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ABSTRACT This paper studies an improved set-valued observer (SVO) for a complex model of a wind
energy conversion system (WECS). To fit reality, an unknown function is used to describe the aerodynamic
model, and a delay of the input signal is added to simulate the actual situation. The conservative SVO
estimates the state error convergence within an adjustable interval. The extended Lipschitz condition, set-
induced theory, and uniformly ultimately boundedness guarantees the convergence of errors. Based on the
SVO, a fault detection system and corresponding fault detection strategies for common faults of WECSs
are proposed. By adjusting the gain matrix L, the SVO shows excellent state tracking performance. The
simulation results show that the proposed fault detection system can provide rapid and accurate fault
detection.

INDEX TERMS Extended Lipschitz condition, fault detection strategies, SVO, set-induced theory, uni-
formly ultimately boundedness, unknown function, WECS.

I. INTRODUCTION
As more countries continue to increase the installed capacity
of wind power, the research and development, control of wind
energy conversion system (WECS) have become a hotspot
of research. Generally, wind farms are mostly located over
offshore waters, on islands, on plateaus, and in other inhos-
pitable places with good wind energy reserves. A WECS
has a complex structure, in an unfavorable physical environ-
ment, frequent faults occur. The application of efficient fault
detection technology could reduce operation costs. There-
fore, research on the fault detection of WECSs has practical
significance. At present, the research objectives of WECSs
are mainly focused on single components, such as a blade
pitch [1], [2], doubly fed induction generator [3], [4], or per-
manent magnet synchronous generator [5]. The research tar-
gets of fault detection are mainly focused on a variety of
models, such as a permanent magnet synchronous motor
drives [6], polytopic linear parameter-varying system [7], het-
erogeneous multiagent LPV system [8], linear discrete time-
varying system [9], and T-S fuzzy systemwith local nonlinear
models [10]. The above studies have similar disadvantages,
for example, in the study of linear mathematical models and
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their derived subsystem models, the existence of communi-
cation delays was not considered, and nonlinear models were
rarely established. Therefore, it was of significant value to
establish a complex model of a WECS with an unknown
nonlinear part and communication delays and research the
fault detection problem based on an observer with simple
structure and good state tracking capability.

For a nonlinear or an uncertain system, in recent years,
the algorithms of state estimation were mostly concen-
trated on complex state observer or intelligence algorithms.
Abid et al. [11] established an RBFNNs-based observer,
residual generation, and fault detectability condition. Simu-
lation results of a DC motor showed the good state tracking
of the observer and the good fault detection ability of the fault
detection schemes. Guo et al. [12] used T-S fuzzy models
to approximate a discrete nonlinear system and designed a
variable gain observer. The simulation results showed that the
sensor and actuator fault detection for the time-varying gain
observer was very close to that of the constant gain observer.
Fezai et al. [13] researched variable moving window kernel
principal component analysis (VMWKPCA) for a continuous
stirred tank reactor. The simulation results presented that the
fault diagnosis using different partial VMWKPCAs detected
the fault correctly and quickly. Shahnazari and Mhaskar [14]
offered a high gain observer in the presence of uncertainty.
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The simulation results showed that the residuals obtained
from the given fault detection and isolation mechanism
had high precision. For output-constrained switched MIMO
nonstrict-feedback nonlinear systems with an unknown dead
zone, Ma et al. [15] approximated the uncertain nonlinear-
ities with neural networks and the unavailable states with
a switched MIMO observer. The simulation results showed
good state tracking trajectories of the designed observer-
based adaptive control. For the fault detection of uncer-
tain systems with quantization, Xiong et al. [16] established
a residual generation method based on a quantized sig-
nal and designed a robust nonfragile fault detection filter.
The RNFDFQ detected the fault effectively. For uncertain
switched nonlinear systems, Zhao et al. [17] studied a fuzzy-
approximation-based asymptotic tracking control method to
track the controlled states. The simulation results showed
that this algorithm had fewer oscillations than the algorithm
developed by Zhao et al. [18]. The above algorithms were
complex, and it was of great significance to study an observer
with both a simple structure and a good state tracking perfor-
mance.

