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ABSTRACT The ascent of Industry 4.0 and smart manufacturing has emphasized the use of intelligent
manufacturing techniques, tools, and methods such as predictive maintenance. The predictive maintenance
function facilitates the early detection of faults and errors in machinery before they reach critical stages.
This study suggests the design of an experimental predictive maintenance framework, for conveyor motors,
that efficiently detects a conveyor system’s impairments and considerably reduces the risk of incorrect faults
diagnosis in the plant;We achieve this remarkable task by developing amachine learningmodel that classifies
whether the abnormalities observed are production-threatening or not. We build a classification model using
a combination of time-series imaging and convolutional neural network (CNN) for better accuracy. In this
research, time-series represent different observations recorded from themachine over time. Our framework is
designed to accommodate both univariate and multivariate time-series as inputs of the model, offering more
flexibility to prepare for an Industry 4.0 environment. Because multivariate time-series are challenging to
manipulate and visualize, we apply a feature extraction approach called principal component analysis (PCA)
to reduce their dimensions to a maximum of two channels. The time-series are encoded into images via the
Gramian Angular Field (GAF) method and used as inputs to a CNN model. We added a parameterized
rectifier linear unit (PReLU) activation function option to the CNN model to improve the performance
of more extensive networks. All the features listed added together contribute to the creation of a robust
future proof predictive maintenance framework. The experimental results achieved in this study show the
advantages of our predictive maintenance framework over traditional classification approaches.

INDEX TERMS Convolutional neural network (CNN), Gramian angular field (GAF), industry 4.0 (I40),
predictive maintenance, principal component analysis (PCA), smart manufacturing, time-series imaging.

I. INTRODUCTION
The recent explosion of smart manufacturing applications,
the Internet of things (IoT), and big data has considerably
increased the amount of data collected and analyzed in dif-
ferent areas such as health care, transportation, power energy,
food and beverage, multimedia, environment, finance, and
logistics. Several types of predictions, production forecast-
ing, fault detection and, predictive maintenance result from
analyzing various datasets [1], [2]. One of the most common
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data types collected in this new growing era of Industry 4.0 is
time-series data. Time-series data are known as observations
sequentially recorded over time [3], [4].

Time-series data are intensively analyzed, as a preventive
tool, in the manufacturing industry where unforeseen failures
of machinery can conduct to very long production downtime
and losses. Studying and analyzing data to detect faults and
threats in devices before they occur and taking appropriate
measures to reduce the risk of failures is called ‘‘predictive
maintenance’’ [5]. As per [6], predictive maintenance is an
ensemble of activities that detect any abnormal physical con-
dition changes in equipment (signs of failure) to carry out the
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required maintenance tasks to boost the service life of equip-
ment without increasing the risk of failure. For the past years,
predictive maintenance has been subject to much research to
bring improvement. One of the current innovative trends for
this concept is the use of machine learning (ML) techniques
in combination with advanced technological concepts to offer
better predictive maintenance results.

Machine learning (ML) is a field of Artificial Intel-
ligence (AI) to extricate useful insights from various
data (time-series data) [7] through some of the following
paradigms: supervised learning, semi-supervised learning,
unsupervised learning, and reinforcement learning [8]. It is
also commonly known as a study that offers machines dif-
ferent means and ways to make correct decisions on their
own and execute taskswithout explicit assistance from human
beings. Deep Learning is a branch of ML that has the
capability of extracting data representation. Some popular
deep learning methods are Artificial Neural Network (ANN),
Convolution Neural Networks (CNN), Deep Belief Network,
Recurrent Neural Networks, and Stacked Auto-Encoders [9].

In this research, we focus on CNN,which is a deep learning
technique that tries to imitate the operations of a human brain,
especially its ability to recognize and classify objects based
on their appearances. This feature has made CNN the con-
ventional method used for image classification and identifi-
cation [10]. In 2015, [11] initiated an inventive approach that
improved classification and imputation by encoding univari-
ate time-series (UTS) data to images and using them as inputs
to CNN models. The concept of computer vision introduced
the transformation of time-series into images. By learning
spatially invariant features from raw time series (inputs to
the model), the CNN method can reduce the risks of losing
temporal information and those that the features learned are
no longer time-invariant, which are with the traditional multi-
layer-perceptron approach [12]. The outcome of this study
generated better results than traditional machine learning
techniques for classification, such as decision tree (DT), ran-
dom forest (RF), or Support Vector Machine (SVM). Since
then, fewer more studies were conducted in the same vision
utilizing the basis of time-series imaging encoding and deep
learning approaches to ameliorate classification modeling in
various sectors. Reference [13] developed a similar frame-
work that uses Relative Position Matrix with CNN. The
method was named RPMCNN and was used to perform the
classification by transforming 2D images from time-series
data received as inputs. Their results displayed improved
performances. In the manufacturing sector, an approach was
introduced by [14] using multivariate time-series (MTS) data
as input to a classification of Tool wear for a CNN model.
Because of the large volume of MTS data and in order to
ease data processing, this approach divided MTS inputs into
three channels before being converted to images and fed into
the CNN model. Reference [3] conducted another research
in that direction by converting MTS data to colored images
and feeding them as inputs of a CNN model for sensor
classification. Their research encodesMTS data into multiple

images combined into a single bigger image used as an input
to a CNN model.

Our research takes a step further on previous work done
in the manufacturing sector on this innovative concept by
developing an experimental framework that:

1) Generates accurate predictive maintenance flags for
conveyor motors by classifying whether observed system
parameters inputs are threats or not.

2) Combines the use of UTS and MTS in one single plat-
form to increase the flexibility of the system. No need to have
separate models.

3) Facilitates inputs and manipulations of MTS data in
CNN by reducing their size to two channels through a fea-
ture extraction method called principal component analysis
(PCA).

