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ABSTRACT As one of key technologies of the fifth-generation (5G) communication system, network
slicing can share the underlying infrastructure with different application requirements and ensure that the
slices can be isolated from each other. This paper proposes an end-to-end (E2E) network slicing resource
allocation algorithm based on Deep Q-Networks (DQN), which is suitable for multi-slice and multi-service
scenarios. This algorithm jointly considers the radio access network slices and core network slices to
dynamically allocate resources to maximize the number of access users. First we build such a model, which
is a mixed integer programming problem and it needs to be dynamically adjusted according to the changes
of environment. We propose to use DQN algorithm to solve this problem, which can perceive changes in the
environment and make dynamic decisions. Under each decision, we need to calculate the reward value of
DQN, so we divide the problem into the core side and the access side. Then the dynamic knapsack algorithm
and the link mapping algorithm are used to obtain the reward. The simulation results show that the average
access rate of DQN scheme is higher than 97%. Compared with the optimal allocation scheme of access side,
the average access rate is increased by 9% for delay constrained slices and 5% for rate constrained slices in
a dynamic environment.

INDEX TERMS 5G network, network slicing, resource allocation, deep Q-networks.

I. INTRODUCTION
The fifth-generation (5G) network will support a large
number of diversified business scenarios from vertical indus-
tries, such as intelligent security, high-definition video,
telemedicine, smart home, autopilot and augmented reality,
which usually have different communication requirements.
For example, the requirements are different in terms of mobil-
ity, billing, security, policy control, delay and reliability [1].
Traditional mobile communication network is mainly used to
serve a single mobile broadband service, which cannot adapt
to the diversified business scenarios of 5G in the future. If a
special physical network is built for each business scenario,
it will inevitably lead to problems such as complex network
operation and maintenance, high cost and poor scalability.
Therefore, in order to support a variety of business scenar-
ios with different performance requirements on one physical
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network, network slicing technology emerges at the right
moment. Through network slicing technology, operators can
divide physical network infrastructure into multiple virtual
networks according to the needs of different users to meet
the diversified business needs of 5G.

Next Generation Mobile Networks (NGMN) defines net-
work slicing as a virtual network with multiple independent
business operations running on a general physical infras-
tructure, and introduces the concept of network slicing into
mobile communication networks for the first time. Different
tenants share the network, computing, and storage resources
by creating isolated virtual networks on the common underly-
ing physical infrastructure. Each network slice is a logically
independent E2E network, which consists of a set of Network
Functions (NF) and corresponding resources to provide E2E
on-demand services for specific business scenarios [2].

Network slicing provides on-demand services with dif-
ferent characteristics and requirements for vertical indus-
tries [3]. Each service usually contains network functions in a
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fixed order, called service function chain (SFC). Each service
function in SFC can only be provided by some given network
nodes. In order to achieve network slicing, the network must
select the network function nodes according to the SFC and
determine the routing strategy of the function nodes in the
specified order. Therefore, some scholars regard network slic-
ing as an SFC and combine the service provision and slicing
construction processes to provide the real-time required by
the business.

On the access side, network slices need to virtualize the
resources to the corresponding slices and users [4]. On the
core side, network slices need to virtualize the network
elements as virtual network function (VNF) to assign to the
corresponding slices [5]. Resource virtualization is a process
to realize the abstraction, slicing, isolation and sharing of
radio resources. This paper proposes an E2E framework for
wireless resource virtualization and allocation. E2E refers to
the entire communication process from the access side to
the core side. The main contributions of this work can be
summarized as follows:

• In this paper, we propose an E2E network slicing
framework for 5G resource allocation. This framework
consist of access network and core network. In the
access network, the infrastructure provider dynamically
allocate wireless resources to slices and BSs. In the core
network, VNFs of SFC automatically matches physical
nodes.

• To meet different service requirements, this paper con-
siders two types of slices: rate constraints and delay
constraints. Under the premise of meeting different
needs, solve the E2E maximum access rate of the entire
system. For different types of slices, design different
algorithms and measurement indicators to solve.

