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ABSTRACT In this paper, the powerful issue of a non-full rank inverse model control investigation is
provided. It is broadly known, that the inverse-based methodology is associated with the full-rank control
systems only. However, following the recently obtained authors’ results in this matter, it should be concluded,
that for single-delayed non-full rank state-space plants, the inverse model control-related perfect control
expression can also be established. It is shown here, that for all right- and left-oriented multivariable LTI
non-full rank systems, including the square ones, governed by the discrete-time state-space domain arranging
the zero-reference value, the maximum-speed pole-free instance of such inverse model control strategy can
be achieved. Thus, the new non-full rank algorithm does not coincide with the z-transfer-function scenario,
which additionally sounds the intriguing peculiarity. The innovative content of the manuscript, that has never
been seen before, is strongly supported by the numerical examples. Henceforth, the presented methodology
covers the entire set of LTI MIMO state-space-oriented plants in the discrete-time domain, which is also a
consequence of conducted research investigation in the past.

INDEX TERMS Non-full rank, perfect control procedure, Moore–Penrose inverse, generalized inverses,
skeleton factorization, pole-free delayed plants, discrete-time state-space MIMO structures.

I. INTRODUCTION
The inverse model control (IMC) has widely been investi-
gated over the past decades due to its application in many sci-
entific and engineering fields [1]–[4], [5]–[8], [9]–[12], [13],
[14], [15]–[18], [19]–[22], [23]–[25]. The unique behaviors
of the discussed technique such as robustness, maximum-
speed or minimum-energy properties make it attractive
in many practical implementations [1], [9], [12], [23],
[26]–[28]. The widely known IMC-based perfect control
law, which constitutes the deterministic instance of the min-
imum variance control (MVC), has not only been associ-
ated with the full-rank square MIMO systems, including
SISO ones [1]. In fact, the multivariable nonsquare right-
invertible plants, i.e. systems with greater number of input
than output variables, can also be subjected by such noise-
free control law [3]. In such a case, through the application of
nonunique parameter/polynomial right inverses, we can rede-
fine the special properties of the closed-loop state-feedback
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plant [1], [9], [26]. The IMC methodology, both in the input-
output and the state-space domains, has necessitated the sys-
tem to be under full-rank regulation, hence the non-full rank
instance has not been considered, in general [29], [30].

Since in the non-full rank scenario the pseudoinverse for-
mula supported by the so-called skeleton factorization mech-
anism has to be engaged in the inverse model control design,
the perfect control law requirements cannot structurally be
fulfilled [8]. So, this case has been thrown away from the
further investigations by the world control society. However,
following the recent authors’ results it is certain, that for some
single-delayed state-space plant being under zero-setpoint,
the non-full rank perfect control structure can also be suc-
cessfully obtained [12]. It is interesting to note, that this
outcome is not valid in the input-output-oriented transfer-
function model description, what additionally underlines the
variability of the perfect control scheme [29]. Nevertheless,
the new analytical results presented in the paper confirm, that
for all right- and left-oriented non-full rank multivariable LTI
discrete-time state-space systems with time delay d > 1
having zero-reference value, the IMC-based maximum-speed
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pole-free perfect control object can clearly be established.
This phenomenon, which has never been seen before, sheds
a new light on the generally accepted control and systems
theory canons. An extension of the manuscript’s results on
the other control strategies seems to be expected. Henceforth,
every control plant with arbitrary time delay d occupied by
the non-full rank adverse behavior can now be treated as the
accessible one.

A remaining of the manuscript is organized as follows.
The essential symbols and abbreviations are introduced in
Section II. Next, the paradigm of the state-space perfect
control law is explained in Section III. The most important
Section IV deals with the problem of the maximum-speed
pole-free non-full rank inverse model control design. The
newly obtained results are confirmed by the simulation exam-
ples of Section V. Finally, the conclusions and open problems
of Section VI summarize the paper, successfully.

II. PRELIMINARIES
In order to eliminate any confusions and misconceptions,
the main symbols and abbreviations enforced in the work are
presented below.

TABLE 1. Table of symbols.

Having the fundamentals covering the crucial motivation
as well as mathematical background, let us switch now to the
overall investigation of the IMC-related deterministic perfect
control procedure. Next section effectively discovers the steps
to be undertaken during the complex design process of the
closed-loop state-feedback control scheme.