4) Offers an option for a future proof CNN model by using
parameterized rectifier linear unit configuration (PReLU) to
improve the performance of larger networks.

Our paper is structured as follows: Section 2 presents
a literature review of some concepts such as time-series,
deep learning, predictive maintenance with machine learning,
Imaging time-series for classification. Section 3 describes the
methodologies, technological approaches, and architecture of
our predictive maintenance framework. Section 4 presents
the experimental results obtained, and the conclusion and
suggestions for future research are provided in Section 5.

II. LITERATURE REVIEW
A. TIME-SERIES DATA
As mentioned previously, time-series can be defined as
a sequence of observations recorded over successive time
points [15]. Time series data can be grouped into two main
categories: Univariate Time Series (UTS) and Multivariate
Time Series (MTS). UTS are time series composed of a
single variable observed over a regular period of time. MTS
are those made of two or more variables recorded over a
successive period of time [16].

Equation (1) is a mathematical representation of UTS
defined as follows:

B = [b1, b2, b3, · · · , bn, · · · bt ] (1)

where bn ∈ R, t ∈ N and represents the size of the time series
data.

On the other hand, (2) is an expression for MTS.

D = [B1,B2,B3, · · · ,Bi, · · ·Bm] (2)

where m ∈ N and represents the size of the MTS, m is also
equal to the number of univariate time series in D, i is the
unique position identification for each UTS in D. As per (2),
D contains several UTS similar to those defined in (1). For a
MTS, D, regrouping a number of UTS, B, a single UTS object
can be defined by (3) as:

Bi =
[
bi(1), bi(2), bi(3), · · · , bi(n), · · · bi(t)

]
(3)

where t ∈ N and is the size of the UTS [17], [18], i is the
unique position identification for each UTS in the MTS.
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FIGURE 1. Example of a UTS graphical representation.

FIGURE 2. Example of a MTS graphical representation.

From these mathematical representations, we can conclude
that UTS represents a vector while MTS represents a matrix
(a combination of multiple vectors). Based on the above
parameters, let assume a MTS D where t = 4 and m = 4.
The MTS data can be defined by (4) in a matrix format as:

D =


b11 b21 b31 b41
b12 b22 b32 b42
b13 b23 b33 b43
b14 b24 b34 b44

 (4)

The graphical representation of UTS and MTS are dis-
played in Fig. 1 and Fig. 2 respectively:

In Fig.1, a single time series variable (UTS) value, ranging
from 0 to 6, named ‘Var1’, is recorded between the 05 May
2016 to the 26 September 2016. Var1 represents any other
parameter measured over an interval. The main difference
between Fig.1 and Fig.2 is simply the number of variables
monitored over time. Fig.2 recorded three different variables:
Var1, Var2, and Var3 (MTS). Var1 to Var3 represents any
parameter values observed over the same period. More com-
plex MTS has more than three variables.

B. CONVERTING TIME-SERIES DATA TO IMAGES
Transforming time series to images is one type of data
transformation. An exciting data transformation approach
is to reduce the size or dimension (dimension reduction)
of massive volumes datasets from high dimensional data
of more than three features to only 2 (2-D) or sometimes
3-dimensional (3-D) providing a better understanding of the
data, especially when it comes to visualization [24], [25].
Another data transformation method that seems to be oppo-
site to the previous one is ‘‘dimension augmentation’’ as it
involves increasing the size of a particular dataset; for exam-
ple, going from a 1-dimensional (1-D) data into2-D, or even
3-D. Dimension augmentation is a crucial step, especially
when considering using a CNN model, which we intend to
in this study. Reference [11] introduced an approach named
Gramian Angular Field (GAF) for encoding time series into
images to improve classification and imputation. GAF uses
a polar coordinates-based matrix to encodes time series into
image since they have the advantage of preserving temporal
correlation, unlike the Cartesian coordinate [11]. GAF can
generate two types of images: Gramian angular summation
field (GASF) and Gramian angular differential field (GADF).
The steps to obtain GAF images are as follows:

1) NORMALIZING TIME SERIES DATA INPUT
The original time series (1) (as described in the previous
section) is scaled or normalized to values in the intervals of
[−1, 1]. The normalization method is defined in (5).

b̃−1
i
=
(bi − max(B))+ (bi − min(B))

max (B)− min(B)
(5)

where b̃−1
i is the scaled or the normalized value of each

original time series observation bi.

2) CONVERTING SCALED TIME-SERIES DATA TO POLAR
COORDINATES
The second step of imaging time series with the GAF method
consists of representing the normalized time series B̃ in polar
coordinates. The polar coordinates are computed by finding
the angular cosine of each normalized value and the time
stamp which represented as a radius. The polar coordinates
are defined by (6) and (7):

θ = arccos (b̃i) (6)

where −1 ≤ b̃i ≤ 1, b̃i ∈ B̃

r =
ti
N
, ti ∈ N (7)

In (6), θ represents the time series value of each observation
in the polar coordinates format. In (7), ti represents the time
stamp of the time series data and N is a factor (a constant)
that stabilizes the polar coordinate system’s space.

3) FINDING THE GRAMIAN ANGULAR
SUMMATION/DIFFERENCE FIELD (GASF & GADF)
After obtaining the polar coordinates of the time series,
we make use of trigonometric sum and difference to find
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FIGURE 3. From time series to Gramian angular fields process.

spatial correlation between each polar point and determine
their GASF and GADF. GASF mathematical representation
is presented in (8) and (9). GADF is defined in (10) and (11).

GASF =
[
cos

(
θi + θj

)]
(8)

GASF = b̃′ · b̃−
√
1− b̃2′ ·

√
1− b̃2 (9)

GADF =
[
sin
(
θi − θj

)]
(10)

GADF =
√
1− b̃2′ · b̃− b̃′

√
1− b̃2 (11)

A popular mathematical representation of GAF is done in
a matrix format and defined by (12) and (13):

GASF =

 cos(θ1 + θ1) · · · cos(θ1 + θn)
...