• This paper proposes a DQN algorithm which enables
dynamic and real-time update of wireless resource allo-
cation and mapping of service links based on feedback
from the environment. The feedback in this paper is the
maximum access rate of the system. In order to solve the
feedback, the E2E slice is divided into the access side
and the core side. The dynamic knapsack algorithm and
the link mapping algorithm are used to get the solutions
to obtain the reward.

• Extensive simulations are performed to evaluate the
performance of the algorithm proposed in this paper. The
results show that our proposed DQN resource allocation
strategy performs better in terms of access rate.

The remainder of this paper is organized as follows.
In Section 2, we review related studies. In Section 3, we intro-
duce the E2E system model in this research with some equa-
tions and propose the DQN algorithm. In Section 4, we divide
the problem into two sub-problems to solve. A performance
evaluation of our proposed DQN algorithm is presented in
Section 5. Section 6 concludes this paper.

II. RELATED WORKS
Numerous studies have conducted in-depth research on net-
work slicing. In view of resource allocation, the research of
network slicing is divided into access side network slicing,
core side network slicing and E2E network slicing.

For wireless access network slicing, [6] proposes a scheme
for mobility management. In this scheme both co-layer inter-
ference and cross-layer interference are taken into account
to allocate the power and subchannel. [7] considers the exis-
tence of Enhanced Mobile Broadband (eMBB) and Ultra
Reliable Low Latency Communications (uRLLC) slices in
the radio access network (RAN). Under the constraints of
limited physical resources, the slicing requests is appropri-
ate accepted can maximize the revenue of operators. The
objective function is transformed intomixed integer nonlinear
programming, which is solved by continuous convex approx-
imation and semidefinite relaxation. References [8], [9] use
the queuing model to minimize the transmission power and
total bandwidth of the access network for uRLLC slices.
Reference [10] studied the application of deep reinforcement
learning (DRL) in solving some typical resourcemanagement
in network slicing scenarios, including radio resource slicing
and priority-based core network slicing. In [11], an effi-
cient slicing scheme combining offline reinforcement learn-
ing and heuristic algorithm is proposed to allocate wireless
resources for eMBB and vehicle to X (V2X) slices. DQN
was used for dynamic wireless virtual resource allocation
in [12]–[14]. Reference [12] allocate radio resources by band-
width ratio and each user can occupy the resources of all
base stations(BSs). In [13], the allocation of resource blocks
is refined. Each user can only connect to one BS, and the
bandwidth and time slot of the occupied resource blocks are
calculated according to the needs of users. In [14], DQN
algorithm is improved to dynamic wireless resource alloca-
tion, and the discrete normalized advantage function (DNAF)
was introduced into DQL, so that the DQL algorithm could
converge faster.

References [6]–[14] only consider the performance of the
RAN to allocate wireless resources, but the allocation of
wireless resources will also affect the performance of the
core network slice. Therefore, it is necessary to do some
research on the resource allocation of the core network
in [15]–[18]. The placement of intermediate boxes of service
chain was considered in [15], which is also the premise of
SFC mapping. References [16], [17] focus on the reliabil-
ity of SFC deployment. In [16], a SFC deployment scheme
which maximizes capital and operational expenditure is pro-
posed to ensure reliability. In [17], a reliability-aware and
delay-constrained (READ) routing optimization framework
is established. READ includes a complex mixed integer lin-
ear programming that produces optimal VNF placement and
traffic routing policies to maximize the reliability of network
services and minimize E2E service latency. In [18], the VNF
scheduling and flow control problems are formulated as
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mixed integer linear problems, which minimizes the entire
VNF occupation time / wait time.

