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ABSTRACT (2N+1) selective harmonic elimination pulse-width modulation (SHE-PWM) is an effective
switching strategy of the modular multilevel converter in medium-voltage cases. In these cases, the number
of sub-modules (SMs) is not high. Compared to the traditional (N+1) SHE-PWM, (2N+1) SHE-PWM has
N more voltage levels, thus it can yield much better harmonic performance. However, the task of selective
harmonic elimination also becomes much more complicated since there are more switching angles to be
determined. This paper proposes a differential harmony search algorithm (DHS) with a novel harmony
improvisation procedure for solving this problem. The Bayesian optimization method is applied to find the
optimal parameter configuration for DHS. The performance of DHS is compared with 6 other metaheuristic
algorithms including differential evolution (DE), harmony search (HS), genetic algorithm (GA), particle
swarm optimization (PSO), teaching and learning-based optimization (TLBO), and ant colony optimization
(ACO). The comparison is conducted on a set of 100 (2N +1) SHE-PWM instances by varying the
modulation index from 0.01 to 1.0 with a step of 0.01. The numerical results show that the proposed
DHS outperforms other compared methods in terms of objective function values, algorithm robustness,
the magnitude of fundamental harmonic, and the calculated total harmonic distortion values. The switching
angles obtained by DHS are further validated by bothMatlab/Simulink simulation and hardware experiment.

INDEX TERMS (2N+1) SHE-PWM, modular multilevel converter, harmony search algorithm.

NOMENCLATURE
ACO Ant colony optimization
CDF Cumulative distribution function
DE Differential evolution
DHS Differential harmony search
GA Genetic algorithm
HS Harmony search
HVDC High voltage direct current
ICA Imperialist competitive algorithm
MMC Modular multilevel converter
MVAC Medium voltage AC
PSO Particle swarm optimization
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SHE-PWM Selective harmonic elimination pulse-width
modulation

SM Sub-module
TLBO Teaching and learning-based optimization
M Modulation index
N Number of sub-modules in each arm
Nlower Number of sub-module installations in

lower arm
Nupper Number of sub-module installations in

upper arm
Vdc DC source voltage value
vuN Output voltage of phase u
ω Radius speed
bhs The hs th order harmonic

amplitude
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l Total number of switching angles in the first
quarter-waveform

mk A sign function that outputs positive or neg-
ative step depending on corresponding θk

θ A set of switching angles i.e., θ =

(θ1, θ2, ..., θl)
α A set of firing angles i.e., α =

(α1, α2, ..., αl)
θk The k th switching angle in the first quarter-

waveform
αk The k th firing angle in the first quarter-

waveform
V1 The actual amplitude of the fundamental

component normalized by Vdc
V1∗ The desired set amplitude of the fundamen-

tal component normalized by Vdc
hs The s th non-triple odd harmonic i.e., the hs

th harmonic
Har The total number of harmonics (the funda-

mental harmonic and other low-order har-
monics) to be handled, and Har = 17

Vhs The amplitude of the hs th harmonic compo-
nent normalized by Vdc

φ The penalty function factor
gi(α) Constraint function in optimization model
Sj(α) A threshold function representing the cur-

rent switching angle value compared to π/2
Li(α) The level of waveform, i.e. a cumulative

Sj(α) from j = 1 to j = i
HMS The size of the harmony memory pool in the

harmony search algorithm
HMCR The harmony memory consideration rate
PAR The pitch adjustment rate
BW The distance bandwidth
maxFEs The maximum number of function evalua-

tions
FEs The current number of function evaluations

I. INTRODUCTION
The MMC is one of the most promising multi-level converter
topologies which was first introduced by Lesnicar and Mar-
quardt [1]. A typical half-bridge SM based circuit topology
of MMC is depicted in Fig. 1.

Nowadays, MMC not only has been widely used in HVDC
systems [2], [3], but also in various medium-voltage appli-
cations such as battery energy storage [4], medium voltage
motor drives [5], MVAC distribution network [6], because of
its high-quality output waveform, fewer converter losses, and
modularity of structure [7].

In medium-voltage cases, the SHE-PWM is widely used
and studied, due to its lower switching losses and tight
control of low-order harmonics. In [8], a (2N+1) SHE-
PWM was proposed and firstly put into practical application
(N represents the number of sub-modules in each arm).

FIGURE 1. Typical circuit topology of three-phase MMC.

It has N more output voltage levels compared with (N+1)
SHE-PWM. Given the same number of SMs and switching
frequency, (2N+1) SHE-PWM has N more firing angles
over the fundamental period and can control twice as many
harmonics as (N+1) SHE-PWM. As a result, (2N+1) SHE-
PWM is regarded as a promising SHE-PWM, and more
details about the studies on (2N+1) SHE-PWM can be
found in [9], [10].