III. CONTROL SYSTEM DESCRIPTION
Following the introduction section, we consider the multi-
input/multi-output LTI plants governed by the discrete-time
state-space structure

x(k + 1) = Ax(k)+ Bu(k)q(−d+1), x(0) = x0,

y(k) = Cx(k), (1)

with the system’s parameter matrices as A ∈ Rn×n, B ∈
Rn×nu , C ∈ Rny×n and vectors x(k) ∈ Rn, u(k) ∈ Rnu ,
y(k) ∈ Rny . The n-state, nu-input and ny-output nomenclature
denotes the numbers of state, input and output variables,
respectively. The x0 indicates an initial condition of the state
vector x(k), whilst k and q−1 stand for the discrete time and
backward shift operator, respectively. The considered d > 1
deals with the time delay of a plant.
Remark 1: It should be assumed, that in further investiga-

tions the system is controllable.
Remark 2: The poles of the plant governed by the state-

space framework (1) can be calculated in accordance with
the following canon

det(zIn − A) = 0, (2)

where In defines the n-dimensional identity matrix, whereas
z means some complex operator.

The IMC-based perfect control algorithm is the determin-
istic instance of the well-known MVC strategy, which guar-
antees, that we receive the reference value on the system’s
output just after time delay of the plant. In order to obtain such
formula, we have to fulfill the perfect control law requirement
in the following manner

J = min
u(k)

{∥∥∥y(k + d)− yref(k + d)
∥∥∥2}, (3)

where y(k + d) is the d-step deterministic output predictor
while yref(k+d) ∈ Rny stands for an arbitrary reference value
enabled after (k + d)-step.
Throughout minimizing the performance index (3) we

receive the complete state-space-oriented perfect control
expression [1]

u(k) = (CB)ξ
[
yref(k + d)

−C
( d−1∑
p=1

ApBu(k − p)+ Adx(k)
)]
, (4)

where symbol (.)ξ denotes an appropriate inverse formula
of the product of CB ∈ Rny×nu . Naturally, in case of CB
being of full (normal) rank we have to apply any right
inverse as (CB)R.
Remark 3: It should be emphasized, that in order to fulfill

the condition (3), the full rank plant has to be square or right
invertible (nu > ny), see Refs. [8], [9].
Remark 4: It is clear, that the IMC-oriented perfect con-

trol structure can also be established for full rank plants
governed by the right-invertible input-output models. For
more details see Ref. [29].
Remark 5: Notice, that in the non-full rank scenario,

the general perfect control law (3) cannot structurally be
achieved. This important exception will be discussed in detail
in the next section.

In the literature, we can find a plethora of unique/
nonunique generalized inverse formulas precisely dedicated
to the parameter/polynomial square/non-square full (normal)
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rank matrices [8], [31]. At this point, the most important
ones should be recalled in forms of the S-, σ -, τ - and
H -inverse, in order to involve their in the perfect control
design process [8], [29], [32]. Naturally, each of them causes
some different behavior of the closed-loop control system.
The most intriguing one is the recently introduced nonunique
polynomial right σ -inverse of CB as follows

(CB)Rσ = β
T(q−1)

[
CBβT(q−1)

]−1
, (5)

attaches the infinite number of the DOFs-derived β(q−1)
forms. Thus, we can obtain the infinite number of inverses
and consequently different peculiarities of the controlled
plant [1], [9].
Remark 6: It is interesting to note, that the nonunique

polynomial right σ -inverse (5) covers all right-inverse for-
mulas, in general. Moreover, the analytical confirmation of
the direct relationship between the popular S-inverse and
σ -inverse can be found in Ref. [32].
However, while employment of the generalized right

σ -inverse with polynomial DOFs seems to be rather obvi-
ous, such operation cannot be applied to the non-full
IMC-oriented instances. This fact additionally stresses the
complexity of the perfect control methodology. Therefore,
in order to significantly extend the well-known canons of
control and systems theory, the next section definitely solves
the eternal non-full rank problem mainly engaged in the
inverse-based multivariable control. This constitutes a main
accomplishment of the paper.

IV. NON-FULL RANK IMC STRUCTURE
At the beginning of this section it should already be reminded,
that the rank of the system being under perfect control force
is strictly associated with the rank of theCB product. In other
words, if the CB matrix is of the full/non-full rank, then the
perfect control plant is also characterized as the full/non-full
rank, respectively.