Just considering access network or core network resource
allocation cannot achieve the best performance of E2E slic-
ing, so that [19]–[23] research resource allocation from E2E
network slicing. Reference [19] analyzed the application of
E2E slicing in Industry 4.0, and proposed a slicingmethod for
packet-switched industrial communication protocols. In [20],
E2E network slicing modeling is carried out for the key tasks
of high speed and high reliability, and the prototype hardware
implementation is completed. References [21], [22] provide
different E2E deployment strategies for three typical slices:
eMBB slices, MMTC slices, and uRLLC slices. In [21],
complex network theory is used to obtain the topology infor-
mation of slices and infrastructure networks. The mapping
process includes two steps: the placement of VNF and the
selection of link paths. In [22], an E2E slicing two-layer
framework for mobile edge computing (MEC) is proposed,
in which the core network and transmission network are
considered upwards, and the wireless access network is con-
sidered downwards. The framework converts tenant require-
ments into resource requirements. Reference [23] proposed
an E2E network slicing framework that considers QoS, and
proposed a dynamic wireless resource fragmentation scheme
for the wireless field to maximize network utility. For the
wired network field, when multiple traffic flows through
network function virtualization (NFV) nodes. The BR-GPS
dual resource slicing scheme is proposed to minimize the
packet queuing delay of each flow on the node’s outbound
link. But the impact between wired and wireless networks is
not considered.

Above literatures are all about the resource allocation in
the network slice. However, most of these studies are based
on the access network resource allocation or the service
link mapping of the core network. The impact of core-side
link mapping is not taken into account in wireless resource
allocation. In this paper, DQN intelligent coordination slice
resources are adopted to improve the E2E access success rate
of system users.

III. SYSTEM MODEL
A. E2E MODEL
The E2E slicing model is shown in Fig. 1. The model consists
of two parts, the access side and the core side. The access side
mainly selects the BS for users, and the core side maps the
user service chain. The ellipse represents a cell with multiple
BSs in Fig. 1. There are three types of slices in the figure.
Different types of devices will be connected to different types
of slices. Different slice resources are represented by different
stripes. Each type of slice has specific SFC that needs to
be executed. The link from the user to the core network
constitutes an E2E communication link.

In this paper, All the BSs is denoted by N =

{1, 2, . . . ., |N |}. The transmission power of the user is
denoted by P. The slices is denoted by M= {1, 2, . . . ., |M |}.

FIGURE 1. E2E network slicing model.

U = {1, 2, . . . . |U |} be a set of all users. A set of users under
slice m are denoted by Um, and a specific user under slice m
is denoted by um. The resources allocated to the slice m is
denoted by Am. Am,n represents the resources allocated to the
BS n by the slice m. We should allocate wireless resources to
slices and BSs from the perspective of E2E slicing.

From the networkmodel in Fig. 1, it is known that when the
user determines which BS to access, the initial VMof the core
network link is determined. Each VM carries specific VNFs.
For each slice, it needs to implement specific network func-
tions, and the VNF functions it requires are determined and
arranged in a certain order. This kind of VNF link arranged
in a particular order is called SFC. As shown in Fig. 1, The
SFCs of the three slices are:

Slice 1: VNF1− VNF2− VNF3

Slice 2: VNF1− VNF4− VNF2

Slice 2: VNF1− VNF3− VNF4

B. PROBLEM STATEMENT
The access network of thismodel considers the uplink cellular
network. We assumes that the network has a perfect synchro-
nization system and channel estimation. The system radio
resource is represented as bandwidth B, which is divided
into L in the frequency domain, each of which has band-
width Bl . In the time domain, the radio resource is divided
into scheduling frames, each consists of T subframes. The
length of subframe is 1t . Therefore, the length of a schedul-
ing frame is1t×T . Hence, the smallest resource block (RB)
is denoted asRBtl .We assume that each user only accesses one
BS, and each user belongs to one type of slice. This paper
considers rate-constrained and delay-constrained two types
of slices. For rate-constrained slices, the minimum data rate
of user um is denoted by vmin

um . For delay-constrained slices,
the maximum latency of user um is denoted by τmax

um .
Assume that user um occupies one RB of BS n, hum,n

represents the channel gain, and the path loss model refers
to reference [24]. The data rate that a user occupy an RB is
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expressed as follows:

RBum,n = RBtl log2

(
1+

P
∣∣hum,n∣∣2
σBl

)
(1)

where σ represents the spectral density of noise. The user
has a priority order to select the BS, which obtain a large
RBum,n value is preferentially selected. For rate-constrained
users, the number of RBs for um of the BS n calculates as
follow:

Nv =

⌈
vmin
um

RBum,n

⌉
(2)

vum = Nv · RBum,n (3)

The vum represents the data rate of um when we have Nv
number of RBs. For delay-constrained users, the traffics is
regarded as a queuing model. Assume that the packet arriving
rate of the user is λu and the length of the packet is Lu bits.
When the number of RB is Nt , we calculate the average delay
by referring the [11] as follows:

τum =
1

RBum,n·Nt
Lu

− λu
=

Lu
RBum,n · Nt-λu · Lu

(4)

To meet the delay τmax
um , The minimum number of RB can be

calculated as follows:

Nt =

⌈
Lu+λu · Lu · τmax

um

τmax
um · RBum,n

⌉
(5)

The higher RBum,n value of the user um access BS n,
the higher priority of the user to choose the BS. During
initialization, it is assumed that the user chooses the BS
with the highest priority. The number of RB required by
the user is Nnum. For rate-constrained slices, Nnum = Nv.
For delay-constrained slices, Nnum = Nt . The resources
allocated to the slice m can be expressed as:

Am = L · T ·

∑
n∈N

∑
um∈Um Nnum∑

m∈M
∑

n∈N
∑

um∈Um Nnum
, ∀ m (6)

During initialization, the resource allocation only considers
the influence of the access side. The resources allocated to
the BS n by the slice m are calculated as follows:

Am,n = Am ·

∑
um∈Um Nnum∑

n∈N
∑

um∈Um Nnum
, ∀ m, n. (7)

We use the binary variable xu,n to indicate whether the
user u accesses the BS n, the access is 1, otherwise it is 0,
which means as follows:

xu,n =

{
1 user u access BS n
0 otherwise

After the initial wireless resource allocation is completed,
the results will be used to achieve E2E resource allocation.
On the wireless access side, the user selects a BS. On the core
side, the user needs to achieve service chain mapping. Only
the E2E link is mapped, the user successfully access.

On the core side, each network slice is composed of virtual
machine (VM) with different VNFs, and users on the same
slice need to implement the same SFC. Assume that the
topology diagram of the VM in each slice is known, and the
type and number of VNF in each VM are also known. When
a user’s SFC request comes, it is necessary to find a VM host
for every VNF in the SFC, the premise of which is to meet
the capacity requirements of virtual nodes and the bandwidth
requirements of virtual links. As shown in Fig. 2, different
colored cylinders represent different types of VNF. The SFC
request is VNF4 → VNF1 → VNF3 → VNF2. For each
user in the slice we should find the VM to place the SFC.

FIGURE 2. Core side service chain mapping system model.

The network topology graph composed of slice m can be
represented by an undirected graph G = (V ,E), where
V represents the set of virtual machine nodes in the slice, and
E represents the set of connection bandwidth between links.
SFC is represented by a directed graph, which connects VNF
in a certain order. We need to find VM nodes and links in
the network for each SFC to map. For a better description,
the core side variables are summarized in Table 1.

TABLE 1. Definition of symbols.
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The BSwhich the user access determines that the VMposi-
tion mapped by f1. In this paper, the initial function f1 of each
SFC maps on hn,m.

when j =
N∑
n=1

xu,nhn,m = f1, yp1,j = 1

In this paper, the bandwidth requirement of slices cor-
respond to the number of RBs needed on the access side.
Therefore, the value of qb is equal to Nnum. qt represents
the delay demand of the user. The rate constrainted slice has
no rigid requirement for delay so that qt is set to a large
positive integer. The delay constraint slice is set according
to the actual demand.