To yield good harmonic performance in MMC with
SHE-PWM, the harmonic contents of a PWM waveform
are mathematically expressed by a group of nonlinear and
transcendental switching angle equations, and their solution
can be found by many ever proposed different approaches.
Numerical approaches such as the Newton-Raphson method
was firstly utilized in [11]. However, its performance heavily
relies on the starting point and it cannot find multiple solu-
tions [12]. Walsh functions can convert the equations into a
set of linear algebraic equations [13], but its accuracy depends
on the sampling points [12]. Thus the higher accuracy is
required, and much more computational resources will be
consumed. Some methods transformed the trigonometric
equations into an equivalent set of polynomial equations [14].
However, if many orders of harmonics need to be eliminated,
the order of polynomials increases accordingly [12], which
makes the equations muchmore difficult to solve. Some other
methods that facilitate online implementation were recently
proposed [15], [16], but they need more advanced computing
powers and memory capabilities [12].

To overcome the disadvantages of the aforementioned
methods and guarantee the accuracy of (2N+1) SHE-PWM,
the corresponding transcendental equations can be refor-
mulated into an optimization problem. In the optimization
model, trigonometric equations for each harmonic are rep-
resented in a cost function, in which the fundamental har-
monic is controlled to approach the predefined value as much
as possible, while other odd non-triple-order harmonics are
eliminated to zero [8], [10].
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In recent years, meta-heuristic algorithms have been
widely adopted to solve engineering optimization problems
because of their advantages such as easy to understand and
implement, computationally efficient, and no need for prior
knowledge on the objective functions. The meta-heuristic
algorithms also have been used to solve the SHE-PWM
problems, which include GA [17], PSO [18], TLBO [19].
There are also several papers that provided some compar-
ative studies among different meta-heuristic algorithms on
SHE-PWM. For example, Etesami et al. [20] compared
the imperialist competitive algorithm (ICA) with PSO on
solving the SHE-PWM and the modified SHE-PWM prob-
lem. Memon et al. [21] compared several bio-inspired meta-
heuristic algorithms such as GA, PSO, and DE on SHE-PWM
problem for renewable energy conversion applications. Both
of the comparative studies above were conducted on the
(N+1) SHE-PWM, and the numbers of switching angles are
relatively small (the numbers of switching angles consid-
ered in the above two studies are only 5 and 3). However,
in (2N+1) SHE-PWM there are N more levels which result
in much more switching angle variables (17 in this study) and
therefore a much more complicated optimization problem.

The harmony search (HS) algorithm is a metaheuristic
optimization method inspired by the instrument playing pro-
cess in which the musicians continuously adjust the pitch of
their instruments to get better harmony [22]–[24]. The global
optimization process is very similar to the instrument playing
process, where each decision variable continuously changes
its value during the search process and converges to the
global optimum. HS is simple in concept, easy in implemen-
tation with few parameters [25]. Since it was first introduced
in 2001, HS has caught a lot of researchers’ attention and
been widely applied to various disciplines which also include
the field of electrical and power system, such as electrical
distribution network reconfiguration [26], optimal placement
of distributed generators in distribution systems [27], con-
troller parameters optimization of distributed-generation sys-
tem [28], and combined economic emission dispatch problem
[29]. More detailed reviews on the HS algorithms and their
applications to solve problems in the electrical power system
area can be found in [30]–[32].

In this paper, an improved version of the HS algorithm
called differential harmony search (DHS) algorithm is pro-
posed to solve the (2N+1) SHE-PWM. DHS adopts novel
improvisation and pitch adjustment procedures and it’s more
efficient than HS. Besides, the Bayesian optimization method
is applied to find the optimal parameter configuration for
DHS. The performance of DHS is compared with other
6 metaheuristic algorithms including DE, HS, GA, PSO,
ACO, and TLBO on 100 (2N+1) SHE-PWM problem
instances with different modulation indexes. These algo-
rithms are critically evaluated in terms of objective function
values, algorithm robustness, the magnitude of fundamental
harmonic, and the calculated THD values. The numerical
results show the superior performance of DHS to other algo-
rithms. The switching angles obtained by DHS are further

validated by both simulation and hardware experiments,
which demonstrates the capability of DHS in practical use.

