.
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