C. E2E OPTIMIZATION
After introduction of the E2E slicing problem, it is necessary
to match the users’ E2E link by using the initially allocated
wireless resources. We should determine which BS the user
access and which link the core side maps to maximize the
access rate of the entire system. Then adjust the resource
allocation according to the access rate calculated and calcu-
late the maximum access rate at this time, and iterate until
the resource allocation can get maximum E2E access rate.
We formulate this problem as follow:

P1 :

max

M∑
m=1

Um∑
u=1

N∑
n=1

xu,n · zum,p

M∑
m=1

Um

(8)

s.t.
N∑
n=1

xu,n ≤ 1, ∀u ∈ U (8a)

xu,n ·
(
1− xu,n

)
= 0, ∀u ∈ U ,∀n ∈ N (8b)

Um∑
u=1

xu,nNnum ≤ Am,n, ∀n ∈ N ,∀m ∈ M (8c)

τum ≤ τ
max
um , ∀u ∈ U (8d)

vum ≥ v
min
um , ∀u ∈ U (8e)

Jm∑
j=1

ypi,j = 1, ∀p ∈ Pm,∀i ∈ F (8f)

Pm∑
p=1

I∑
i=2

ypi,j · fi ≤ c
m
j,k , ∀j ∈ V

m (8g)

Pm∑
p=1

lpj1,j2qb ≤ e
m
j1,j2 , ∀j1, j2 ∈ V

m, j1 6= j2 (8h)

Jm∑
j1=1

Jm∑
j2=1

lpj1,j2d
m
j1,j2 ≤ qt , ∀j1, j2 ∈ V

m, j1 6= j2 (8i)

Jm∑
j1=1

lj,j1−
Jm∑
j2=1

lj2,j =


1, i = 1, ypi,j = 1

0, i = 2 . . . I − 1, ypi,j = 1

−1, i = I , ypi,j = 1
(8j)

zum,p =

{
0, if all lpj1,j2 = 0

1, else
(8k)

When the allocated resources are known. The variables
xu,n, l

p
j1,j2

and ypi,j need to be optimized to get the solutions.
Only user access successfully in access side and core side at
the same time. We can say that the user E2E communication
succeeds. We define the E2E access rate as the number of
users who successfully access simultaneously on the access
side and the core side divided by the total number of users.
(8) is the expression of E2E access rate. (8a) to (8e) are
constraints on the access side. (8a) means that a user can only
access one BS, and (8b) states that xu,n is a binary variable.
(8c) shows that the resources occupied by users cannot exceed
the allocated resources. (8d) and (8e) guarantee the delay and
rate constraint, respectively. (8f) to (8k) are constraints on
the core side. (8f) shows that each node of the SFC can only
be mapped to one VM. (8g) indicates the capacity constraint
of each VM. (8h) indicates the bandwidth constraint of each
link. (8i) shows the delay constraint of the SFC. (8j) guar-
antees conserved node traffic. (8k) illustrates the relationship
between SFC mapping success and link mapping.

IV. ALGORITHM DESIGN
A. AUTOMATIC RESOURCE ALLOCATION FOR E2E SLICING
According to the result of initial allocation of radio resources,
we can calculate the E2Emaximum access rate by solving P1.
In this section, the resources of the slices and BSs need to be
dynamically changed, so as to maximize the access rate of the
E2E slices of the whole system. In this paper, DQN algorithm
is used to adjust the radio resources.

The basic idea of DQN algorithm is the same as that of
Q-learning algorithm, but the difference is that its Q-value is
not calculated by state action pairs, but by a neural network.
DQN can save the information of each interaction with the
environment to an experience pool, and then select data from
the experience pool to update the network parameters. In this
paper, an improved DQN algorithm is adopted, which use
two neural networks. The current neural network is used to
update the network parameters and generate experience pool
data. The other target neural network is used to calculate
the Q-value. The parameters of the target neural network are
copied from the current neural network at regular intervals.
Two neural networks can reduce the correlation between the
two networks and speed up the convergence.

Some important elements in DQN are designed as follows:
States: s = (Rm, Sm). Rm represents the probability of

successful access on the access side of slice m. Sm represents
the ratio of the users who achieve E2E access to the users
access on the access side. Users can access successfully is
affected by two aspects: one is the access side resources are
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sufficient, the other is the core side nodes and link resources
are sufficient. A higher Sm value means that most of the
users can access successfully on the core side, a smaller value
means that the users can’t access because of the core side.