As it’s highlighted in the title, our proposed approach is
an offline strategy. In our approach, all the switching angles
are calculated by DHS first, then these switching angles
are saved in a look-up table and then copied to the board.
During the real-time control process, the switching angles are
read directly from the look-up table. The reason for using
the offline mode is that the optimization process is time-
consuming (i.e, seconds), but in the real-time control process,
we need to find a set of switching angles within 0.02s (50Hz).
It’s impractical to run an optimization algorithm directly on
the board.

The contributions of this paper can be summarized as
follows.

(1) A new formulation with a few constraints is built
for the (2N+1) SHE-PWM problem.

(2) To solve the (2N+1) SHE-PWM, a novel differ-
ential harmony search algorithm is proposed, and
the Bayesian optimization-based automatic param-
eter tuning procedure is applied to find the optimal
parameter configurations.

(3) Empirically, we demonstrate that the proposedDHS
algorithm outperforms 6 other well-known meta-
heuristic algorithms on 100 (2N+1) SHE-PWM
instances. Besides, both the simulation and hard-
ware experiment results validate the effectiveness
of DHS and confirm its capability in practical use.

The remaining of this paper is organized as follows. The
formulation and operation principles of MMC to solve the
(2N+1) SHE-PWM problem are described in Section II.
Section III introduces the proposed DHS. Section IV pro-
vides numerical and simulation results. Section V presents
the hardware experiment results. Finally, section VI gives the
concluding remarks.

II. FORMULATION OF (2N+1) SHE-PWM
A typical circuit topology of the three-phase MMC arming
N SMs is shown in Fig. 1. We assume that the phase output
voltage vuN is formulated as

vuN =
MVdc
2

sin(ωt) (1)

whereM is the modulation index.
For (2N+1) SHE-PWM, it has N more output voltage

levels than traditional (N+1) SHE-PWM.TakingN = 4 as an
example, because the output phase voltage vuN = (Nlower −
Nupper )/2 · Vdc/4, the additional 4 levels are acquired by
inserting some time fragments of 5 or 3 installations among
those of 4 installations in the same leg during the fundamental
period, as shown in Fig. 2. And the detailed upper and lower
arm installations in the same leg to output all the 9 phase
voltage levels are depicted in Fig. 2, in which the SMs shaded
by blue block are installations.

Typical first quarter and all quarters of the output phase
voltagewaveform are depicted in Fig. 3. Based on the features
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FIGURE 2. The detailed installations in the same leg to acquire 9 output
phase voltage levels when N = 4.

FIGURE 3. The first quarter and all quarters of output phase voltage
waveform.

of three-phase symmetrical prototype, and the requirements
of line voltage harmonic elimination, non-triple odd har-
monics are only taken into consideration to eliminate. And
thus the phase output voltage can be expressed as Fourier
expression (2), where bhs can be derived in (3). In (3), and
θk meets the demand of (5) [10], [33].

vuN =
∞∑

hs=1,5,7,...

bhs sin(hsωt) (2)

bhs =
2Vdc
hsπN

l∑
k=1

mk cos(hsθk ) (3)

mk =

{
1, when θk is the positive step;
−1, when θk is the negative step.

(4)

0 < θ1 < θ2 < θ3 < · · · < θl <
π

2
(5)

Due to the odd symmetry characteristic of the cos func-
tion within the domain of (0, π), the expression of bhs can
be simplified by introducing a set of firing angles α =

(α1, α2, . . . , αl) corresponding to the switching angles θ =

(θ1, θ2, . . . , θl):

θk =

{
αk , αk ≤ π/2
π − αk , αk > π/2

(6)

To offer tight control of required low-order harmonics,
omitting triplen harmonics regarding a three-phase MMC,
a generalized optimization model thus can be formulated
as [34], [35]:

Min : F(α) = (10
V ∗1 − V1
V ∗1

)4 +
Har∑
s=2

1
hs
(50

Vhs
V1

)2 (7a)

subject to :


0 ≤ αi ≤ π, 1≤ i ≤ l
gj(α) = Lj(α)− N ≤ 0, 1 ≤ j ≤ l
gk (α) = −Lk (α) ≤ 0, l + 1 ≤ k ≤ 2 ∗ l
g2∗l+1(α) = abs(l − len(unique(α))) = 0

(7b)

Li(α) =
i∑

j=1

Sj(α), 1 ≤ i ≤ 2 ∗ l (8)