. . .
...

cos(θm + θ1) · · · cos(θm + θn)

 (12)

GADF =

 sin(θ1 − θ1) · · · sin(θ1 − θn)
...

. . .
...

sin(θm − θ1) · · · sin(θm − θn)

 (13)

A graphical representation of steps to convert time series to
GAF is displayed in Fig.3.

In this research, we focus on the GAF method for image
encoding since it preserves the temporal correlation of time
series data inputs which is needed for our predictive mainte-
nance framework.

C. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional neural network (CNN) is a deep learning algo-
rithm successfully used for image classification problems.
The outstanding performance of CNN in image classifica-
tion (computer vision) is due to its ability to extracting

meaningful spatial correlation and create features informa-
tion from input data used to detect patterns. The animals’
visual cortex was the inspiration behind the CNN concept
and introduced by Hubel and Wiesel, two neurophysiolo-
gists who did many types of research on visual cortical
neurons of monkeys and cats [26]. The first modern CNN
framework was called LeNet and was published by [27].
After this first model, several other successful architectures
such as ResNet [28], AlexNet [10], VGGNet [29], Inception
v3 etc. [30]

An underlying CNN architecture has the following layers:

1) A CONVOLUTIONAL LAYER
This layer extracts the input image features by using some
filters (feature detectors) and generating a smaller size image
containing the original input image features. The result of
the convolutional layer is called a feature map. Before going
to the next layer, in most CNN architectures, an activation
function is applied to the feature maps to increase the non-
linearity of the image (useful to avoid linearity in images
since most images have non-linear features predominantly).
One of the most popular activation functions used in deep
learning for the past few years in the Rectifier Linear Unit
(ReLU) [31].

2) A POOLING LAYER
The pooling layer’s objectives are to generate a spatial invari-
ant feature for the image (the ability to recognize the image
in positions different than the input image) and reduce the
size of the feature maps. One standard poolingmethod used is
‘‘Max Pooling’’ [32]. Many other convolutional and pooling
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FIGURE 4. Basic structure of CNN architecture.

layers can be added before the flattening layer to improve the
accuracy of a CNN model.

3) A FLATTENING LAYER
The flattening layer converts the pooled feature map matrix
(2D) into a vector(1D) input for the neural network (next
layer) [3].

4) A FULL CONNECTION LAYER
The full connection layer is a neural network composed of
several neurons’ layers interconnected through the synopsis
and converging to the final outputs. The full connection
layer is where all the classification intelligence of the CNN
happens. The first neurons layer receives its input from the
previous flattening layer and goes through several hidden
layers before producing the results.
Note: One way to improve a CNN model accuracy is to

pass through the model forward and backward several times
by adjusting the weight of the inputs (iterating the dataset)
based on obtained output results until we achieve the desired
accuracy. The number of time the dataset is iterated is called
Epochs [33].

A graphical representation of the basic structure of a CNN
architecture is presented in Fig.4.

D. PREDICTIVE MAINTENANCE APPROACHES USING
MACHINE LEARNING TECHNIQUES
Predictive maintenance is one advantageous approach
to ensure smooth and reliable operations of production
processes. For the past years, researchers conducted many
studies to improve predictive maintenance techniques. One
innovative trend introduced in the research field is the use
of machine learning techniques to ameliorate this concept’s
outcomes. A study was proposed by [19] to apply ML for
the predictive maintenance of gas turbines. They focused

on using SVM and Regularized Least Square (RLS) to pre-
dict the appropriate maintenance time of the gas turbines
based on its speed, compressor decay, and gas turbines
decay. The results showed that the SVM outperformed the
RLS model. Another method proposed by Leahy et al. [20]
uses SVM to perform Predictive maintenance on Wind Tur-
bines. Their approach used ML to create a classification
model for six faults in wind turbines: fault/no-fault, feeding
faults, air cooling faults, excitation faults, generator heat-
ing faults, and mains failure. By using SVM hyperparame-
ter optimization by randomized search, they reached better
results on detecting generator heating faults, classifying
correctly 100% of the cases. However, on the fault/no-
fault dataset, they got only 90%recall and 8% precision.
Susto et al. [21] introduced another ensemble approach to
detect the best moment for tungsten filaments replaced during
ion implantation. It is a step in the process of manufacturing
semiconductors. The authors tested SVMs ensembles Pre-
dictive Maintenance with K-Nearest Neighbor (KNN) and
Predictive Maintenance with SVM; the predictive mainte-
nance with SVM gave slightly better results than the KNN
approach. In [22], the authors used the random forest (RF)
ML technique to generate a predictive maintenance approach
for a cutting machine. The RF model used different rotor
status of the cutting machine to perform classification in the
predictive maintenance scheme. Kulkarni et al. [23] worked
on a refrigeration and cold storage system by developing
an ML base approach that performs predictive maintenance
by detecting early faults on the machinery involved in the
refrigeration. They apply a feature extraction step in the
pre-processing phase of the model, which consisted of learn-
ing the pattern of the dataset and seasonality decomposition
by dynamic time wrapping and clustering. They also built
an RF classifier to recognize if the pattern was abnormal
or not.
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Following the same path to improve the quality of pre-
dictive maintenance approaches implemented for systems,
our study applies CNN modeling that can extract feature
representation to offer better results than traditional ML
techniques. Unlike traditional ML techniques such as RF
or SVM. CNN has the advantage of accommodating a very
high number of features by quickly determining which ones
have higher weights (more influential to the system) than the
others, therefore eliminating unnecessary ones. In this era of
IoT and Big data where massive amounts of data are available
every day, it is convenient to integrate such a feature into
modeling techniques.