For the state observations, set-valued theory provides
an adjustable interval estimation solution called set-valued
observer (SVO). Lin et al. [19] proposed an algorithm based
on a uniformly bounded theory and multivertex estimation,
which were the foundations of the SVO adopted in this
paper. Rosa et al. [20] proposed a complete theory for a fault
detection and isolation (FDI) scheme based on another form
of SVO. Further, Rosa established several FDI filters with
similar structures. For a single sensor [21], Rosa established
two parallel SVOs to ensure the logical correctness of the
FDI. As an extended study, a type of FDI filter containing four
parallel SVOs and one parallel nominal FD filter [22] was
established. Further, a global SVO [23] was added to replace
the nominal FD filter to guarantee the performance of fault
detection. The simulation results provided by Rosa verified
that the SVO had a good state tracking performance, and that
the fault detection strategies based on SVO could accurately
detect the common faults. Therefore, it is of great significance
to improve the SVO and apply it to the fault detection of
complex WECSs.

In this paper, the fault detection of a faulted WECS with
a delayed input and an unknown part based on SVO was
studied. An improved SVO was researched to track the status
and detect faults. After confirming the Lipschitz property of
the unknown part, the application of uniformly bounded set
and set-induced Lyapunov function guaranteed the bound-
edness and convergence of the observer. By adjusting the
gain matrix, the SVO could exhibit excellent state tracking
performance. Based on the SVO, fault detection strategies
were proposed for some common faults that occur inWECSs.

The structure of this paper is as follows. In Section 2,
the mathematical model of WECS with a delayed input
and an unknown part is given. In Section 3, an improved
SVO is designed. In Section 4, the fault detection system
and corresponding fault detection strategies are provided.

In Section 5, the numerical simulation for four faults and
fault detections and comparative study are discussed. Finally,
Section 6 presents the conclusion.

II. MODEL OF A WECS WITH A DELAYED INPUT AND AN
UNKNOWN PART
A WECS contains several subsystems, including the wind
model, pitch system, aerodynamics, tower shadow, drive
train, generator, and converter [24]. Considering the inter-
action effect of the subsystems [25], the relationships of the
subsystems are listed in Figure 1.

FIGURE 1. Relationships of the subsystems.

The time-delay factor td represents the communication
delay to the pitch actuator and the converter, which depends
on the communication distance, communication line, and
communication equipment. For a single wind power tower,
the influences of the above three conditions on the com-
munication delays of the pitch actuator and converter can
be considered equal. Therefore, this paper assumes that the
communication delays of the pitch actuator and converter
are equal. For each subsystem, the mathematical models are
presented as follow:

1). The pitch system is modeled as a second-order system
with a time delay, described as

β̈ (t) = −2ζωnβ̇ (t)− ω2
nβ (t)+ ω

2
nβref (t − td ) .

where β (t) is the pitch angle [◦], βref (t − td ) is the delayed
reference input of β (t) [◦], and td is the value of the delay
time to the system [s]. This is a generic description of a
single pitch for a general three-pitch WECS. There are slight
differences among the pitch angles due to the different phases
between the three pitches. In this paper, it is assumed that
the three pitches have the same angle, described by the above
formula.

2). The aerodynamics are modeled via an unknown nonlin-
ear system, described as

Ta (t) = ρπR2v3r (t)Cp (λ (t) , β (t))
/
2ωr (t).

where Ta (t) is the aerodynamic torque [Nm], ωr (t) is the
rotor speed [rad/s], vr (t) is the rotor effective wind speed
[m/s], and Cp (λ (t) , β (t)) is the power coefficient. λ (t)
is the tip-speed ratio. The free wind speed vw (t) includes
the mean wind speed, tower shadow, turbulence, and wind
shear component [26]. The free wind acting on the pitches
causes tower displacement. Then, the rotor effective wind
speed vr (t) can be obtained. This process is complex [27].
To simplify the model, this paper assumes that the tower has
no displacement, omits the calculation processes of the tower
shadow, turbulence, and wind shear, and uses the free wind
speed vw (t) to replace the rotor effective wind speed vr (t).
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Cp (λ (t) , β (t)) is an unknown function with λ (t) and
β (t) as variables. The surface diagram of Cp (λ (t) , β (t)) is
presented in Figure 2 as follows

FIGURE 2. The 3D figure of the power coefficient Cp
(
λ

(
t
)
, β

(
t
))

.