Sj(α) =

{
1, αj ≤ π/2
−1, αj > π/2

(9)

where V ∗1 is set to M/2 in our study as shown in (10). Har
equals to 17 in this study, and h2 = 5, h3 = 7, . . . , h17 = 49.
The expressions of Vhs are given in (10)-(12). The first aim
is to strictly control the magnitude of the fundamental har-
monic and follow its desirable value. Different from previous
settings, we allow higher deviation on the magnitude of the
fundamental harmonic. The reason is that in various engi-
neering applications, higher waveform quality of the output
signal may be achieved with some extent of sacrifices on
the precision in terms of the magnitude of the fundamental
harmonic [20]. In this regard, a penalty is activated when
the deviation on the magnitude of the fundamental harmonic
is higher than 10%, which is expressed in the first term
of (7a). The second term of (7a) maintains target harmonics
below 2% of the fundamental component to respect the IEEE-
519 standard (<3%) [36]. α = (α1, α2, . . . , αl) is the decision
variables consist of a set of firing angles corresponding to
switching angle θ = (θ1, θ2, . . . , θl) satisfying (6). In addi-
tion, the objective function is subjected to several constraints
satisfying (7b), i.e. (1) the firing angles should be within the
range of (0, π); (2) the levels of waveform Li(α) should be
in the range of minimum and maximum allowed levels in the
first half waveform; (3) all the switching angles θ should be
unique with each other.

V1 =
2
πN

(cos(α1)+ cos(α2)+ · · · + cos(αl))=M/2 (10)

V5 =
2

5πN
(cos(5α1)+ cos(5α2)+ · · · + cos(5αl)) (11)
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Vhs =
2

hsπN
(cos(hsα1)+cos(hsα2)+ · · · + cos(hsαl)) (12)

0 ≤ M ≤ 1 (13)

With the help of the penalty function method [37],
the objective function can be re-formulated as:

Min : F(α) = (10
V ∗1 − V1
V ∗1

)4 +
Har∑
s=2

1
hs
(50

Vhs
V1

)2

+φ ·

2∗l+1∑
i=1

max{0, gi(α)} (14)

where the last part of the objective function is the penalty
function of the constraint violations, and φ is set to 106 based
on empirical experience.

It can be seen from the objective function that it’s a
nonlinear optimization problem with 17 decision variables.
In practical use, the optimization methods are needed to run
multiple trials over a range of M values within the domain
of (0, 1]. Therefore, an efficient optimization algorithm is in
great demand. In the next section, DHS will be developed to
solve this problem.

III. PROPOSED OPTIMIZATION APPROACH
A. HARMONY SEARCH ALGORITHM
The whole working process of HS for solving an optimization
problem can be divided into five main steps. Let f (x) be the
targeted minimization problem, x = (x1, x2, · · · , xd ) is the
decision vector, d is the number of decision variables, and
xi (1 ≤ i ≤ d) is the i-th decision variable. Li and Ui are
the lower and upper bounds on xi (Li ≤ xi ≤ Ui). The
working steps of HS to find the optimal solution for f (x) can
be summarized as:

Step 1: Define the parameters in HS. These parameters
are: the harmony memory size (HMS), or the number of
solution vectors in the harmony memory; harmony mem-
ory considering rate (HMCR); pitch adjusting rate (PAR);
distance bandwidth(BW ); the maximum number of function
evaluations (maxFEs).

Step 2: Initialize the harmony memory (HM). Randomly
generate HMS solutions within the domain and store them in
HM by using (15).

xi,j = Lj + rand · (Uj − Lj) (15)

where i = 1, 2, · · · ,HMS, j = 1, 2, · · · , d , rand is a random
number in range of (0, 1).
Step 3: When the HM is initialized, a new candidate har-

mony is improvised by following three rules: (1) randomly
pick a value from all of the solutions in the HM with a mem-
ory consideration rate (HMCR), (2) this value can be further
adjusted with a pitch adjustment rate (PAR) (3) a random re-
initialization procedure with probability of (1−HMCR). The
detail of the new harmony improvisation steps is summarized
in Algorithm 1.

Step 4: Update the solutions in HM. In this step, the new
improvised harmony is first evaluated by the objective

function (f (x)) and then compare with the fitness value of
the worst harmony from the current HM. If the objective
function of the new harmony is equal to or better than the
worst harmony in the current HM, then the worst harmony
will be replaced by the new harmony; otherwise, the harmony
individuals in the current HM remain the same.

Step 5: Checking the stopping criterion. The HS algorithm
will stop the iteration and output the best solution found so far
if the current iteration number reaches maxFEs; otherwise,
repeat the procedures from Step 3-4.