Having a sound theoretical background on all useful con-
cepts used in this study, let us have a detailed look at
the methodology applied to construct the predictive mainte-
nance framework. This methodology focuses on reducing the
dataset dimension (PCA) and using CNN to achieve accurate
classification.

III. PREDICTIVE MAINTENANCE FRAMEWORK
METHODOLOGY
This experimental predictive maintenance framework aims to
classify conveyor motor states as dangerous or not dangerous
by encoding time series as images and feeding them into a
CNN model that performs the classification task. The frame-
work consists of the following stages:

1) FEEDING STAGE
In order to accommodate dual time-series types, we design

this stage is responsible for the separation of MTS and UTS.
This stage has two inputs. The feeding stage has a sub-stage
for MTS data inputs. The sub-stage is called ‘‘Dimensional-
ity Reduction Stage’’ and aims to reduce the size of MTS
inputs to two channels using an approach called principal
component analysis (PCA). By reducing the size of MTS
data, the system’s complexity decreases, and the performance
improves (data processing volume reduces considerably).

2) IMAGING STAGE
At this stage, time series received from the feeding step:

either a UTS or a Reduced MTS are converted into images
using the GAF method.

3) CNN CLASSIFICATION MODELING STAGE
This stage receives encoded images from the previous step

and performs a classification task using the CNN method.
In this research, we add an option in the CNN model
that uses the Parameterized Rectifier Linear Unit (PReLU)
activation function to improve the non-linearity feature of
input images and to achieve better accuracy at the out-
put when using extensive input networks. Since we built
our predictive model for small manufacturing industries,
the performance results obtained using both CNN with clas-
sic rectifier linear unit (ReLU) and PReLU are very much
similar.
Note: Although the performance improvement between

CNN models with ReLU and those using PReLU has been
proven by some authors to be very small (about 1% to
2% accuracy improvement), this could make a massive

difference in the manufacturing environment where avail-
ability of systems and machines is essential to production.
A 1% more accuracy could be the information needed to
avoid chaos in the plant.

A. PRINCIPAL COMPONENT ANALYSIS (PCA) TECHNIQUE
PCA is an unsupervised learning method, it means that we
don’t make use of the dependent variable to perform its
operations. A. Yunusa-Kaltungo et al. [54] describe a similar
approach to reduce data dimension for fault diagnostic on
rotating machines. To achieve dimensionality reduction using
PCA, we go through the following steps:

1) PRE-REDUCTION OF DATASET DIMENSION
In this study, we consider datasets of time series variables,
which are observations of different conveyor motor parame-
ters indicating threats to the system. These could be obser-
vations of any other system. Our experimental data is com-
posed of 12 parameters, 11 observations: Vibration speed,
Motor torque, Acceleration,Motor Speed, Air pressure, Prod-
uct Weight, Deceleration, Current, Belt tension, Motor ten-
sion, Temperature and one outcome which is the type of
Fault detected in the system. Each parameter has about
15,000 observations or values recorded during a specific
interval. We express the overall dataset as the expression
p + 1, with p being the number of observations or inde-
pendent time series variables and one the number of the
dependent variable or the label (In our case, the type of
faults generated). We discard the number of label one and
remain with p as the new dimension of our dataset, in this
case, p=11.

2) CALCULATE THE AVERAGE OF EVERY DIMENSION OF THE
NEW DATASET
Since the new size of our dataset is p = 11, the dataset is
composed of eleven time series variables or eleven vectors of
observations. In this research, they can be detailed as follows:

P1(vibration speed) =
[
p11, p12, · · ·, p1n

]
P2(motor torque) =

[
p21, p22, · · ·, p2n

]
P3(acceleration) =

[
p31, p32, · · ·, p3n

]
P4(motor speed) =

[
p41, p42, · · ·, p4n

]
P5(air pressure) =

[
p51, p52, · · ·, p5n

]
P6(product weight) =

[
p61, p62, · · ·, p6n

]
P7(deceleration) =

[
p71, p72, · · ·, p7n

]
P8(current) =

[
p81, p82, · · ·, p8n

]
P9(belt tension) =

[
p91, p92, · · ·, p9n

]
P10(motor tension) =

[
p101, p102, · · ·, p10n

]
P11(temperature) =

[
p111, p112, · · ·, p11n

]
where n is the length of each time series variable.

In this experiment let us assume n = 15,000, we can gen-
erate a matrix (14) of size p × n,(11 × 15,000), representing
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TABLE 1. Variance-covariance vector relationship.

the new dataset as:

D =



p11 · · · p61 · · · p111
...

. . .
...

. . .
...

p17500 · · · p67500 . . . p117500
...

. . .
...

. . .
...

p115000 . . . p615000 . . . p1115000

 (14)

The average of each dimension of the dataset D can be
computed by equation (15):

AvgP1 =

∑n
i=1 (P1n)
n

= P1 (15)

From (14) and (15), the average matrix originating from D
can be summarized as follows:

D̄ = [

∑n
i=1 (p1n)
n

· · ·

∑n
i=1 (p6n)
n

. . .

∑n
i=1 (p11n)
n

] (16)

D̄ = [P1 · · ·P6 . . . P11] (17)

3) GENERATE THE VARIANCE-COVARIANCE MATRIX OF THE
DATASET D
The variance-covariance matrix or covariance matrix is com-
puted by establishing a variance relationship between each
element of the dataset with the following formula:

VC (P1,P2) =
1
n

∑n

i=1

(
P1n − P1

) (
P2n − P2

)
(18)

The result of the variance-covariance matrix is a square
matrix of size p× p; In this research the size of the variance-
covariance matrix is 11 × 11. Table 1 is a sample of the
variance-covariance space’s sake, we illustrate a sample of
the matrix with some of the vectors.

4) FIND THE EIGENVALUES AND THEIR EIGENVECTORS
An Eigenvector is in simple terms, a vector which will not
change directions after we apply any linear transformation to
it [34]. Let us assume our square variance-covariance matrix
to be defined by (19).