3). The drive train is modeled as three first-order differen-
tial equations, described as

ω̇r (t)=
Ta (t)
Jr
−
Kdtθ1 (t)

Jr
−
(Bdt+Br )

Jr
ωr (t)+

Bdt
NgJr

ωg (t) ,

ω̇g (t)=
Kdt
NgJg

θ1 (t)+
Bdt
NgJg

ωr (t)

−

(
Bdt
N 2
g Jg
+
Bg
Jg

)
ωg (t)−

Tg (t)
Jg

,

θ̇1 (t) = ωr (t)−
1
Ng
ωg (t) .

where θ1 (t) is the torsion angle of the drive train [rad/s],
ωg (t) is the generator speed [rad/s], and Tg (t) is the generator
torque [Nm].

4). The converter is modeled as a first-order system with a
time delay, described as

Ṫg (t) = −
1
τg
Tg (t)+

1
τg
Tg,ref (t − td ) .

where Tg,ref (t − td ) is the delayed reference input to the
generator torque [Nm].

Thus, the model of the WECS with a delayed input and an
unknown nonlinear part is assembled from the above subsys-
tems. The description of the model is presented as follows

Ẋ (t) = AX (t)+ BU (t)+ BdUd (t − td )+8(t,X ,U) ,

Y = CX (t) ,

Xs (t) = X (t)+ ED (t) . (1)

where

X (t)

=
[
ωr (t) ωg (t) θ1 (t) Tg (t) β (t) β̇ (t)

]T
,

U (t)

= vr,m (t) ,

Ud (t − td )

=
[
Tg,ref (t − td ) βref (t − td )

]T
,

A

=



−
(Bdt+Br )

Jr

Bdt
NgJr

Kdt
Jr

0 0 0

Bdt
NgJg

−

(
Bdt
N 2
g Jg
+
Bg
Jg

)
Kdt
NgJg

−
1
Jg

0 0

1 −
1
Ng

0 0 0 0

0 0 0 −
1
τg

0 0

0 0 0 0 0 1
0 0 0 0 −ω2

n −2ζωn


,

B

=
[
0 0 0 0 0 0

]T
,

Bd

=

[
0 0 0 0 0 ω2

n

0 0 0 1
τg

0 0

]T
,

8 (t,X ,U)

=

[
1
Jr

0 0 0 0 0
]T
× Ta (t,X ,U) .

Xs (t) is the vector of the measured values of the state vector
X (t). vr,m (t) = vw (t)+ d (t) represents the measured value
of the rotor effective wind speed vr (t). ED (t) is a white noise
that affects all the sensors.

III. IMPROVED SVO DESIGN
A. DESIGN OF IMPROVED SVO
In this section, for system (1), an improved SVO is designed
to estimate the states in an adjustable interval. The form of
the improved SVO is presented as follows

˙̂X (t) = (A− LC) X̂ (t)+ BU (t)+ BdUd (t − td )

+ 8̂
(
t, X̂ ,U

)
+ LY . (2)

Thus, the estimation error e (t) = X̂ (t) − X (t) is expressed
as follows

ė (t)=(A−LC) e (t)+Ln (t)+
(
8̂
(
t, X̂ ,U

)
−8(t,X ,U)

)
.

(3)

where n (t) is a correspondingmatrix used to reduce the range
of L, which is determined by the ranges of the states.
To prove that the estimation error (3) converges to a given

interval, some theoretical expressions are given below. First,
the Euler approximating system is used to discretize the
continuous system as follows

x (k + 1) =
(
I + εAg

)
x (k)+ εBgu (k) . (4)

where Ag and Bg represent the parameters of a general linear
continuous system. Generally, ε = 1. This system can be
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applied only if the sampling time k is small enough. By apply-
ing equation (4) to the estimation error (3), the discrete system
can be obtained as follows

e (k + 1) = [I + (A− LC)] e (k)+ Ln (k)

+

(
8̂
(
k, X̂ ,U

)
−8(k,X ,U)

)
. (5)