Rm =

N∑
n=1

Um∑
um=1

xu,n

Um
, ∀m (9)

Sm =

N∑
n=1

Um∑
um=1

xu,n · zum,p

N∑
n=1

Um∑
um=1

xu,n

, ∀m (10)

Action: The action are a set of discrete percentages
a = [−10%, −8%, −6%, −4%, −2%, 0,2%, 4%, 6%, 8%,
10%]. The negative value indicates a decrease in resources,
0 indicates the slice resources keep the same, and the positive
value indicates an increase in resources.

Reward: The reward is defined as the total access rate of
the system.

r =

M∑
m=1

Um∑
u=1

N∑
n=1

xu,n · zum,p

M∑
m=1

Um

(11)

Q-value update: We use the Bellman equation to update
the value. the expression is as follows:

Q (s, a) = r + γmax
a′∈A

(
Q
(
s′, a′

))
(12)

where γ ∈ [01] is a discount factor.
Next state: After selecting the action, the slice resource is

updated to At+1m , and the resource needs to be reassigned to
BS to determine At+1m,n , so that the reward and the Rt+1m , S t+1m
can be calculated by solving P1.

Resource update: After the action is selected, the slice-
level resources are updated as follows:

At+1m = Atm (1+ am) , ∀m (13)

By using (13) to allocate resources to slices, the sum of
resources allocated by all slicesmay be greater or less than the
total resources. Therefore, we use (14) to normalize the slice
allocation resources so that the sum of resources remains the
same. If a new slice occurs, (6) is used to initialize resource
allocation for all slices.

At+1m = At+1m ×
L · T
M∑
m=1

At+1m

, ∀m (14)

After the slice-level resource update is completed, the slice
resources need to be feedback to the BS. The relative access
success rate of users of slice m in BS n is defined as follows:

Sm,n =

Um∑
um=1

xu,n · zum,p

Um∑
um=1

xu,n

, ∀m, n (15)

The wireless resources allocated to BS by slicing is updated
as follows:

At+1m,n = Atm,n +
(
At+1m − Atm

)
·

Sm,n
N∑
n=1

Sm,n

, if am ≥ 0

At+1m,n=A
t
m,n+

(
At+1m −A

t
m
)
·

1− Sm,n
N∑
n=1

(
1− Sm,n

) , else
(16)

At this point, the slice-level and BS-level resource updates
are completed. First, we can use the allocated resources to
bring into P1 and solve the E2E resource allocation and link
mapping. Then we can get the rt and the Rt+1m , S t+1m , S t+1m,n .
Q network structure: In DQN, the neural network is used

instead of the Q table in Q learning. The Q network in this
paper is set as a forward feedback neural network. The input
of the network is the state of the slice, and the output is the Q
value of the state action pair. The number of hidden layers and
the number of neurons are obtained through trial and testing.
The initialization parameters of the current neural network
and the target neural network are the same.

DQN process: In our proposed DQN resource allocation
algorithm, training and testing are simultaneously performed.
In the training phase, substitute the initial allocated resources
into the problem P1 and calculate the current state. Then
we use the greedy strategy to explore an action to get a
new resource allocation strategy and substitute the allocation
strategy into the problem P1 again to get the reward at this
time and the next state. And store the current state, the next
state, action and reward into the experience pool. And finally
repeat the above behavior. After a period of time, the data
of the mini-batch is selected from the experience pool for
network training. The test is always running during the train-
ing process. According to the state obtained by the resource
allocation strategy at the previousmoment, the current trained
network is used for action selection to obtain a new resource
allocation strategy. As the network is trained better and better,
the decisions made will be better and better.

Fig. 3 describes the process of DQN dynamic resource
allocation. The model is composed of two parts. The first
part is that the network determines the resource allocation
ratio and adjusts network parameters based on environmental
feedback. The second part is the environment, which adopts
heuristic algorithm to achieve resources E2E match and eval-
uate access rate to feedback to the network. The entire system
has been running to allocate resource in order to adapt the
changes in the environment. The detailed process is shown in
Algorithm 1.