Algorithm 1 Improvisation of New Harmony in HS Algo-
rithm
for j = 1 to d do
if rand < HMCR then
new_xj = xa,j,a ∈ {1, 2, . . . ,HMS} /*Choose a value
from HM on dimension j*/
if rand < PAR then
new_xj = new_xj ± rand · BW /*Pitch adjustment
*/

end if
else
new_xj = Lj + rand · (Uj − Lj) /*Randomly generate
a value */

end if
end for

B. DIFFERENTIAL EVOLUTION
The differential evolution (DE) algorithm is a population-
based global optimizer and it was first proposed by Storn and
Price [38]. DE shows its superiority over many optimization
methods in terms of solution accuracy, convergence speed,
and robustness. The original DE is known as DE/rand/1,
while there are several other DE variants with different muta-
tion strategies, such as DE/best/1, DE/best/2, DE/current-
best/1 and DE/current-best/2.

Suppose there is DE population P, and xbest denotes the
best individual among P. Let x = (x1, · · · , xd ) ∈ Rd be an
individual solution in P. There are several ways to generate
a child individual u = (u1, · · · , ud ) ∈ Rd based on different
mutation strategies. First we need to obtain the donor vector
vi by mutation, which has the following forms:

(1) DE/rand/1:

vi = xr1 + F · (xr2 − xr3 ) (16)

(2) DE/best/1:

vi = xbest + F · (xr1 − xr2 ) (17)

(3) DE/best/2:

vi = xbest + F · (xr1 − xr2 )+ F · (xr3 − xr4 ) (18)

(4) DE/current-best/1:

vi = xi + F · (xr1 − xr2 ) (19)
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FIGURE 4. Illustration of the learning process within the memory
consideration phase in DHS.

(5) DE/current-best/2:

vi = xi + F · (xr1 − xr2 )+ F · (xr3 − xr4 ) (20)

After the mutation operation, the next step is to produce
the child solution u using crossover operation between vi and
xi with a crossover rate of CR ∈ [0, 1] [38].

C. PROPOSED DIFFERENTIAL HARMONY SEARCH
ALGORITHM FOR SHE-PWM
Although the basic HS algorithm can quickly identify the
high-performance regions of the search, it is not efficient in
performing local search and refine the final solutions [39].
Besides, the performance of HS is highly reliant on its con-
trol parameters. However, parameter tuning is a challeng-
ing task. For example, the bw parameter defines the pitch
adjustment step, a larger value will encourage exploration
and a smaller value will encourage exploitation, and proper
bw value is also problem-independent. Most previous studies
dynamically change the value of bw based on the optimization
process, but the initial bw value still needs to be defined.
To eliminate the parameter of bw and to improve the solu-
tion accuracy of HS, a differential harmony search (DHS) is
proposed. The details of DHS are given below.

During thememory consideration phase of HS, the value of
new harmony only learns from harmonies in the current HM.
To avoid the premature of HS, we add extra shifts to the new
harmony. The basic idea behind is that the new harmony not
only trying to move towards the direction of the best harmony
in the current HM but also trying to avoid not moving close
to the worst harmony in the current HM (see Fig. 4). The new
harmony memory consideration procedure is shown as:

new_xj = xr1,j + rand · (xb,j − xr1,j)−rand · (xw,j − xr1,j),

(21)

In our proposed DHS, the pitch adjustment method of
conventional HS is replaced by the ‘‘DE/best/1’’ mutation
operation. In the new pitch adjustment procedure, the new
harmony is perturbing around the current best harmony with
a step determined by the distance between two random picked
harmony individuals. The new pitch adjustment procedure is

shown as:

new_xj = xb,j + rand · (xr2,j − xr3,j), r2 6= r3 (22)

The new pitch adjustment method eliminated the need for
using bw, which lightens the human effort for parameter
tuning. Besides, the use of distances between two harmony
individuals as the adjustment step makes the DHS algorithm
much easier adapting to different problems, and it also makes
the algorithm effective in both global and local searches.
The detail of the new harmony improvisation steps in DHS
algorithm is summarized in Algorithm 2.

Algorithm 2 Improvisation of New Harmony in DHS Algo-
rithm
for j = 1 to d do
if rand < HMCR then
new_xj = xr1,j+rand ·(xb,j−xr1,j)−rand ·(xw,j−xr1,j),
r1 ∈ {1, 2, . . . ,HMS} /*Choose a value from HM on
dimension j*/
if rand < PAR then
new_xj = xb,j+ rand · (xr2,j− xr3,j) /*Pitch adjust-
ment */

end if
else
new_xj = Lj + rand · (Uj − Lj) /*Randomly generate
a value */

end if
end for

The computational procedure of DHS for solving the
(2N+1) SHE-PWM problem is shown in Fig. 5.

