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ABSTRACT In order to track weak signals, GNSS receivers often use a frequency-locked loop (FLL) to track
the carrier frequency. The performance of the frequency discriminator directly affects the receiver’s signal
tracking capability in the FLL. In weak signals, FFT is currently used to estimate the carrier frequency.
However, the FFT has a fence effect. The signal length affects the accuracy of the frequency estimation.
According to the problem of FFT frequency estimation with low accuracy, we introduce three frequency
estimators, which have good frequency estimation performances under low signal-to-noise ratio for GNSS
weak signal tracking and propose a carrier frequency tracking method. The article compares and analyzes
the estimation error performance of different frequency discriminators in detail. The simulation experiments
are used to verify and analyze the tracking sensitivity of the tracking loop under different carrier-to-noise
ratios. Theoretical analysis and simulation results show that these estimators effectively improve the accuracy
of frequency estimation compared to traditional FFT estimator. Using the open-loop tracking structure, the
tracking sensitivity can reach 24 dB-Hz when the coherent integration time is 20 ms and the number of signal
samples is 16. Adding a loop filter, the tracking threshold can be improved to 20 dB-Hz.

INDEX TERMS Frequency estimation, open loop tracking, RMSE, tracking threshold, weak signal tracking.

I. INTRODUCTION

The normal operation of the GNSS receiver is based on
the stable tracking of the signal, including carrier tracking
and pseudo-noise code (PN code) tracking. Due to the short
wavelength of the carrier, carrier tracking has become the
most vulnerable link in the receiver [1]. Currently, phase-
locked loop (PLL) is often employed to track the carrier
signal. The loop uses the local carrier to discriminate the
phase of the received carrier. Then the phase delay of the
local carrier can be detected. The local carrier aligns itself
with the received signal by the feedback control of the local
carrier generator. The phase-locked loop is the best tracking
method when the signal environment is good. However, under
weak signal environment, large phase noise often causes the
tracking loop to lose lock. In order to improve the sensitivity
of the tracking loop, the frequency-locked loop (FLL) is often
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used to replace the phase-locked loop when the signal is
weak [2]. Unlike the phase-locked loop, the frequency-locked
loop only estimates the frequency error to achieve frequency
locking. The frequency-locked loop that is not concerned
about the phase error greatly improves the stability of the
loop.

The performance of frequency tracking is to some extent
depends on the frequency discriminator. Different frequency
estimators directly affect the accuracy and sensitivity of fre-
quency tracking. The frequency estimation is a fundamental
problem in signal processing. Estimating the frequency of
a complex sinusoidal signal has been extensively studied in
the field of communications [3]-[8]. Using discrete Fourier
transform (DFT) to estimate frequency is the classic esti-
mation method in frequency domain. In order to alleviate
the fence effect of DFT, some researchers proposed using
a two-step search algorithm to fine the estimation [9]-[15].
Based on the index of peak value in the DFT magnitude spec-
trum, the adjacent frequency spectrum interpolation is used
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to estimate the fractional correction term §. Scholars strive
to find a method with higher estimation accuracy, smaller
frequency deviation and simple calculation. Quinn [11] pro-
posed an interpolation method based on quadratic functions
in 1994, which uses the amplitude and phase information
of the two DFT coefficients on either side of the maximum
bin. However, estimation error of the frequency deviation
increases when the real frequency is close to the maximum
frequency bin. To reduce the error of frequency deviation
estimation, Macleod [12] proposed an improved algorithm.
This algorithm removed the prediction of the frequency devi-
ation polarity. Including the maximum value of the spectrum,
the complex values of the two adjacent spectral lines are used
to obtain a unique frequency estimation formula. A unique
frequency estimation formula is implemented using the com-
plex values of the two adjacent spectral lines and the maxi-
mum spectral line. Jacobsen and Kootsookos [13] proposed
a calculation formula using three spectral lines for interpo-
lation in 2007. The estimation formula is simple and easy in
calculating. In 2011, Candan [14] derived Jacobsen’s formula
and gave the bias correction item, which improved the mean
square error performance of the frequency estimator under
high signal-to-noise ratio (SNR). Other estimation methods
calculate the DFT utilizing zero-padding series in the time
domain. The purpose is to ensure that the spectral lines used
in calculating the frequency deviation are within the main
lobe range. Rational Combination of Three Spectrum Lines
(RCTSL) [15] uses the amplitudes of the maximum spectral
line and its two neighbors to estimate the frequency after zero-
padding. This method is based on least square approximation
in frequency domain, which has a lower SNR threshold com-
pared with other methods. As mentioned above, the methods
with a small amount of calculation have better performance
than DFT. They are suitable for GNSS signal frequency
tracking. However, most of the existing researches aimed at
improving the frequency bias performance under high SNR
environment. Few of them are investigated the performance
under low SNR environment, especially in the GNSS tracking
loop.