B. SOLUTIONS OF THE SUB-PROBLEMS
In order to solve the DQN resource allocation scheme,
we must solve the feedback of the environment when
the resources are adjusted. This feedback is the reward
value of DQN. After the DQN network action is executed,
the new resource allocation ratio can be obtained and sub-
stituted into P1 to solve the environmental feedback. P1 is a
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FIGURE 3. DQN dynamic resource allocation model.

0-1 program problem, and there are multiple variables. This
problem is difficult to solve. In this paper, we split P1 into
two sub-problems on the access side and the core side. First
solve the maximum access rate of the sub-problem on the
access side, then substitute the result into the core side to
solve the maximum access rate on the core side. Let the
two sub-problems get the maximum access rate to ensure
maximum E2E access rate.

1) ACCESS SIDE SUB-PROBLEM
On the access side, when the wireless resource of the slice is
determined, the slices are isolated from each other. Therefore,
the objective functions and constraints on the access side can
be decoupled to each slice. For each type of slice, the target on
the access side is the maximum number of access users. The
access side sub-problem of rate constrainted slice P2 as fol-
lows. The delay constrainted slice change the rate constraint
to the delay constraint.

P2 : max
Um∑
u=1

N∑
n=1

xu,n (17)

s.t.
N∑
n=1

xu,n ≤ 1, ∀u ∈ U (17a)

xu,n ·
(
1− xu,n

)
= 0, ∀u ∈ U ,∀n ∈ N (17b)

Um∑
u=1

xu,nNnum ≤ Am,n, ∀n ∈ N (17c)

vum ≥ v
min
um , ∀u ∈ U (17d)

The above sub-problem is a NP-Hard problem. Suppose
that the BS is a backpack, the user is an item, the weight
of the item is Nnum, and the revenue is the system capacity.

This problem can be converted into a 0-1 multiple backpack
problem. However, users access different BS will change
the number of RB required so that it can not be solved
by knapsack algorithm. Therefore, we propose a dynamic
programming algorithm based on backpack algorithm. The
algorithm idea is shown in Algorithm 2.

The idea of Algorithm 2 is to put all users in a public
candidate pool, and each BS will select users based on the
0-1 backpack algorithm tomaximize the BS capacity. If a user
is selected by multiple BSs, the user selects the BS with the
highest priority. The BSs select users from the public candi-
date pool according to the above method until the users don’t
select by multiple BSs. The complexity of Algorithm 2 is
O (U × L × T ), which means the product of the number of
users and the number of blocks.

2) CORE SIDE SUB-PROBLEM
After the user selects BS on the access side, the core side
needs to realize SFC mapping to complete the users’ E2E
communication. The BS connected by the user determines
the first VM position of the SFC map. Then users need to
complete the matching of the entire SFC starting from the
first node. On the core side, each SFC needs to be mapped
to maximize user capacity so that P1 can be solved. The SFC
mapping of each type of slice is isolated and unaffected. First,
we need to classify all SFCs according to the slice type. Then,
we can get the SFC mapping sub-problem P3 is as follows:

In order to quickly solve the above problem and obtain
a better solution, the heuristic algorithm is designed as
algorithm 3.

Algorithm 3 adopts different mapping algorithms for two
types of slices on the core side. m = 1 means rate con-
strained slice, and m = 2 means delay constrained slice.
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Algorithm 1 Dynamic Resource Allocation Based on DQN
Input: BS and users information, user RB requirements,

Total bandwidth, core-side topology
Output: Slice resource allocation strategy Am,Am,n, E2E

link mapping strategy xu,n, y
p
i,j, l

p
j1,j2

1: Initialize experience pool E_D, mini-batch M_D, current
Q_e network and the target Q_t network, the discount
factor γ and epsilon ε

2: Calculate the initial slice resource A_m by (6), calculate
BS level resource Am,n by (7), solve P1 to get the E2E
mapping result, use (9), (10) to get the DQN initial state
s1 = (Rm, Sm)

3: while true do
4: Generate a random number rand()
5: if rand()<ε then
6: Random generating action
7: else
8: Select the action that has maximum Q-value by

current Q_e network
9: end if
10: Update the next time At+1m by (13), (14), update At+1m,n

by (15), (16), solve P1 to get the E2E mapping result,
calculate (9), (10), (11) to get Rt+1m , S t+1m , r t