IV. NUMERICAL AND SIMULATION RESULTS
In this section, the effectiveness of our proposed DHS is vali-
dated on a set of (2N+1) SHE-PWMproblems and compared
with other widely used metaheuristic algorithms including
GA, PSO, DE, ACO, BA, TLBO, and HS. Then, a Mat-
lab/Simulink model of a three-phase MMC is developed to
validate the numerical results. All the numerical experiments
are implemented on a desktop computer with an Intel 3.3GHz
i5-2500 CPU, 8G RAM and IDE of Matlab 2018b.

A. EXPERIMENT SETUP FOR NUMERICAL
COMPARISON
In this experiment, a set of 100 different (2N+1) SHE-PWM
problem instances with the modulation index varying from
0.01 to 1.0 are used to validate the performance of the com-
pared methods. For this aim, the mathematical formulation
introduced in section II is adopted. All compared algorithms
perform 30 independent trials on each of the problems, and
for each single run, the maximum number of function evalua-
tions (maxFEs) is set to 50000. The parameter settings for the
compared methods are shown in Table 1, which are following
the recommendation from previous studies [19].
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FIGURE 5. The flowchart of DHS for solving the SHE-PWM problem.

B. AUTOMATIC PARAMETER CONFIGURATION USING
BAYESIAN OPTIMIZATION
As mentioned above, the performance of HS is sensitive to its
parameters, a better parameter configuration may contribute
to significant improvement in solution quality. However,
searching for an optimal parameter configuration for HS is a
challenging task. Many previous studies have discussed this
topic. In some previous studies [40], [41], the authors tried
to find the best HS parameters by independently adjusting
only one factor at a time. Other methods like experiment
design method were also applied. For example, Jin et al. [42]
applied the Orthogonal experiment design to search for opti-
mal HS parameters. The shortcomings of these methods are
twofold: firstly, the obtained parameter configuration may
not be the best because they only explored in a small sub-
space; Secondly, most of these methods have huge human
labor involved.

In this study, we adopt an automatic parameter configura-
tion procedure. First, the search for optimal parameter config-
uration is formulated as an optimization problem, in which
the objective function is the overall performance on all test

problems (the formulation can be found in Appendix A).
Then the optimal parameter configuration can be automat-
ically obtained by an optimization algorithm. Since the
evaluation process of the parameter configuration is time-
consuming (minutes for a single run), we adopt the Bayesian
optimizationmethod [43] to solve this problem. TheBayesian
optimization is an efficient approach to optimizing objec-
tive functions that are computationally-expensive (minutes
or hours). It first builds a surrogate model for the objective
function and quantifies the uncertainty in that surrogate using
a Gaussian process regression, and then uses an acquisition
function defined from this surrogate to decide where to sam-
ple. We stop the Bayesian optimization method after 50 iter-
ations, and obtain the parameter configurations: HMS = 50,
HMCR = 0.999, PAR = 0.8627. The progress plot of the
Bayesian optimization is depicted in Fig. 6.

C. COMPARISON ON COMPUTATIONAL RESULTS
To confirm the effectiveness of our proposed DHS for the
(2N+1) SHE-PWM problems, we compare it with other
algorithms such as DE, HS, GA, PSO, ACO, and TLBO.
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FIGURE 6. Plot of the automatic parameter configuration progress using
the Bayesian optimization method.

FIGURE 7. The obtained objective function values versus M.

FIGURE 8. Comparison on the CDF curves.

Fig. 7 presents the best solutions obtained by all of the
algorithms at different modulation indexes of M (The aver-
age/standard deviation over 30 trials can be found in Table 4).

FIGURE 9. The calculated fundamental harmonic compared to V ∗1 .

FIGURE 10. The calculated THD versus M.

It can be observed that DHS yields the best results on almost
all of the 100 problem instances with different modulation
indexes, then followed by PSO, GA and HS. TLBO, ACO,
and DE show poorer performance than other methods. The
advance of DHS compared to the second-best method is also
significant since the gap is about two orders of magnitude
(i.e., 10−4 to 10−2).
Because randomness is the nature of evolutionary/

metaheuristic algorithms, an analysis of the robustness of the
algorithms is necessary then. Here, the CDF value is applied.
TheCDF value is an effectivemetric for estimating the overall
performance of an algorithm over a set of problems. It is
defined by the probability of a real-valued random variable X
that less than or equal to x. In other words, it can be expressed
by:

CDF(x) = P(X < x), (23)

For example, when the results of algorithm A on np ∗ nr (np
is number of problems, and nr is the number of independent
trials) problem instances are obtained, and the calculated
CDF value at x = 10−5 is 40%, it means for 40% of the
runs, the obtained results are smaller or equal to 10−5.
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FIGURE 11. Simulation FFT analysis of line voltage by different modulation index.

TABLE 1. Parameter settings of compared algorithms.