This paper aims at the carrier tracking problem of weak
GNSS signals. With a frequency tracking structure, we com-
pared the tracking jitters and sensitivity under low SNR
environment using different frequency estimation methods.
Meanwhile, the relationship between the performance of
open-loop/closed-loop tracking loop and the frequency esti-
mators is analyzed. This paper is organized as follows:
Section II introduces the GNSS carrier frequency tracking
structure and three frequency estimation methods, which are
suitable for the tracking loop. The performances of the three
frequency estimators including frequency bias and root mean
square error (RMSE) under different SNR environments are
analyzed and compared in Section III. Section IV gives sim-
ulation results and compares the performance of different
frequency estimators in the GNSS signal tracking loop. The
sensitivity of the loop in open-loop and closed-loop structures
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are given respectively. The last part summarizes the experi-
ments and draws the conclusion of this article.

Il. GNSS SIGNAL MODEL AND CARRIER

TRACKING METHOD

In order to guarantee the signal power against loss, the inte-
gration limit of the signal cannot exceed the navigation data
bit. The digitized IF signal received at the end of the GNSS
receiver RF front-end for a visible GNSS satellite can be
presented as [16]:

r (i) = A (iTy) D (iTy) - C (iTy — 7)
-cos QnTs (fir +fa) i+ @) +n(iTy) (1)

where T is the sample period, t denotes the code delay
in samples, ) is the carrier phase, fir is the intermediate
frequency, and f; is the carrier Doppler frequency shift.
r (i) represents the received IF GNSS signal at the end of
the RF front-end sampled at time ¢+ = iTs, D (iTy) is the
navigation data bits, C (iTs; — t) stands for the spreading code
sequence for GNSS. n (iT) is the additional band-limited
white Gaussian noise. The bilateral power spectral density
of the white Gaussian noise is Ny / 2. In practice, the GNSS
receiver must use two loops to track the carrier and code
phase simultaneously. The basic principles of the two loops
are the same, except that the discriminators are different.
Because the carrier frequency is much higher than the code
frequency. Carrier tracking is often a weak link relative to
code tracking in the receiver and needs to be considered.
Among the carrier tracking methods, the classic method is
using the FLL or PLL to estimate the frequency or phase of
the signal in the field of communications. Fig. 1 represents
PLL structure in Laplace domain. The structure includes a
phase detector, a loop filter and a local oscillator. The main
function of the phase-locked loop is to identify the phase
difference between the local carrier signal and the received
signal through the phase discriminator. PLL eliminates noise
with filters and adjusts the frequency of the local oscillator
to ensure the consistency of the local signal and the received
signal.

Loop filter NCO

>~
D>

M/S

F s

fa

FIGURE 1. Typical tracking loop structure.

Generally, it is considered that the signal parameters
(A(t),t,0,.f;) change slowly. Therefore, the tracking per-
formance is stable. For high dynamic and weak GPS signal
environments, improved or more robust tracking methods
are often applied, such as FLL-assisted-PLL, Kalman filter-
based tracking method, etc. The methods that are widely
used in the existing GNSS receivers have improved the
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FIGURE 2. Carrier frequency tracking structure based on spectral analysis.

tracking performance of the receiver to some extent. In the
tracking loop structure, the role of the loop filter is to
eliminate noise. Thus, the accuracy of the local oscillator
can be improved. In 2003, Krasner [17] proposed an open-
loop tracking method, which can deal with urban canyons
and weak indoor signals. This method improved the effec-
tiveness of the receiver. We slightly modify the structure
of the tracking method as shown in Fig. 2. The incoming
IF signal mixed with local replicas of carrier and down-
converted to the baseband. When the correlation operation
with local replicas of code are accomplished, the residual
complex carrier signals are integrated in the integrate-and-
dump circuits. Then, the data bits can be removed after the
complex square operation. We replace the spectral analy-
sis block with the frequency estimator, which can estimate
the Doppler. Then, the Doppler residual is used to tune the
main carrier numerically-controlled oscillator (NCO) after
addition to the frequency offset. Unlike traditional tracking
methods, open-loop tracking only estimates the Doppler fre-
quency, and directly uses the estimated frequency to control
the local NCO, without the loop filter in the conventional
loop. Since there is no smoothing of the filter, the amount
of frequency adjustment each time is determined by the esti-
mated frequency. The Doppler frequency is determined by
performing FFT after the complex square operation.