Pursuing this line, in the non-full rank scenario, the special
class of the inverses has to be involved into the inverse model
control design procedure [8]. Therefore, in the case of the
non-full rank CB matrix meeting the relation

det
(
CB(CB)T

)
= 0, (6)

we have to apply the well-known unique Moore–Penrose
T -pseudoinverse marked as (CB)δ [33]. Based on the
so-called skeleton factorization we can explicitly obtain its
general expression

(CB)δ = BR
0 C

L
0 , (7)

where symbols (.)R0 and (.)L0 denote the unique minimum-
norm right and unique least-squares left T -inverse formulas,
respectively [8].
Remark 7: Observe, that in the pseudoinverse (7),

the respective Moore–Penrose right and left T -inverses in the
forms of BR

0 = BT
[
BBT

]−1 and CL
0 =

[
CTC

]−1CT are
commonly used.

Remark 8: Notice, that the expression (7) is valid for any
size of the CB product. In such a case we have dim[C] =
ny×n and dim[B] = n×nu with n < min(nu, ny) being a non-
full rank. Of course, we should preserve here the conditions:
det(C) 6= 0 and det(B) 6= 0.
Naturally, despite the fact that

BBR
0 = In and BR

0 B 6= Inu , (8)

as well as

CCL
0 6= Iny and CL

0 C = In, (9)

we sill receive

CB (CB)δ 6= Iny and (CB)δCB 6= Inu , (10)

for the non-full ranked CB, in general.
Below the crucial theorem related to the IMC-originated

control systems is demonstrated.
Theorem 1: For non-full rank systems described by the

Eqs. (1) with det(C) 6= 0 and det(B) 6= 0, the perfect control
strategy (4) with non-zero setpoint yref(k + d) cannot be
established, since the product of CB is of non-full rank.

Proof: Immediately, after substitution the formula (4)
involving the Moore–Penrose inverse as in Eq. (7) to the
state-space representation (1). Thus, we obtain y(k + d) 6=
yref(k + d), in general case. �
Remark 9: It should also be mentioned, that the above

theorem concerning the non-full rank state-space plants can
easily be extended to cover the objects described by the
input-output structures. Therefore, in both systems’ domains,
the perfect control law requirement formed as

y(k + d) = yref(k + d), (11)

is also not fulfilled.
Indeed, in the transfer-function plant description, the non-

full rank perfect control scheme cannot be given, in gen-
eral [29]. However, for the non-full rank systems governed
by the state-space framework, being under yref(k + d) = 0,
the unique peculiarity of the perfect control formula appears.
For zero reference value, the IMC-related law (3) simplifies
itself to the expression

J = min
u(k)

{∥∥∥y(k + d)∥∥∥2}, (12)

for which the perfect control algorithm, or rather perfect
regulation, ends up with

u(k) = −(CB)δ
[
C
( d−1∑
p=1

ApBu(k − p)+ Adx(k)
)]
. (13)

On the first sight, in spite of the application of the simpli-
fied perfect control expression (13), we are still predicting

y(k + d) 6= 0, (14)

since the output of the system equals

y(k + d) = C
[
Ax(k + d − 1)+ Bu(k + d − 1)q(−d+1)

]
,

(15)
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or rather

y(k + d) = C
[
Ax(k + d − 1)+ Bu(k)

]
, (16)

or finally

y(k + d) = CAx(k + d − 1)

−CB(CB)δ
[
C
( d−1∑
p=1

ApBu(k − p)+ Adx(k)
)]
, (17)

under decisive relationship CB(CB)δ 6= Iny .
In addition, this statement is confirmed by the formula

Ax(k + d − 1) = A
(
Ax(k + d − 2)+ Bu(k − 1)

)
, (18)

which can further be extended to the structure

Ax(k + d − 1)

= A
(
A
(
Ax(k+d − 3)+Bu(k − 2)

)
+Bu(k − 1)

)
, (19)

and finally to

Ax(k + d − 1) = A
(
A
(
. . . (Ax(k)+ Bu(k − d + 1))

. . .+ Bu(k − 2)
)
+ Bu(k − 1)

)
, (20)

giving rise to the introduction of the following expression

Ax(k + d − 1) =
( d−1∑
p=1

ApBu(k − p)+ Adx(k)
)
. (21)

Henceforth, according to the above investigation, the sys-
tem’s output (17) can be rewritten to the compact formula

y(k + d) =
[
Iny − CB(CB)δ

]
∗

[
C
( d−1∑
p=1

ApBu(k − p)+ Adx(k)
)]
, (22)

which after occupation by the peculiarity derived from the
chosen relation of (10), holds the Eq. (14), perhaps.

However, after application of the new perfect control for-
mula (13) to the state equation of the framework (1), our point
of view brightens.

In fact, the proper mathematical consideration should sen-
sibly solve the main manuscript’s complicated problem. The
subsequent issues totally coincide with expected final result.
We start with the following
Theorem 2: For systems described by the Eqs. (1) with

det(B) 6= 0 and det(C) 6= 0, the perfect control structure
(13) can be established, since the product of CB can now be
both full or non-full rank.