Equation (5) is divided into two parts: The nonlinear part

Ped1 = 8̂
(
k, X̂ ,U

)
−8(k,X ,U) . (6)

and the main part

Ped2 = [I + (A− LC)] e (k)+ Ln (k) . (7)

A similar formula partitioning can be applied to sys-
tems (1) and (2) to obtain the corresponding nonlinear parts
and main parts.
Definition 1 [11]: There exists a matrixM that satisfied

g (a)− g (b) ≤ M (a− b) . (8)

where a and b belong to the domain of g (x), which is called
the extended Lipschitz condition of the nonlinear function
g (x).
Corollary 1: Taking the upper and lower limits of the

domain of g (x), namely, xu and xd , the inequality (8) is
simplified to

g (a)− g (b) ≤ M (a− b) ≤ M (xu − xd ) . (9)

Definition 2 [28], [29]: A C-set is a convex and compact
set containing the origin states within it, which can be repre-
sented by the symbol int {}.
Definition 3 [28], [29]: If there exists a set 20 ⊂ 2,

for every initial condition x (0) ∈ 20, and every output
y ∈ Y and t ≥ 0, it can be assumed that the system
x (k + 1) = Ax (k) + Ed (k) is uniformly bounded in the
C-set2 and x ∈ 2. TheC-set2 can be regarded as a positive
D-invariant for the system. Further, adding a condition x (t) ∈
int {2}, the system x (k + 1) = Ax (k)+ Ed (k) is said to be
uniformly ultimately bounded in the C-set 2. The C-set
2 can be regarded as a strong positive D-invariant for the
system.
Definition 4 [28], [29]: For a given constant µ constrained

within the closed interval [0, 1], and any x ∈ 2, if there exist
Ẋ = {ẋ : ẋ (t) = Ax (t)+ Ed (t) ; ∀d ∈ D} ⊂ µ2, then the
set 2 is µ-contractive.
The set 2 that satisfies Definition 2-4 can be rewritten as

a linear matrix inequality 2 = {x : Fx ≤ 6}. The matrix
F stands for the corresponding matrix. The symbol vert {},
which stands for the set of vertices of the polytope, and Zj,
which stands for the corresponding convex cone for a specific
vertex vj of 2 are illustrated in Figure 3 as follows

Zj =
{
f Ti x ≤ ςi, ςi > 0, for every fi and ςi

}
f Ti vj = ςi, for every vj ∈ vert {2} .

The characteristic of a strong positive D-invariant is tran-
sitive. It is confirmed that 2 is a strong positive D-invariant

FIGURE 3. The relationship of convex cone Zj and region 2.

region for the continuous-time system, if the region 2 is
a strong positive D-invariant region for its matched Euler
approximating system. Thus, the following proposition can
be derived for system (5):
Proposition 1:The region2 is a strong positiveD-invariant

for system (5); if and only if there exist a constant µ that
satisfied 0 < µ < 1, for every vertex vj ∈ vert {2} and
every vertex dh ∈ vert {D}, there exists

vj + (A− LC) vj + Ln (k)+
(
8̂
(
k, X̂ ,U

)
−8(k,X ,U)

)
∈ µςj +Mn (Xu − Xd ) . (10)

whereMn (Xu − Xd ) is the corresponding region of nonlinear
part (6). Hence, inequality (12) can be derived as follows

vj+(A−LC) vj+Ln (k)+Ped1 ∈ µZj+Mn (Xu−Xd ) . (11)

Therefore, the range of the gain matrix L can be calculated
from the set of linear inequalities as follows:

f Ti vj+f
T
i (A−LC) vj+f

T
i Ln (k)<µςi+Mn (Xu−Xd ) . (12)

Since the range of L is affected by vj and n (t), and not
every matrix in the range can meet the requirement, the
explicit value of L can be determined by performing several
simulations.