A. CARRIER TRACKING STRUCTURE
Since the GNSS navigation is 50 bps the coherent integration
time of the signal is up to 20 ms without the assistance of
external information. The tracking loop structure in Fig. 1 can
be expanded into Fig. 2:

When the code loop is working well, the spreading code
C (iTy — 7) can be removed by the prompt code. The IF signal
in (1) could be simplified as the following complex signal:

r (t)=AD (t) cos 2uf,t +¢e) +jsinLafot + ¢e) +n(t) (2)

Ignoring high frequency information items and within one bit
interval, the output of the integrate-and-dump circuit can be
expressed as:

56) = AD (1) sine (efu Toop) AL (7840 Ly 3)

where T, stands for the coherent integration time, sinc (x)
function is defined as sinc (x) = sin (x) /x. In the local NCO
update period, the above formula can be regarded as a simple
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BPSK signal. The effect of data bit can be eliminated by
squaring the operation [18], after which a complex cosine
signal can be obtained with noises being ignored:

/ Teo
y (t) — A2SinC2 (nfeTcuh) ej[zﬂ*zfe (t-‘r 2h )+2¢ei| (4)

Note that y () contains only one spectral line at frequency 2f,.
The frequency could be detected by FFT as an effective
method in the frequency domain. The detected frequency is
used to adjust the NCO and then track the carrier frequency.
In order to improve the estimation performance, we intend
to use FFT to get a coarse estimation. The fine estimation is
implemented by the spectral line interpolation methods men-
tioned above. Finally an accurate frequency discriminator is
formed.

B. FREQUENCY ESTIMATION METHOD

In (4), ignoring the short-term amplitude change, the input
of the frequency discriminator can be regarded as a complex
sinusoidal signal with single-tone. Therefore, (4) is simpli-
fied as:

Y (1) = Ag TR 0 <1 < T ®)
where Ao, fo, and 6y are the amplitude, frequency, and phase
of the signal. T is signal observation time. In order to describe
the frequency estimation method of a complex sinusoidal
signal, we give Fig. 3 to show the DTFT and DFT of a single-
tone signal in the absence of noise.

The magnitude of a complex exponential signal
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FIGURE 3. DTFT and DFT spectrum of a signal complex tone without
noise.

It can be seen from Fig. 3, due to the truncation effect of
time domain signal, the spectrum of the sinusoidal signal is
not a single tone any more. It expands into a narrow band
signal with a main lobe width of 2 / T . This brings difficulties
to frequency estimation using DFT. In Fig. 3, |Y (¢2™0)] is
the peak of DTFT, Y [kp] is the maximum magnitude of DFT.
4 is the index deviation between the maximum magnitude and
the real frequency, with the constraint that —0.5 < § < 0.5.
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So, the estimated frequency can be written as:
~ A\ fs
= (k, + (S) g 6
fO < P N ( )

where k;, is the index of the maximum amplitude, f; / N is
discrete frequency interval. In the noiseless case, the DFT
of the complex sinusoidal signal y () can be expressed as
follows:

N—1 . 4
— @rfon/fs+60) ,—j2m [N)nk
YK=Y A e
k=01,....N=1) (7
Carrying out the necessary manipulations [19], we obtain:

_ 6 jm Y=L (5—m) sin [ (8§ —m)]
¥l 4] = dnete o T

®

where m is a real number. When m = 0, we can get Y [kp]:
o N—1s sin[mwd]

Y [k,] = Age/Pe™ W o

(%] 0 sin[78 /N]

for m = %1, the two neighbors of the maximum DFT spectral
line Y [k, ] are as follows:

®

sin[z (1 —§)]
sin [ (1 —8)/N]|

sin [ (1 4 8)]
sin[n (1 +8)/N]

Besides the index of the maximum magnitude, the frequency
estimation of the complex sinusoidal signal needs the assis-
tance of ¥ [k, + 1] and Y [k, — 1] on the left and right sides
of the maximum spectral line. Then the frequency deviation
8 of the fractional part can be accurately estimated. The
first coarse estimation of the two-step method is to obtain
the magnitude spectrum through DFT, and select the index
value k), as the coarse estimation. In the second step, the fine
estimation uses the estimation algorithm of § to estimate the
fine part of the frequency.