Fig. 8 depicts the CDF values of all the methods. It can
be observed that about more than 20% of the runs, DHS
can yield the objective value smaller than 10−5, 80% of
the runs, DHS can yield the objective value smaller than
100. For 100% of the runs, DHS can yield the objective
value smaller than 106, which means DHS can always find
feasible solutions. However, some of the methods (i.e, TLBO,
ACO, and DE) sometimes failed to find feasible solutions.
In addition, the likelihood of converging to global optimum
is significantly improved when compared DHS with HS and
DE.

Fig. 9 gives the magnitude of fundamental harmonic versus
modulation index M . It can be observed that though the
desired values at some modulation indexes are not achieved,
the results for all methods are still acceptable since the max-
imum deviation is within 10%.

Fig. 10 presents the calculated THD values for assessing
voltage quality. It can be observed that lower THD values

TABLE 2. Comparison of average computational times between DHS and
other algorithms (Unit: s).

TABLE 3. Simulation and experiment parameters of MMC.

are achieved with higher modulation indexes. It’s a combined
consequence of the increase in the fundamental value and the
elimination of the low order harmonics. It also can be found
the superiority performance of DHS on the THD values. The
obtained THD values can be reduced under 2% for most of
the modulation indexes.

Table 2 provides the average computational times for all
methods. It can be found that our proposed DHS can finish
a single search within 10 seconds, which is shorter than all
other methods.

D. SIMULATION RESULTS
A simulation prototype of half-bridge MMC is developed
in MATLAB 2018 (b)/Simulink, and its key parameters are
depicted in Table 3. According to various modulation indices
with a step of 0.01 from 0 to 1, the corresponding switching
angles are acquired by proposed DHS and stored in look-up
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table, i.e. Table 4 in Appendix B. The modulation indexes
are with a high accuracy of 0.01. Its precision is high enough
to meet the required sudden changes occurred. For better
validating the performance of our proposed DHS, the inverter
is with no load in the simulation. Merely under this con-
dition, the output line voltage waveforms can apparently
approach the desired values obtained by DHS. Otherwise,
if the inverter is with load, the output phase voltage waveform
will be caused certain irregular fluctuation by output current.
In the simulation test, a 9-level MMC is performed using
(2N+1) SHE-PWM based on look-up table from Table 4 in
Appendix B, in which all the switching angles are obtained
by our proposed DHS algorithm.

To test the dynamic changes of modulation index, three
groups of switching angles based on three corresponding
modulation indices are selected from look-up table in our
simulation and its results are depicted in Fig. 11. At the
beginning of the simulation, the modulation index is set to
0.2, then the modulation index varies from 0.2 to 0.55 at the
end of 1st fundamental period, and further varies from 0.55 to
0.9 at the end of 2nd fundamental period. The line voltage is
recorded as shown at the top of Fig. 11, and its THD analysis
is depicted at the bottom of Fig. 11. Without considering
triple odd harmonics owing to the features of three-phase
symmetrical prototype, the THD values are calculated up to
49th harmonic. It can be found that the THD values of various
modulation indexes (0.18% for M = 0.2, 0.08% for M =
0.55, 0.04% for M = 0.9) are very low. The magnitudes of
selected order harmonics to be eliminated are below 0.07V,
and much lower than settled 2% of fundamental component
value. In addition, the real phase voltage fundamental ampli-
tude values are almost 39.99V, 110V and 180V. The desired
phase voltage fundamental amplitude values are 40V, 110V,
and 180V. Thus, the gaps between the real and desired are
below 0.01V, only 0.025%, 0% and 0% of corresponding
fundamental component amplitudes at modulation indexes
of 0.2, 0.55 and 0.9. Therefore, the simulation results demon-
strate that our proposed DHS does work very efficiently, and
our proposed objective function can provide very tight control
of specified low-order harmonics and THD.

V. EXPERIMENTAL RESULTS
In this section, an experimental prototype same as the simu-
lation is developed using various switching angles obtained
by DHS. The inverter is no-load as well to better validate the
performance of our proposed DHS. The key parameters are
the same as the simulation depicted in Table 3 as well.
The experiment platform is shown in Fig. 12. The SMs

of the same phase are shown in Fig. 12 (a). The con-
trol system is powered by another DC source with maxi-
mum output voltage 120V and output current 10A as shown
in Fig. 12(b). The detailed structure of MMC chassis is
depicted in Fig. 12(c). In Fig. 12 (d), the control system
employs a TMS320F2812 DSP from Texas Instruments to
store the look-up table, closed-loop circulating current con-
trol, capacitors’ voltage balancing, and over-current/voltage

FIGURE 12. Experiment platform.