B. CONVERGENCE OF THE ESTIMATION ERROR
Before providing the proof of the convergence of the esti-
mation error, a gauge function is introduced as follows

A gauge function 9 : Rn → R satisfies the following
conditions:

1) 9 (a+ b) ≤ 9 (a)+9 (b);
2) 9 (x) is nonnegative;
3) 9 (a) = 0⇔ a = 0;
4) for σ > 0, 9 (σa) = σ9 (a).
This function defines a linear distance between the original

state x (0) and x (t) in every possible direction. The ball Br of
radius r in reference to9 is defined as Br = {x : 9 (x) ≤ r}.
Based on the Minkowski function92 (e) = max

{
f Ti e

}
, a C-

set P is regarded as the unit ball 9P (x) as follows

9P (x) =
{
0 x = 0
1, where x ∈ ∂ (P) otherwise

Since ∂ (P) has to be extended to contain x, so there exist
x ∈ P⇔ 9P ≤ 1.
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According to the gauge function and Definition 2-4, two
more lemmas are obtained as follows:
Lemma 1: If region 2 is a strong positive D-invariant set

for the main part of system (1) with convergence rate µ ≤ 1,
then ϑ2 has the same property for all ϑ ≥ 1.
Lemma 2: If and only if there exists a gauge function

9 (e) satisfying the condition that the unit ball B1 ⊂ 2,
a region 2 is a strong positive D-invariant set for the main
part of system (1) with the convergence rate µ < 1. If e /∈
int {B1 + BMn}, where BMn is the corresponding function of
the itemMn (Xu − Xd ), thenBϑ isµ-contractive for allϑ ≥ 1.
According to the lemmas above, the boundedness of esti-

mation error (3) can be derived as follows:
Define set 2e as a C-set that corresponds to the item

Zj+Mn (Xu − Xd ). Define92e (e) as a Minkowski function.
For all e (k) satisfying e (k) ∈ Rn and e (k) /∈ int {2e}, there
exist 92e (e (k + 1)) ≤ λ92e (e (k)) according to inequality
(13) andLemma 2. Generated from the set2e for all accurate
µ, 92e (e) is a function that defines stability. This function
has been identified as a set-induced stability function. The
convergence of the estimation error to 2e is implied by the
set-induced stability function according to Lemma 2. By uti-
lizing the Euler approximating system, the convergence is
certain for 92e (e (k + 1)) ≤ λ92e (e (k)). For any original
condition of the estimation error e (t0), there exists e (t) ∈ 2e
and X (t)+ e (t) ∈ X̂ (t), where time t is large enough.

IV. FAULT DETECTION SYSTEM AND FAULT DETECTION
STRATEGIES
In this paper, a fault detection system based on one global
SVO is provided. The structure of the fault detection system
is provided in the following Figure 4.

FIGURE 4. The structure of the fault detection system.

The principles of fault detection:
Error evaluation is an important basis for fault detection,

which is described by the error evaluation function J (e (t))
and the threshold value Jth, where e (t) represents the esti-
mation error of the state that requires fault detection. Thus,
the fault can be detected based on the following assumptions:

J (e (t)) > Jth ⇒ faulted

J (e (t)) ≤ Jth ⇒ fault − free.

In this paper, a universal error evaluation function is
adopted, as follows:

J (e) =
|e|
Snorm

× 100%.

where Snorm represents the normal value of the corresponded
state. If there exists a rated value Srated for a state, then
Snorm = Srated . For the three-pitch WECS pitch angle βi (t)
wherer i = 1, 2, 3, Snorm = βj (t) where j = 1, 2, 3 and j 6= i.
Therefore, for actuator faults and sensor faults, this paper
designs corresponding fault detection strategies as follows:

Fault detection strategy of actuator faults:

Step 1: Two thresholds are set: a normal operation threshold
Jth1 = 5% and a maximum range threshold Jth2 =
10%.

Step 2: The error evaluation function J (e (t)) is calculated
for the following data: the normal value of the state
and the estimated value of SVO, marked as first
priority data J (e (t))1; the normal value of the out-
put power and the estimated value of output power
calculated from the states of SVO, marked as second
priority data J (e (t))2.

Step 3: If J (e (t))1 ≤ Jth1, the system is judged to be fault-
free. Continue to Step 5; If Jth1 < J (e (t))1 ≤
Jth2, the system is judged to be faulted. Con-
tinue to Step 4; For a state with a rated value,
if J (e (t))1 > Jth2, the system is judged to have
a high-hazard fault, which needs emergency treat-
ment. Continue to Step 5; For a state without a rated
value, if J (e (t))1 > Jth2, but the estimated values
of SVO are still within the allowable range, then
turn to Step 4; Otherwise, the system is judged to
have a high-hazard fault, which needs emergency
treatment. Continue to Step 5.