Many scholars proposed using quadratic function to inter-
polate the spectral lines next to the highest amplitude value
to achieve a fine estimation. In 1998, Macleod [12] proposed
a frequency estimator using the peak value of DFT and its
adjacent spectral lines. The algorithm removes the prediction
of the positive and negative polarity of § by cross-multiplying
between the spectral lines.

_ Re{Y[lp—1]Y*[k] =Y o+ 1] Y* [k]}
R 2|V [B] 4+ k=111 [ ]+Y [+ 1]V k)]
(12)

Y [ky + 1] = Agelei ' 6= (10)

Y [k, — 1] = Agefoel™ T G+D

(1D

- (ViEsy)
o —=
4y
This algorithm will not bring greater deviation due to the
polarity estimation inaccuracy around § = 0.
In 2007, Jacobsen and Kootsookos [13] used the complex

values of the three spectral lines instead of the amplitude
to correct the frequency estimate, resulting in an estimate

13)

VOLUME 8, 2020

formula for the frequency deviation. In 2011, Candan [14]
carried out detailed derivation and coefficient correction of
Jacobsen’s formula. The correction item makes the frequency
estimation deviation of Candan’s method much more accu-
racy than that of Jacobsen’s method. The frequency estimate
8 can be expressed as:

Y [ky = 1]=Y [ky + 1]
{ZY [kp] — Y [k — 1]V [kp + 1] (1

tanz /N

5=
n/N

Since Candan’s algorithm reduces the bias of frequency esti-
mation, the RMSE performance of the frequency estimator
has been significantly improved at high SNR.

It can be seen that the previous methods use the real part
of spectral line interpolation to estimate §. These methods
are mainly used to reduce bias, and focus on a high signal-
to-noise ratio environment. Aiming at the frequency esti-
mation at low signal-to-noise ratio environment, in 2011,
Yang and Wei [15] used the least squares approximation
method to estimate the sinusoidal signal power spectrum in
the frequency domain. The RCTSL algorithm was proposed.
N (4 () A
(¥ L+ 107+ Y = 10P) v )

where u and v are constant coefficients, which only related to
the signal length. Their optimal weight coefficients are also
given:

64N

A 16
T 5t (16)

_ ur? (17)
L

By means of zero padding, RCTSL can effectively improve
the frequency estimation accuracy under low signal-to-noise
ratio compared to the other methods.

Compared with the traditional FFT frequency estimation,
the above methods use spectral line interpolation to estimate
§ after locating the index with the maximum magnitude in
frequency domain. Thereby these methods improve the accu-
racy of frequency estimation. However, these studies only
analyzed the frequency estimation performance at high SNR.
The performance at low SNR, especially when applied to
GNSS tracking loops, has not been thoroughly analyzed. This
article applies these methods to the frequency-locked loop in
GNSS weak signal tracking, expecting for a higher tracking
sensitivity.

lIl. PERFORMANCE ANALYSIS

Since the exact relationship between the frequency offset
and the DFT coefficient interpolation is nonlinear, most of
these direct interpolation approaches cause estimation bias
inevitably [20] Moreover, in practice, signals are always
mixed with noise, causing the results to fluctuate in a certain
range. In this case, the RMSE has two components [21]:

RMSE = v/ 02 + bias® (18)
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o2 results from additive white noise and the bias is caused

by the linearization of the interpolation. The performance of
frequency estimator is mainly determined by noise at low
SNR, whereas the performance is mainly restricted by the
bias at high SNR. When the signal’s phase is unknown,
the Cramer Rao lower bound (CRLB) [22] of the frequency
estimates can be derived from the maximum likelihood (ML)
estimation method:

2 _ of;
of = 2 2
(2m)*N (N2 — 1) SNR

(19)

where N is the number of signal samples f; is the sampling
frequency and SNR is the signal-to-noise ratio. The accuracy
of frequency estimation will be enhanced by larger observa-
tion window size or higher SNR. Although CRLB is derived
from the ML estimator that is unbiased, oy is still a refer-
ence for the RMSE performance of the frequency estimator
whether or not it is biased.