CVM

=



VC(P1,P1) · · · VC(P1,P6) · · · VC(P1,P11)
...

. . .
...

. . .
...

VC(P6,P1) · · · VC(P6,P6) . . . VC(P6,P11)
...

. . .
...

. . .
...

VC(P11,P1) . . . VC(P11,P6) . . . VC(P11,P11)


(19)

The mathematical expression to find Eigenvalues for the
CVM matrix can be presented as follows:

det (CVM− λI)= 0 (20)

where λ is the Eigenvalue associated with CVM and I is the
identity matrix. An identity matrix corresponding to (19) can
be expressed as follows:

I =



1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 1

 (21)

The identity matrix is also a square matrix with the same size
as the CVM (11× 11). Substituting (19) and (21) to (20) and
computing the operation results in a eleventh degree equation
with λ the unknown. The equation can be represented as:

aλ11 + bλ10 + hλ4 + . . .+ iλ3 + jλ2 + kλ+ l = 0 (22)

After solving (22), eleven values are found: λ1, λ2, λ3, λ4,
λ5, λ6, λ7, λ8, λ9, λ10 and λ11; these are the Eigenvalues of
our dataset matrix. The next step is to find the corresponding
Eigenvectors for each Eigenvalues. Let’s assume for each
Eigenvalues the following Eigenvectors:

λ1 → E1 = [e11, e12, · · ·, e111]

λ2 → E2 = [e21, e22, · · ·, e211]

λ3 → E3 = [e31, e32, · · · , e311]

λ4 → E4 = [e41, e42, · · ·, e411]

λ5 → E5 = [e51, e52, · · ·, e511]

λ6 → E6 = [e61, e62, · · · , e611]

λ7 → E7 = [e71, e72, . . . , e711]

λ8 → E8 = [e81, e82, . . . , e811]

λ9 → E8 = [e91, e92, . . . , e911]

λ10 → E10 = [e101, e102, . . . , e1011]

λ11 → E11 = [e111, e112, . . . , e1111]

5) REDUCE DATASET DIMENSION BY KEEPING
EIGENVECTORS WITH HIGHEST EIGENVALUES
The Eigenvector with the smallest Eigenvalue carry the least
information of our data. To effectively reduce the dimension
of the dataset we focus on the eigenvectors corresponding to
higher Eigenvalues. Since we would like to reduce the size
p=11 to a dimension of 2 (2 channels input), we only select
the first two higher Eigenvalues and their Eigenvectors. If we
consider λ1 and λ2 to be the two Eigenvalues with higher
values, with λ1 > λ2, their corresponding Eigenvectors can
be combined into a new matrix (23).

G =
(
e11 e12 . . . e111
e21 e22 . . . e211

)
(23)
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The reduced dimension of dataset D is computed by the
following expression:

Z = DGT (24)

where GT is the transpose of matrix G. GT is defined in (25):

G =


e11 e21
e12 e22
...

...

e111 e211

 (25)

The multiplication of D (14), a 15,000 × 11 matrix, by GT,
a 11 × 2 matrix, by (14) results in new matrix of size 15,000
× 2, with 2 the number of columns of the reduced dataset.
The same principal applies for reducing the dimension of any
other dataset depending on its size.

B. PARAMETERIZED RECTIFIER LINEAR UNIT (PRELU)
ACTIVATION FUNCTION OPTION TO IMPROVE ACCURACY
OF LARGER NETWORKS IN CNN MODEL
Improving model performance in machine learning usually
implies building more powerful models and designing effec-
tive strategies against overfitting. For the past years, several
strategies are applied to neural networks to create models
more capable of fitting training data: the use of smaller
strides [29], [35]–[37], bigger depth [29], [38], new nonlinear
activations [39]–[44], enlarged width [35], [36], sophisticated
layer designs [38], [45] etc. Researchers introduced some
other advanced approaches, such as aggressive data augmen-
tation [10], [29], [38], [46], large-scale data [10], [29], and by
effective regularization techniques [44], [47]–[49] to achieve
improved generalization. Rectified Linear Unit (ReLU) is one
of these approaches under the rectifier neuron [31], [39]–[41]
that used to better the success of deep networks [10].

We utilize CNNmodeling to perform the classification task
for the predictive maintenance framework resources. In this
research, we add an optional section to improve the quality of
CNNmodels built for extensive networks by replacing the tra-
ditional rectifier linear unit (ReLU) activation function to the
Parameterized Rectifier Linear Unit (PReLU). Using PReLU,
we improve themodel data fitting capability with reduced risk
of overfitting when training those models and achieve better
accuracy than using traditional ReLU. The PReLU function
incorporates ReLU and adds extra parameters that make this
technique appropriate for deep networks [50]. As previously
mentioned, the PReLU activation function is useful for vast
and deep networks in which it improves performance (accu-
racy). In this research, the improvement is very negligible as
working with data of a small manufacturing entity. However,
the CNN model we build in this study offers a future proof
option for a more substantial amount of data.

Equation (26) is a mathematical expression for an activa-
tion function:

f (Zi) =

{
Zi if Zi > 0
ciZi if Zi ≤ 0

(26)

FIGURE 5. ReLU graphical representation.

FIGURE 6. PReLU graphical representation.