Proof: Observe, that the state equation of the framework
(1) can be rewritten in the following manner

x(k + d) = Ax(k + d − 1)+ Bu(k), (23)

and subsequently, substituted by the formula (13), giving rise
to the introduction of supporting relation

x(k + d) = Ax(k + d − 1)

−B(CB)δ
[
C
( d−1∑
p=1

ApBu(k − p)+ Adx(k)
)]
. (24)

Thus, in accordance with the expression (21), we obtain

x(k + d) =
[
In − B(CB)δC

]
∗

( d−1∑
p=1

ApBu(k − p)+ Adx(k)
)
, (25)

and finally, the skeleton factorization-based expression

x(k + d) =
[
In − BBR

0 C
L
0C
]

∗

( d−1∑
p=1

ApBu(k − p)+ Adx(k)
)
, (26)

ends the proof with output equation of structure (1) equal to

Cx(k + d) = 0. (27)

�
For the completeness, let us analyze the stability behavior

of the non-full rank IMC systems. This important property is
complexly discussed by the following
Theorem 3: Consider the d-step delayed plants defined by

the environment (1) being under general perfect control algo-
rithm (4). The stability feature of the IMC-oriented scheme is
determined by the expression

det(zIn − A+ B(CB)δCA) = 0. (28)
Proof: The generalized multivariable perfect control

law with non-zero reference value yref(k + d) and different
time delay d ≥ 1 can concurrently, without loss a gen-
erality, be analyzed in terms of one-step delay plant with
yref(k + d) = 0.
Since we have

u(k) = −Kx(k), (29)

with K = (CB)δCA, the proof ends successfully. �
Finally, in order to recapitulate the analytical accomplish-

ment of the manuscript, the following closing theorem is
suggested.
Theorem 4: Consider the linear time-invariant multivari-

able system with time delay d > 1 governed by the discrete-
time state-space framework (1). Then, for yref(k + d) = 0
we can clearly establish the maximum-speed/maximum-
accuracy pole-free non-full rank IMC-based perfect control
structure.

Proof: Immediately, after considering the entire inves-
tigations, in particular the expressions (26) and (27). �
It is astonishing, that the perfect control-oriented inverse

model control design can clearly be given in the non-full rank
state-space domain. Furthermore, the new theory includes the
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state-feedback plants with any time delay. The innovation,
which has never been seen before significantly extends the
issues presented in Ref. [12].
Remark 10: Notice, that the Theorem 4 takes into account

any size of the matrix CB provided by nu > n and ny > n.
It should additionally be emphasized, that the new pre-

sented results are only justifiable in the state-space frame-
work. Despite the fact, that there obviously is the direct
relationship between the state-space and transfer-function
domains, these outcomes are not valid in the input-output
description. Accordingly, this important observation high-
lights the complex nature of the perfect control strategy.

The representative numerical examples of the next
section exhibit the big potential of the new breakthrough
theory.

V. SIMULATION EXAMPLES
We remark first, that the perfect control design for the full
rank MIMO systems is well-defined and broadly explored.
Therefore, we only take into account the non-full rank sce-
narios being under the CB matrix with non-full rank.

A. CASE nu < ny WITH TIME DELAY d = 1
In the first instance, we examine the LTI single-delayed sys-
tem governed by the discrete-time state-space framework (1)
with:

A =
[
0.4 −0.3
0.2 −0.2

]
, B =

[
0.5 −0.3 0.8
0.3 −0.4 0.2

]
,

C =


0.1 −0.5
0.1 −1
0.4 0.7
−1.4 0.9

 and x0 =
[
8
−6

]
.

In such scenario, the general perfect control law (4) special-
izes to the following form

u(k) = (CB)δ
[
yref(k + 1)− CAx(k)

]
. (30)

The plots of the state x(k), control u(k) and output y(k)
signals are shown in Fig. 1, respectively. It is clear, that for
yref(k) 6= 0, the outputs of the plant do not reach the reference
values at any time. Nevertheless, the control formula (30)
arranging yref(k + d) = 0 simplifies to the subsequent
expression

u(k) = −(CB)δCAx(k). (31)

Now, after engaging the above equation (31) to the control
design process, together with the consideration of the new
defined Theorem 4, we obtain the non-full rank pole-free
maximum-speed/maximum-accuracy IMC-oriented closed-
loop perfect control system, which variables are pre-
sented in Fig. 2. Obviously, the plant’s output achieves the
zero-setpoint after d = 1, which fulfills the perfect control
requirement (12) in the best way.