Since our goal is improving the tracking sensitivity of
the GNSS receiver, the following experiments focus on the
performance of three frequency estimators from —10 dB to
30 dB. In this section, we compare the bias of three different
frequency estimators without noise, RMSE performance with
respect to different delta and RMSE performance with respect
to SNR. The same simulation parameters in the following
simulation experiments are: f; = 1KHz, fy = (N / 4+ 8) *
I / M, N is the number of samples and M is M-point DFT.
For example, N = 8, then the true frequency in Candan and
Macleod methods is 187.5Hz < fo< 312.5Hz

A. BIAS OF DIFFERENT ESTIMATORS IN THE

ABSENCE OF NOISE

First, we compare the bias of three frequency estimators.
We set the noise to zero and 0 <5< 0.5. In Candan and
Macleod’s methods, N and M equal 8. However, RCTSL
needs16-point FFT after zero-padding. The simulation results
are shown in Fig. 4:

Bias of Estimated Frequency (N=8)
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FIGURE 4. Noiseless bias performance comparison (N = 8).
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Frequency estimation is a nonlinear estimation problem.
Therefore, it can be seen from Fig. 4 that the mentioned fre-
quency estimators are all biased. The frequency bias values of
Macleod and Candan estimators are monotonically increas-
ing as § increases. As the true frequency near the center of
two adjacent frequency bins, the bias becomes larger. The
minimum bias value of RCTSL is obtained at § = 0.47. The
frequency bias of RCTSL tends to be stable between the adja-
cent spectral lines. When 0 < § < 0.16, Candan estimator is
the least biased estimator. When 0.16 <é< 0.5 RCTSL esti-
mator is the least biased estimator. The poorest bias belongs
to the Macleod estimator. It’s worth pointing out that RCTSL
estimator represents half physical frequency versus two other
estimators with the same value of §. This is due to zero-
padding in RCTSL.

The bias of Macleod estimator, Candan estimator and
RCTSL estimator versus § are shown in Fig. 5 for N = 16.
Other parameters remain unchanged. Comparing Fig. 4 and
Fig. 5, the frequency bias of the three estimators gets smaller
as N increases. Macleod estimator has the poorest bias of the
three. The frequency bias of RCTSL is still non-monotonic.
The minimum bias value of RCTSL appears at § = 0.21.

Bias of Estimated Frequency (N=16)
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FIGURE 5. Noiseless bias performance comparison (N = 16).

B. RMSE PERFORMANCE OF DIFFERENT ESTIMATORS
WITH RESPECT TO DIFFERERNT DELTA

In this experiment Gaussian white noise is added to the signal
while § varies from —0.5 to 0.5. We compare the frequency
RMSE of these three estimators for N = 8 and SNR = 5dB.
Each experiment is repeated 1000,000 times and RMSE is
calculated.

From Fig. 6, we can see that the RMSE curve of Candan
and Macleod estimators follows the same trend with respect
to different §. At small §, RMSE performance of Candan and
Macleod are better than each performance at large 6. The two
estimators have the poorest frequency RMSE as § is close to
0.5. Different from noiseless condition, the RMSE of Candan
estimator is worse than Macleod estimator for SNR = 5dB.
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RMSE of Estimate Frequency (N=8, SNR=5dB)
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FIGURE 6. RMSE performance comparison with respect to different §
(N = 8, SNR = 5dB).

RMSE of Estimate Frequency (N=16, SNR=5dB)
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FIGURE 7. RMSE performance comparison with respect to different §
(N = 16, SNR = 5dB).

This is associated with deficient noise resistant of Candan
estimator in noisy cases. The RMSE of RCTSL estimator is
almost independent of § and is closer to the CRLB than the
other estimators are.