When ci is equal to zero, (26) defines a tradition ReLU; when
ci is different than zero or a linear parameter (26) represents
PReLU. The graphical representation of (26) for both ReLU
and PReLU is presented in Fig.5 and Fig.6 respectively:

From (26), we define Zi as the input of the activation
function f on the ith input channel and ci the coefficient of
the slope. (26) can further be expanded as:

f (zi) = max (0, zi)+ ci min(0, zi) (27)

To train PReLU, the back propagation method can be
used [51]. Its optimization is done simultaneously for all
layers [50]. Equation (28) is used to find the gradient of ci
for one layer:

∂ε

∂ci
=

∑
zi

∂ε

∂f (zi)
∂f (zi)
∂ci

(28)

From (28), ε represents the objection function and ∂ε
∂f (zi)

the gradient propagation from the deeper layer of the neural
network. To find the gradient of the activation function (29)
is used:

∂f (zi)
∂ci
=

{
0 if zi > 0
zi if zi ≤ 0

(29)

The next section presents the workflow and steps of our
predictive maintenance framework and the main components
used for the overall architecture of the system. Elements
detailed in previous sections (UTS, MTS, PCA, and CNN
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FIGURE 7. Flow chart diagram.

steps) are backbones of the final architecture of the frame-
work.

IV. PREDICTIVE MAINTENANCE FRAMEWORK FLOW
DIAGRAM AND OVERALL ARCHITECTURE
The flow diagram that summarizes operations of our exper-
imental predictive maintenance framework is presented
in Fig.7. The overall predictive maintenance framework is
displayed in Fig.10.

V. EXPERIMENTAL RESULTS
We used data from the conveyor system of a small manu-
facturing plant to test the effectiveness of our experimental
framework. The conveyor system is composed of a conveyor
AC motor, a variable frequency drive (VFD), and a conveyor
belt with its components. Data preparation is the first step
of our experimental framework process. The small manu-
facturing plant uses to always rely on the motor’s vibration
speed reading to initiate predictive maintenance on them.
Depending on the type of machinery (motor size), vibration
thresholds determine their states: normal, warning, or alarm.
Fig.8 illustrates the vibration velocity warning and alarm
states.

One of the simplest ways to study and understand vibra-
tion’s signal behavior is to consider it as a sine wave with
all its characteristics: amplitude (displacement), period, and

FIGURE 8. Machine vibration trend according to ISO 10816 [52].

FIGURE 9. Vibration as a sine wave [55].

frequency, as displayed in Fig.9. The velocity or speed of a
vibration can is the first derivative of the amplitude, com-
monly known as the displacement over a certain amount of
time or frequency. When analyzing vibrations on their own
in systems and equipment, it is not very easy to automatically
establish whether the vibrations recorded are harmless to the
smooth system’s operation. Several rules, such as Table 2,
have been developed to address this issue. Another critical
practice in this regard is frequent vibration monitoring, useful
to detect early impairment in the machinery. The vibration
velocity is measured from special vibration sensors (analog
signal input) and stored in a controller.

A machine breaks when exposed to several deformations,
which is, in reality, a change in amplitude (displacement)
that repeatedly occurs at a specific frequency. In other words,
the severity of impairment like vibration depends on its dis-
placement and its frequency. As previously mentioned, veloc-
ity is also a function of displacement and time (frequency);
therefore, the velocity of a vibration can be considered an
excellent indicator of vibration severity. For machines oper-
ating between 10Hz and 1000Hz, vibration velocity is a good
indicator of its severity. For those running at frequencies
above 1000Hz, acceleration is one of the most reliable mea-
sures of vibration severity [56].

The vibration severity criteria in Table 2 depends on the
four classes related to the type and size of the motor used.

Class I is for Small-sized equipment (from 0 to 15KW)
Class II is for Medium-sized equipment (from 15 to

75KW)
Class III is for Large-sized equipment (powered> 75KW)

mounted on ‘‘Rigid Support’’ structures and foundations.
Class IV is for Large-sized machines (powered > 75KW)

mounted on ‘‘Flexible Support’’ structures [5].
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TABLE 2. Vibration severity criteria based on ISO 2372 [5].

The small manufacturing plant in this experimental
research utilizes a class II equipment (medium-sized equip-
ment). From Table 2, all vibration velocity above 4.5mm/s
indicates a high severity in the system faults. However,
the plant supervisors observed that not all ‘‘critical’’ vibration
speed would result in a ‘‘critical’’ fault and the need to
perform predictive maintenance on the system.

Not all apparent ‘‘non-critical’’ vibration speeds were safe
for conveyor motors since it would cause critical or minor
faults. These false falts caused for a long time unneces-
sary repetitive additional maintenance cost since the existing
system would request for a predictive maintenance action
while not required or a long-time failure because of misin-
terpretation of critical faults in need of immediate mainte-
nance action. There was, therefore, a need to take more than
one parameter (motor vibration speed) into consideration to
accurately detect predictive maintenance schedules. Using
specialized sensors (IoT sensors), VFD reading, controllers
Inputs/Outputs (I/O) reading, and several other parameters,
which combination was observed by supervisors to poten-
tially influenced system failure, were recorded from the con-
veyor system over a successive period. They are part of the
time series dataset and presented in Table 3. For confidential-
ity reasons, the small manufacturing plant did not disclose
their identity and the overall data. The conveyor system oper-
ates at 3 main speed controlled by the VFD: f1 = 15Hz,
f2 = 30Hz and f3 = 50Hz. The sampling frequency (fs) used
for the experiment is fs = 2.56f3 that is about fs = 128Hz.
Plants operators detected three primary types of faults in the
conveyor system:

- Imbalance: Unattended broken parts in the conveyor
system result in an imbalance in the running machinery that
causes vibrations. This fault seems unnoticed at the lowest
speed, but it becomes very severe when operating at 30Hz and
worst at 50Hz causing vibrations velocity in unsatisfactory
range from Table 2 for class II. Undesirable vibrations reduce

TABLE 3. Time-series dataset variables.

the accuracy of the conveyor system. Undesirable vibrations
reduce the accuracy of the conveyor system. An excessive
vibrating conveyor used in a bottling plant spills out content
of recipients, stops them on undesired spots, makes them fall
on the conveyor and creates congestion in the chain.