FIGURE 1. Runs of the non-full rank perfect control under yref(k) 6= 0,
case: CB with nu|

=3 < ny |
=4 .

B. CASE nu = ny WITH TIME DELAY d = 2
In the second case, we consider the LTI discrete-time state-
space system (1) with time delay d = 2 described by:

A =
[
0.4 −0.3
0.2 −0.2

]
, B =

[
0.5 −0.3 0.8
0.3 −0.4 0.2

]
,

C =

0.1 −0.5
0.1 −1
0.4 0.7

 and x0 =
[
−4
5

]
.
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FIGURE 2. Runs of the non-full rank perfect control under yref(k) = 0,
case: CB with nu|

=3 < ny |
=4 .

In this example, the complex perfect control strategy (4) is
reduced to the following rule

u(k) = (CB)δ
[
yref(k + 2)− CABu(k − 1)− CA2x(k)

]
.

(32)

The runs of the state, control and output variables are
depicted in Fig. 3, respectively.

As previously, for yref(k + d) 6= 0, the control system can-
not obtain the reference value on the output. However, the

FIGURE 3. Runs of the non-full rank perfect control under yref(k) 6= 0,
case: CB with nu|

=3 = ny |
=3 .

control approach (32) respecting yref(k + d) = 0 can be
rewritten to the expression

u(k) = −(CB)δ
[
CABu(k − 1)+ CA2x(k)

]
, (33)

for which we receive the stable non-full rank IMC-based per-
fect control scheme. The signals of the system are exhibited
in Fig. 4. Naturally, the plant’s output reach the zero-reference
value after d = 2, which ideally realizes the said control law
condition (12).
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FIGURE 4. Runs of the non-full rank perfect control under yref(k) = 0,
case: CB with nu|

=3 = ny |
=3 .

C. CASE nu > ny WITH TIME DELAY d = 3
In the last example, we investigate the LTI system with time
delay d = 3 represented by the matrices of the discrete-time
state-space structure (1) as:

A =
[
0.4 −0.3
0.2 −0.2

]
, B =

[
0.5 −0.3 2.8 0.1
1.3 −1.4 0.2 −0.5

]
,

C =

0.1 −0.5
0.1 −1
0.4 0.7

 and x0 =
[
8
−6

]
.

FIGURE 5. Runs of the non-full rank perfect control under yref(k) 6= 0,
case: CB with nu|

=4 > ny |
=3 .

In such scenario, the general perfect control algorithm (4)
comes down to the following formula

u(k) = (CB)δ
[
yref(k + 3)− CABu(k − 1)

−CA2Bu(k − 2)− CA3x(k)
]
. (34)

The charts of x(k), u(k) and y(k) are presented in Fig. 5,
respectively. Of course, for yref(k + d) 6= 0, the plant’s
outputs cannot arrive at the reference value at any time.
Nevertheless, the control expression (34), for yref(k+d) = 0,
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FIGURE 6. Runs of the non-full rank perfect control under yref(k) = 0,
case: CB with nu|

=4 > ny |
=3 .

simplifies itself to the succeeding relation

u(k) = −(CB)δ
[
CABu(k − 1)

+CA2Bu(k − 2)+ CA3x(k)
]
. (35)

Therefore, after taking into consideration the new
Theorem 4 supported by the control equation (35), we arrive
at the non-full rank IMC-related perfect control design. The
variable runs of the system are shown in Fig. 6. Again, the

fundamental perfect control rule (12) has been held here in
terms of y(k) = 0, for k ≥ 3.

VI. CONCLUSIONS AND OPEN PROBLEMS
The complex analytical study in the field of the inverse model
control design for the multivariable LTI non-full rank state-
space systems described by the maximum-speed/maximum-
accuracy discrete-time framework has been presented in
the manuscript. From now on it is clear, that the IMC-
based perfect control strategy accompanied by the arbitrary
time delay d can structurally be established for any non-
full rank state-space plant being under zero-reference value.
Nevertheless, the presented result is only valid in the state-
space framework, so, the following open problems should
immediately be defined. It could be interesting to extend the
new postulated approach to the class of systems governed
by the input-output domains. This issue, together with the
studies covering yref(k + d) 6= 0, constitutes a key research
challenge, finally providing the unified IMC-related non-full
rank perfect control theory in the nearest future. Last but not
least, the complex practical implementation of the theoretical
methods presented throughout the paper will be presented
shortly.
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