FIGURE 13. Control block diagram for each SM of MMC.

protection with C Language. An EP1C12Q240I7 FPGA from
Altera is utilized for pulse-width modulation, gating sig-
nal generation, and overvoltage/overcurrent protection with
Verilog language. The main circuit of MMC is powered by
one high-voltage level DC source as shown in Fig. 12(e).
In Fig. 12 (f), A YOKOGAWAD L750 is used to record
the line voltage waveform. The whole system operates under
fundamental frequency 50Hz, and the sampling frequency
is 8 KHz.

The look-up table of switching angles obtained by our
proposed DHS algorithm is saved in programmable con-
troller TMS320F2812 DSP as shown in Table 5. As depicted
in Fig. 13, at first, according to required modulation index,
the corresponding switching angles are acquired by look-
up table stored in control system. Then with the cap-
tured simultaneous capacitors’ voltages, arm currents, and
required switching angles, control system employs switch-
ing strategy and capacitor voltages’ balancing method and
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TABLE 4. Comparison of the mean and standard deviation values between DHS, DE, HS, GA, PSO, ACO, and TLBO over 30 independent trials. For each
problem instance, the best mean value is in bold.
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TABLE 5. The switching angles obtained by DHS at different modulation indexes.
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FIGURE 14. Experiment FFT analysis of line voltage by different modulation index.

overcurrent/overvoltage protection to generate driving sig-
nals of SMs of MMC.

At the beginning of the experiment, the modulation index
is set to 0.2, then varies from 0.2 to 0.55, and then from
0.55 to 0.9 same as the simulation. The value of line voltage
is recorded by DL750 ScopeCorder, and the corresponding
phase voltage is shown on the top of Fig. 14. Its THD analysis
is depicted in the bottom of Fig. 14. The THD values are
calculated up to 49th harmonic due to practical operation
without considering triplen odd harmonics. It can be observed
that the THD values of various modulation indexes (0.18%
for M= 0.2, 0.1% for M= 0.55, 0.05% for M= 0.9) are very
low. The corresponding phase voltage fundamental amplitude
values are almost 40.01V, 110V and 180V. The desired phase
voltage fundamental amplitude values are 40V, 110V, and
180V. Thus, the gaps between the real and desired fundamen-
tal component amplitudes are very small, only 0.025%, 0%
and 0%of corresponding fundamental component amplitudes
at modulation indexes of 0.2, 0.55 and 0.9, much lower than
settled upper bound 10%. In addition, the magnitudes of
target eliminated order harmonics are all lower than 0.7V
during the variations of M= 0.2, M= 0.55, andM= 0.9, and
are maintained below settled 2% of fundamental component
value. Both of them are much lower than the upper bound
(10%). Therefore, the success of the experiment confirms the
capability of our proposed DHS for practical use.

VI. CONCLUSION
In this paper, a differential harmony search algorithm (DHS)
is proposed to solve the (2N+1) SHE-PWM problem. The
performance of DHS is compared with 6 other metaheuristic
algorithms including DE, HS, GA, PSO, ACO, and TLBO.
The comparison has been conducted by running these algo-
rithms on a set of 100 different (2N+1) SHE-PWM problems
with modulation indexes vary from 0.01 to 1.0 with a step
of 0.01. Based on the comparison of final objective function
values, algorithm robustness, the magnitude of fundamental

harmonic, and the calculated THDvalues, it can conclude that
DHS has superior performance than the other 6 algorithms
for solving the (2N+1) SHE-PWM problem. The switching
angles obtained byDHS have been further validatedwith both
simulation and hardware experiments.

Appendix A
FORMULATION OF THE PARAMETER
CONFIGURATION
Assume we want to search for optimal parameters in algo-
rithm A on a set of minimization problem instances, let
φ = (φ1, φ2, · · · , φr ) be the parameter vector, and r is
the number of the parameters need to be tuned. During the
parameter tuning process, algorithm Awill run on np problem
instances and each instance is repeated for nt times. For the
jth run on the ith instance, the final objective function value
obtained by algorithm A with parameter configuration φ is
denoted as Fi,j(φ). The best and worst objective function
value found so far on the ith instance are denoted as F imin and
F imax , respectively. Therefore, the objective function for the
parameter configuration problem can be formulated as:

FH (φ) =

∑np
i=1

∑nt
j=1

Fi,j(φ)−F imin
F imax−F

i
min

np · nt
, (24)

Please note that the best and worst objective function value
on instance imay be changed during the optimization process,
thus the objective function for the parameter configuration
problem needs to be re-calculated at the end of each iteration.

Appendix B
See tables 4 and 5.
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