-Misalignment: Because of the continuous motion of the
conveyor system, the machine’s shaft gets quickly out of line
and causes a misalignment fault that result in undesirable
vibrations.

- Looseness: In normal conditions, the conveyor system’s
structure and components need to be stiff and solid to oper-
ate smoothly. A decreased in stiffness or loss parts causes
vibrations in the system. Vibrations caused by this fault are
not very severe and can remain unnoticed without proper
monitoring. In the small manufacturing plant, this is the least
severe of all three faults. Misalignment or looseness, individ-
ually, cause minor fault in the plant (lower vibrations nearing
the unsatisfactory border: 4.5 mm/s on Table 2). But when
occurring simultaneously result in vibrations velocities in
the unsatisfactory spectrum of the vibration severity criteria
based on Table 2.

Parameters in Table 3 represent the independent variables
of our deep learning model. A combination of these vari-
ables determines three states of the conveyor motor: (1)
No-Fault (2) Minor Fault and (3) Critical Fault with urgent
need of maintenance. or confidentiality sake, we display,
in Table 4(in the appendix section), only one combination
sample for each state. Fig.11 presents the time series variables
from Table 3. We selected a portion of the dataset over a
smaller period for visibility purposes. There is a need for
data conversion and scaling in controllers and Supervisory
Control And Data Acquisition (SCADA) for field operators
to interpret information easily.

This research built a classification model that studies in
depth the combination of all the above parameters and gen-
erates a more accurate way to detect critical faults in need of
immediate maintenance, minors faults more negligible, and
no faults. From our dataset, we can tell that we are deal-
ing with MTS input data. Therefore, as per our framework
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FIGURE 10. Overall system’s architecture.

FIGURE 11. Independent variables MTS plot.

workflow, we apply PCA to reduce the dimension of the
independent variables to a maximum of two channels.

A. ALGORITHM SETTINGS SUMMARY: PCA
Table 4 is a summary of important settings used for the dimen-
sionality reduction of theMTS to PCA (The ‘R’ platformwas
used for PCA dimensionality reduction):

PCA algorithm generates two new sets of independent
variables replacing all variables in Table 3. The two variables
are named PCAvar1 and PCAvar2, with their values different
from original raw data. Fig.12 is a graphical representation of

TABLE 4. PCA settings.

these two variables. We used the same time interval for both
Fig.11 and Fig.12.
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FIGURE 12. PCA variables representing reduced independent MTS variables.

FIGURE 13. ‘‘No Fault (NF)’’ motor status sample on GAF images.

B. ALGORITHM SETTINGS SUMMARY: GAF
We load the new independent variables from Fig.12 into the
image encoding section where they are (1) normalized, (2)
converted to polar coordinates, and (3) transformed to GAF
images.We used the python platform to generate GAF images
for each case of the dataset. The following are the most
critical settings and steps for this section:

• Gramian angular field library imported from pyts.image.
• Separate each motor condition cases from PCA vari-
ables.

• Load each three cases (‘1’, ‘2’ and ‘3’) individually in
the GAF code.

• Image_Size: 3
• Generate and save ‘‘summation’’ (GASF) and ‘‘dif-
ference’’ (GADF) images for each line data: from
X_gasf [0], X_gadf [0] to X_gasf[n], X_gadf[n] (n is the
last item number of each case)

• Save images in separate folders based on cases.

Fig.13, Fig.14, and Fig.15 are the image samples of the three
motor states are No-fault (‘3’), Minor fault (‘2’), and Critical
fault (‘1’), classified by our framework.

FIGURE 14. ‘‘Minor Fault (MF)’’ motor status sample on GAF images.

FIGURE 15. ‘‘Critical Fault (CF)’’ motor status sample on GAF images.

Most critical faults in the system were caused by an imbal-
ance system when running the system at 50Hz. Some others
were caused by a combination of at least two faults, for
example, misalignment and looseness occurring at the same
time. The minor fault was usually a result of misalignment or
looseness individually.

Our research aims to build an effective classificationmodel
that uses several motor parameters and observations as inputs
of the system. These inputs are:
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TABLE 5. SVM settings.

• Vibration speed (VS),
• Motor torque (MT),
• Acceleration (ACC),
• Motor speed (MS),
• Air pressure (AP),
• Product weight (PW),
• Deceleration (DEC),
• Current(CUR),
• Belt tension (BT),
• Motor tension (MT-S)
• Temperature (TMP)

The output of the model is the ‘‘Fault Severity in the System’’
that determines a predictive maintenance schedule. The fault
severity or the output of the system has three conditions dis-
played in Fig.13, Fig.14, and Fig.15: No-Fault, Minor Fault,
and Critical Fault (that requires immediate action), respec-
tively. Fig.16 is a representation of our predictive framework
inputs/Outputs (I/O) model.

C. ALGORITHM SETTINGS SUMMARY: SVM AND CNN
As previously mentioned, our framework machine learning
section offers an optional section for more extensive net-
works by building a CNN model based on the PReLU activa-
tion function instead of the standard ReLU. To evaluate our
results, we use three machine learning models:(1) Support
Vector Machine (SVM), (2) Standard CNN (using ReLU),
and (3) CNN + PReLU.
The SVM model is built in an R platform using PCA

variables. The critical parameters used to generate are:
The CNN models are built in a python platform using

images generated in GAF and saved in different folders.
We divided all converted images into two categories: a train-
ing set and a test set. The training set applied to train and build
our CNN models and the test set to measure the accuracy
of the model. This step is the pre-processing data phase of
modeling our CNNs. Unlike SVM models, where all this is
done automatically in the machine learning script, this part is
achieved manually for CNN in this study.

Parameters settings in Table 6 are worth mentioning for the
CNN models.