Step 4: If J (e (t))2 ≤ Jth2, the system is judged to
have a low-hazard fault, which is fault-tolerant; If
J (e (t))2 > Jth2, the system is judged to have
a high-hazard fault, which needs emergency treat-
ment.

Step 5: End.

Fault detection strategy for sensor faults:

Step 1: One threshold is set: a normal operation threshold
Jth3 = 5%.

Step 2: The error evaluation function J (e (t)) is calcu-
lated for the following data: the estimated value of
the SVO and the sensor output value, marked as
J (e (t))3.

Step 3: If J (e (t))3 ≤ Jth3, the sensor is judged to be fault-
free; If J (e (t))3 > Jth3, the sensor is judged to be
faulted, which needed to be addressed. Continue to
Step 4.

Step 4: End.

V. SIMULATION STUDIES
This paper chooses a 4.8MWWECS benchmarkmodel as the
simulation object. The parameters are listed in the following
Table 1.
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TABLE 1. Values of the WECS properties.

Therefore, the coefficient matrices are as follows

A=


−1.4229× 10−5 1.4842× 10−7 −49.0909

0.0209 −0.1171 7.2874× 104

1 −0.0105 0
0 0 0
0 0 0
0 0 0

0 0 0
−0.0026 0 0

0 0 0
−50 0 0
0 0 1
0 −123.4321 −13.3320

 ,

Bd =
[
0 0 0 50 0 0
0 0 0 0 0 123.4321

]T
,

C =
[
0 1 0 0 0 0
0 0 0 1 0 0

]
,

E =
[
1 1 1 1 1 1

]
.

By choosing different vertexes vj, corresponding matrices
f Ti and µ = 0.9, the range of each element of the matrix L
can be obtained as

L =
[
20 14360 −0.6 1 −0.6 −2.6
243 8400 0.3 −40 0.3 −110

]
.

In the rest of this section, simulations of the normal system
and fault detection results of 4 specific fault cases classified
by Sloth [24] are presented.

Case I: No faults:
From Figures 5-6, it is obvious that the order of magnitude

of the estimation error is extremely low,whichmeans the state
tracking performance of the SVO is excellent.

Case II: Sensor fault of generator speed ωg

FIGURE 5. The estimation error of the generator speed ωg between the
normal value and the estimated value of the SVO.

FIGURE 6. The estimation error of the generator torque Tg between the
normal value and the estimated value of the SVO.

In this section, the sensor fault of the generator speed ωg is
simulated. For a sensor, the typical faults can be classified into
two types: no output and fixed output. The two types of sensor
faults are identical in the mathematical model. Assuming that
a fixed output fault of generator speed ωg occurred at ts =
130.0s and ended at te = 140.0s, the simulation results are
presented in the following Figures 7-8.

FIGURE 7. Simulation result of the generator speed ωg under fault Case II.

From Figure 7-8, the fixed output fault of a single state can
be detected accurately by the given fault detection strategy.
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FIGURE 8. Trajectory of error evaluation J (e)3 under fault Case II.

FIGURE 9. Simulation result and error evaluation of pitch angle β under
fault Case III where i = 1,2,3, j = 1,2,3 and j 6= i .

From Figure 8, it is obvious that the selection of the threshold
Jth3 directly affects the response time and accuracy of fault
detection. For Jth3 = 5%, the occurrence of fault Case II is
determined to be at tfd = 132.13s. If reducing the threshold
to Jth3 = 2%, the response time of fault detection will be
drastically reduced, but a fault misjudgment point is observed
near t = 142s. If the sensor output is lost, it is believed that
the fault detection process of this fault is similar to that of
fault Case II.