The frequency RMSE of Macleod estimator, Candan esti-
mator and RCTSL estimator versus § are shown in Fig. 7 for
N = 16. Other parameters remain unchanged. It can be
seen that RMSE decreases significantly as the observation
N increases. The RMSE performance of Candan estimator is
the worst of the three. The RMSE performance of RCTSL
estimator is the best. Macleod estimator and Candan esti-
mator have similar performance around § = 0. However,
the performance gap between the two gradually widens as &
increases. The frequency RMSE of Candan estimator is close
to 7 Hz as § approaches 0.5. The RMSE of RCTSL estimator
is very close to the CRLB around § = 0. The frequency
RMSE of RCTSL estimator is about 3.7Hz when § is close
to 0.5. The behavior of RCTSL estimator follows the stable
trend at different 8.
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RMSE of Esimtated Frequency (N=8, §=0.25)
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FIGURE 8. RMSE performance comparison with respect to SNR (N = 8,
§ = 0.25).

C. RMSE PERFORMANCE OF DIFFERENT ESTIMATORS
WITH RESPECT TO SNR

This experiment compares the frequency RMSE of different
estimators with respect to SNR in the range of —10dB to
30dB. The parameter § is fixed to a specific value, which
is § = 0.25.The number of Monte Carlo simulations is
1000,000 times. Meanwhile, we draw the CRLB as an analy-
sis reference of the frequency RMSE performance. We plot
the frequency RMSE curve of these three estimators for
N =8 and N = 16 respectively.

Fig. 8 shows the frequency RMSE of the three estimators
and the CRLB with respect to different SNR for N = 8. The
RMSE floor of Macleod estimator occurs at SNR = 30dB.
Because at high SNR, the estimator bias is the dominated
factor of the RMSE. It can be noted from this figure that the
RMSE curve of RCTSL estimator is close to the CRLB when
the SNR varies from 5dB to 30dB. The performance of the
three estimators display a sudden drop at SNR = 5dB. The
high RMSE of the simulated results at low SNR is due to an
incorrect peak selected in the spectrum. From Fig. 8, we can
see that the SNR threshold of the three estimators is 5dB for
N = 8. Meanwhile, the frequency RMSE is about 10Hz.

In Fig. 9, we present a frequency RMSE comparison of the
three estimators for a larger number of observation samples
which is N = 16. The RMSE performance of the three
frequency estimators obviously improves as N increases. The
RMSE curves of all the estimators are close to the CRLB
when the SNR varies from 3 dB to 25dB. The RMSE of
RCTSL estimator is the best. The RMSE of the three estima-
tors drops rapidly and departs from the CRLB curve, when the
SNR is lower than 3 dB. It can be noted from this figure that
the SNR threshold of the three estimators is 2dB for N = 16.
Meanwhile, the frequency RMSE is about 5 Hz.

In the simulation experiments above, the RMSE perfor-
mance of RCTSL estimator is closer to the CRLB than the
competing estimators. At low SNR, RCTSL estimator has the
smallest frequency estimation deviation. Next, we simulate
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RMSE of Esimtated Frequency (N=16, §=0.25)
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FIGURE 9. RMSE performance comparison with respect to SNR (N = 16,
§ = 0.25).

the tracking performance of GNSS weak signal using pro-
posed carrier tracking structure and different frequency esti-
mators. Then we can explore the effect of different frequency
estimators on GNSS signal tracking performance.

IV. NUMERICAL RESULTS

The carrier-tracking loop adopts the frequency-locked loop
structure shown in Fig. 2. The coherent integration time in the
loop is 20ms. The carrier-to-noise ratio varies from 16 dB-Hz
to 40 dB-Hz. In order to eliminate the effect of data bit
inversion, the complex square is carried out after coherent
integration. Moreover, 8 points or 16 points sampled values
are adopted as the inputs of the frequency discriminator
after being complex squared. The frequency discriminator
employs Candan, Macleod, RCTSL estimators. For compari-
son, the common FFT estimator and Differential Power (DP)
frequency discriminator [23] are also tested. In addition,
we test the tracking performance of GNSS signals through
the semi-simulation platform [24].

A. OPEN LOOP TRACKING PERFORMANCE

First, the loop filter in Fig. 2 is removed. We simulate
the open-loop tracking performance. The tracking perfor-
mance mainly depends on the frequency estimator without the
smoothing effect of the loop filter. Fig. 10 and Fig. 11 are the
comparison graphs of tracking jitter performance for N = 8
and N = 16.