Dealing with three classification models, the evaluation
metrics used for the above models are:

• Accuracy: The accuracy of a classification model can be
defined as the percentage of correct predictions of the
overall model over the total number of samples used for
prediction. Let assume CP the number of correct predic-
tions in a model and n the total number of instances used

TABLE 6. CNN parameters settings.

in the test set to evaluate the model, the accuracy can be
represented by (30) as follows:

accuracy =
CP
n

100% (30)

VOLUME 8, 2020 121045



K. S. Kiangala, Z. Wang: Effective Predictive Maintenance Framework for Conveyor Motors

FIGURE 16. Framework Inputs/Outputs architecture.

• Precision: Another evaluation metric is precision
defined as the percentage of correct prediction for each
different class, individually, over the total number of
instances predicted for those classes. In this research
our dataset has three classes for the classification model:
no fault (NF), minor fault (MF) and critical fault (CF).
Equation (31) is the mathematical expression for the
precision:

precision =
CPm
Pm

100%, m ∈ N (31)

where m is the number of classes of the dataset, CPm is the
number of correct predictions per class, pm is the total number
of instances predicted for that class (correct and incorrect).
• Recall: The recall is known as the percentage of
instances of a class that were correctly predicted.
In other words it is a ratio of the number of correct pre-
dictions of a class over the sum of correct predictions and
missed correct predictions. Its mathematical expression
is presented on (32).

recall =
CPm

(CPm + IPm)
100%, m ∈ N (32)

where m is the number of classes of the dataset, CPm is the
number of correct predictions per class, pm is the total number
of instances predicted for that class (correct and incorrect).

While accuracy is an evaluation metric for the overall
model (all classes included), Precision and Recall are useful
to have insights on individual classes and interpret the behav-
ior of each class better.

A confusion matrix is an essential tool that displays a sum-
mary of classification results, mainly the actual labels versus
predicted ones [53]. It also computes the accuracy, precision,
and recall of a classification model. Tables 7, 8, and 9 are
confusion matrices of the three experimental classification
models used in our predictive maintenance framework.

On the above confusion matrices, the green-colored cells
are the number of correct predictions made by the model

TABLE 7. Confusion matrix result of SVM model.

TABLE 8. Confusion matrix result of CNN + RELU.

TABLE 9. Confusion matrix result of CNN + PRELU.

for each class. The remaining uncolored cells contain the
number of incorrect predictions. The meaning of the labels
is (1) CF: critical fault, (2) MF: minor fault, and (3) NF:
no-fault. We reduced the dimension of the input data for all
three machine learning models by applying PCA.
Note: Confusion matrices results of both CNN mod-

els are quite impressive with 100% positive predictions.
We achieved an outstanding prediction by running three
epochs, which is the number of times the CNN algorithm
learns the model behavior using available training set data
when the training and testing of these models. Training and
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TABLE 10. Classification models results summary.

validation (testing) accuracies obtained at the last epoch for
both models are very close to just less than 1% (99, xx% -
100%), which reflects models with fewer chances of overfit-
ting. Table 7 summarizes the evaluation metrics results of the
three classification models used in this research:

As per the results in Table 10, using CNN for predictive
maintenance increases the experimental system’s accuracy
to almost 50% as opposed to utilizing a traditional SVM
machine learning model. Although the preparation and mod-
eling steps of a predictive maintenance system using CNN
may seem tedious and demanding, the hardest part of the
modeling is done once in the beginning. The remaining
operations will be a fine-tuning of parameters and load-
ing new observations in the system for the algorithm to
improve its performance. Depending on the plant activities,
the supervisors can perform this operation once a month or
during maintenance and shutdown. Results obtained for both
CNN+ReLU and CNN+PReLU are identical for relatively
small datasets but could make a difference for more extensive
networks. This option is, therefore, quite handy for a future
proof model, which will undoubtedly have to deal with a
more significant number of data. The best overall accuracy
achieved is 100%. These are outstanding results that bring
more effectiveness and reliability in the system and makes a
big difference when predicting machine conditions (conveyor
motors) since an incorrect prediction could either result in
critical breakdown or unnecessary maintenance expenses.
As the production/manufacturing systems are different, it is
essential to conduct a proper study on each system behavior
before implementing the adequate predictive maintenance
approach.

VI. CONCLUSION
This research presents an experimental framework that trig-
gers effective predictive maintenance for conveyor motors
in a small manufacturing industry utilizing a classification
model built through time-series input data imaging and CNN
with a future-proof option for more extensive networks using
PReLU activation function to improve model performance.
Several conveyor system parameters observed sequentially
are converted into images using GASF that has the advan-
tage of preserving temporal features. Experimental results

obtained show the relevance of using deep learning algo-
rithms such as CNN to improve the accuracy of classification
models. Our predictive maintenance framework architecture
accommodates both UTS and MTS data input. It classifies
the conveyor motor status into three categories based on input
parameters: critical fault, minor fault, and no-fault. The best
overall accuracy achieved by our experimental framework is
about 100%, which is quite sufficient for initiating predict-
ing maintenance schedules. With these excellent results, our
framework reduces the high risk of missing critical faults in
the system, which could lead to a more prolonged breakdown
or unnecessarily initiating maintenance on motors due to
incorrect predictions leading to a waste of resources.

For future work, we would like to expend the frame-
work’s ability to deal with diverse data types by adding a
feature that includes non-linear time series input. We could
reduce the dimensionality of the non-linear data through
the Kernel PCA algorithm; we would also fine-tune our
CNN models by incorporating additional parameters such as
‘‘Dropout,’’ which can prevent the risk of overfitting. Fur-
thermore, we would like to incorporate CNN classifications
results of the predictive maintenance framework in the oper-
ational technology (OT) environment where we include clas-
sification motor statuses in Supervisory Control And Data
Acquisition (SCADA) displayed on a Human Machine Inter-
face (HMI) and remotely accessible in cloud-based applica-
tions by supervisors and operators.
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