Case III: Hydraulic leak of pitch system
Assuming that the hydraulic cylinder of the hydraulic pitch

leaks at ts = 130.0s, and returns to normal at te = 140.0s,

the mathematical model of this fault is described as the
parameter changes in the state equation of the pitch angle
β (t). Sloth [24] proposed a simplified parameters variation
equations as follows

ζ̃ (t) = (1− αhlm (t)) ζ + αhlm (t) ζhl (t)

ω̃n (t) = (1− αhlm (t)) ωn + αhlm (t) ωn,hl (t)

where ξhl = 0.9 and ωn,hl = 3.42rad/s. Suppose that ζ and
ωn change linearly from ts = 130.0s to tmd = 135.0s, namely,
αhlm linearly increases from 0 to 1 in 5s, but remains constant
from tmd = 135.0s to te = 140.0s. The simulation results are
presented in the following Figures 9-10.

FIGURE 10. Simulation result and error evaluation of output power P
under fault Case III.

From Figures 9-10, it is clear that fault Case III can be
detected correctly. Although fault Case III causes consider-
able fluctuations (the evaluation of estimation error is much
larger than the threshold Jth2), the pitch angle still fluctuates
within the allowable range (0 − 90◦). In addition, the power
fluctuation is acceptable (the corresponded error evaluation
is lower than the threshold Jth2). Therefore, the low-hazard
in fault Case III can be judged at tfd = 131.06s, and the
system can operate in fault-tolerant operation for a short time.
Notably, β̂i (t) reaches the critical point (90◦) at tst = 139.79s
and then exhibits a sharp upward trend. At this point, the pitch
is out of control, and the system needs to be stopped for
maintenance.

Case IV: Valve block or pump block of the pitch system
The mathematical models of a valve block and pump block

can be viewed as the same model. Assuming the valve or
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pump of the pitch system blocks at ts = 101.5s and returns
to normal at te = 111.5s, the corresponding state is fixed
during a certain time. In this case, the fixed pitch angle βfix =
21.7517◦. The simulation results are listed in the following
Figures 11-12.

FIGURE 11. Simulation result and error evaluation of the pitch angle β
under fault Case IV.

From Figures 11-12 it is clear that fault Case IV can be
detected correctly. Although fault Case IV causes consider-
able fluctuations (the evaluation of estimation error is much
larger than the threshold Jth2), the pitch angle still fluctuates
within the allowable range (0 − 90◦). However, at tfd =
104.06, the error evaluation is J (e)2 > Jth2, and it is judged
that the high-hazard fault Case IV occurred.
Case V: Offset
Assuming the offset of the generator torque occurred at

ts = 130.0s instantly, the SVO is very sensitive to the fault of
the generator torque. For fault Case V, the estimated genera-
tor torque T̂g tends toward negative infinity at tter = 130.92s,
and the SVO terminates the operation. Therefore, fault Case
V can be detected and located successfully.
Defining the fault detection time (FDT) as tdet = tfd −

ts, it is considered an important index to evaluate the
performance of fault detection strategy. In the following
Table 2, the comparison between the proposed strategy
and RBFNNs [11], variable gain observer (VGO) [12],
VMWKPCA [13], and high-gain observer (HGO) [14] for
determining fault detection time are given. It is clear that the

FIGURE 12. Simulation result and error evaluation of the output power P
under fault Case IV.

TABLE 2. FDT of five strategies.

FDT of the SVO and FD strategy is less than that of the four
other FD strategies.

VI. CONCLUSION
In this paper, a mathematical WECS with a delayed input
and an unknown nonlinear part has been established, and an
improved SVO for the nonlinear system has been designed.
On this basis, fault detection strategies based on a single
global SVO have been designed. The improved SVO for a
linear model with a delayed input and an unknown nonlinear
part has inherited the high-precision state tracking capability,
controllable conservatism, and simple structure of the basic
SVO. As a kind of conservative state observer, the extended
Lipschitz condition constrains the range of the unknown
part, and the set-induced theory and uniformly ultimately
boundedness guarantee the stability of the improved SVO.
Regarding common faults of a WECS, this paper has offered
fault detection strategies for actuator faults and sensor faults
based on one single global SVO. For the four fault cases,
the simulation results show that the fault detection strategies
locate the faults accurately and quickly. The comparative
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study of the FDT presents that the proposed SVO and FD
strategy has the fastest response to the fault. In the future,
the control of WECS with a delayed input and an unknown
part will be considered.
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