As shown in Fig. 10, for N = 8, the tracking threshold of
the FFT estimator is about 30 dB-Hz. The tracking jitter of the
FFT estimator is the biggest. Candan, Macleod and differen-
tial power frequency discriminators have a 28 dB-Hz tracking
thresholds. The tracking jitter of Candan estimator has similar
performance with Macleod estimator. DP discriminator has
the smallest tracking jitter. RCTSL estimator can track the
carrier-to-noise ratio of 26 dB-Hz. It has similar performance
of tracking jitter with DP discriminator. RCTSL estimator
outperforms the other estimators for N = 8. In the simulation,
the coherent time is 20 ms and the noise bandwidth is 100 Hz.
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N =8.
Total Integration Time T = 20 ms*16
H ™7 T T
!‘ ‘ —o—Candan
al i ‘ —=—Macleod
N } ~+-RCTSL
= 1 FFT
Q3¢ ‘ <— Differential Power |
:3 ;i ‘
E i .
= 20 1
5 .
o i
Ear L
0 s ) S P
20 25 30 35 40

CIN, [dB-Hz]

FIGURE 11. Tracking jitter of different frequency discriminators with
N =16.

Thus, 26 dB-Hz in carrier-to-noise ratio is corresponding to
about 6 dB in SNR. This is consistent with the SNR threshold
in Fig. 8.

Fig. 11 is a comparison of tracking jitter for different
frequency discriminators for N = 16. Fig. 11 shows that the
tracking threshold and tracking jitter of all frequency discrim-
inators decrease as N increases. FFT, Candan and Macleod
discriminator have a 26 dB-Hz tracking threshold. The jitter
of FFT discriminator is the biggest. The jitter of Candan
discriminator is close to the jitter of Macleod discriminator.
The tracking threshold of RCTSL and DP discrimination is
about 24 dB-Hz. They have similar tracking jitter. As the
noise bandwidth is 100 Hz, 24 dB-Hz in carrier-to-noise ratio
is corresponding to about 4 dB in SNR. This simulation is
consistent with the SNR threshold in Fig. 9.

B. CLOSED LOOP TRACKING PERFORMANCE

For weak signals, the loop filter can reduce the influence
of noise and improve the output accuracy of the frequency
discriminator. To verify the sensitivity performance of the
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FIGURE 12. Tracking jitter of different frequency discriminators with
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FIGURE 13. Tracking jitter of different frequency discriminators with
N =16.

carrier tracking loop, a loop filter is added to the tracking
structure of Fig. 2. We compare the tracking jitter perfor-
mances of different frequency estimators in the closed loop.
In this simulation, we set the loop filter as the first-order filter.
We use 8 outputs of the square operation. The bandwidth of
the loop filter is 2Hz. Fig. 12 shows the tracking jitters of
different frequency discriminators. From Fig. 12, we can see
that the tracking thresholds of all frequency discriminators
are improved to 22 dB-Hz under the effect of the loop filter.
Nevertheless, different frequency discriminators have differ-
ent frequency deviations. Under 26 dB-Hz, FFT discriminator
is the worst. DP discriminator is the best. Above 26 dB-Hz,
the tracking jitter performances of DP discriminator and
RCTSL discriminator are almost the same.

The simulation parameters of Fig. 13 and Fig. 12 are the
same, except for using 16 outputs of the square operation.
Meanwhile, the bandwidth of the loop filter is set to 1Hz.
It can be noted from this figure that the tracking jitter per-
formances of all discriminators are improved compared to
Fig. 12. The tracking threshold is improved to 20 dB-Hz.

VOLUME 8, 2020

V. CONCLUSION

In order to improve the carrier tracking sensitivity of the
GNSS receiver in a weak signal environment, we introduced
three frequency estimators as the frequency discriminators
into the field of GNSS weak signal tracking. Moreover,
we propose a carrier frequency tracking structure. In this
paper, we compare the bias and RMSE performance of dif-
ferent estimators. Then, we analyze the tracking sensitiv-
ity of the tracking loop under different parameters through
semi-analytical techniques. Experiments show that RCTSL
estimator can track a lower threshold signal of 24 dB-Hz in
carrier-to-noise ratio than other estimators for N = 16. After
adding the loop filter, the improved tracking threshold rise
to 20 dB-Hz. Among all the frequency estimators mentioned
above, RCTSL and DP frequency discrimination have similar
tracking performances and have the highest tracking sensitiv-
ities. The research findings have important implications for
the Doppler estimation of the GNSS signal and the accuracy
of the speed estimation of the receiver.
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