11: Store
(
Rm, Sm, at , r t , Rt+1m , S t+1m

)
in experience

pool
12: if activated by timer then
13: Pick M_D of samples from the experience pool
14: for all samples do
15: Input Rm, Sm, at into Q_e to calculate current

Q-value
16: Input Rt+1m , S t+1m into Q_t, calculate target

Q-value by (12)
17: Update the current Q_e network parameters with

the minimum mean square error of the current
Q-value and the target Q-value

18: end for
19: end if
20: Copy Q_e network parameters to Q_t at certain inter-

vals
21: end while

First, the SFCs of the same slice are prioritized. The SFC
mapping is performed point by point. Each candidate node
is evaluated and the node with the highest evaluation score is
selected to be mapped in turn. We can say that the SFC maps
success until the all NFVmaps success and the bandwidth and
delay constraints are meet. The complexity of Algorithm 3 is
proportional to the size of the network, the number of SFCs
and the length of SFC. For the bandwidth constrained evalua-
tion function, we should consider the path is short, the average
remaining bandwidth is large, and the remaining resources
of the node are enough. For the delay constrained evaluation
function, we should conside the link delay is short and the
remaining resources of the node are enough. In this way,

Algorithm 2 Access Side Dynamic Programming Algorithm
Input: User information, BS level resource allocation Am,n,

and the number of resource blocks Nnum required by the
user

Output: user selects BS policy xu,n
1: Initializes a public set of candidate users Ūm =

{1, 2, . . . . |Um|} for all BSs
2: Initializes a preemptive set of users Ũm,n = ∅n ∈ N for

each BS
3: while true do
4: for all BSs n ∈ N do
5: The 0-1 knapsack algorithm is used to select the

access users of BS n from Ūm, denoted as Ũm,n
6: end for
7: if the user is not selected by multiple BSs, ∩

n∈N
Ũm,n =

∅ then
8: Output xu,n
9: else
10: Calculate the Nnum of the user in different BS
11: Adds the user to Ũm,n of BS with the minimum

Nnum and remove it from other BSs
12: Remove the selected users from Ūm
13: end if
14: end while

the node resources can be balanced, which facilitates the
access of the subsequent links. Therefore, we can access more
users.

P3 :

max
Um∑
u=1

N∑
n=1

xu,n · zum,p (18)

s.t.
Jm∑
j=1

ypi,j = 1, ∀p ∈ Pm,∀i ∈ F (18a)

Pm∑
p=1

I∑
i=2

ypi,j · fi ≤ c
m
j,k , ∀j ∈ V

m (18b)

Pm∑
p=1

lpj1,j2qb ≤ e
m
j1,j2 , ∀j1, j2 ∈ V

m, j1 6= j2 (18c)

Jm∑
j1=1

Jm∑
j2=1

lpj1,j2d
m
j1,j2 ≤ qt , ∀j1, j2 ∈ V

m, j1 6= j2

(18d)

Jm∑
j1=1

lj,j1−
Jm∑
j2=1

lj2,j =


1, i = 1, ypi,j = 1
0, i = 2 . . . I−1, ypi,j=1
−1, i = I , ypi,j = 1

(18e)

zum,p =
{
0, if all lpj1,j2 = 0
1, else

(18f)
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Algorithm 3 Core Side SFC Mapping Algorithm
Input: SFC request Pm, network topology information Vm,

cmj,k , e
m
j1,j2

, dmj1,j2
Output: SFC mapping results ypi,j, l

p
j1,j2

, zum,p, Map success-
ful users Snum

1: for two types of slices do
2: Sort the SFC request to get new Pm

3: for SFCs p ∈ Pm do
4: Remove the edges in the network topology that do

not meet the qb to get a new network topology,
define variable vmst=f1

5: Find the candidate VM node set V ′ start from vmst
6: if candidate node set V ′ = φ then
7: SFC mapping failed, goto step 3
8: end if
9: if m = 1 then
10: Calculate the shortest hops hopi to all candidate

nodes vi′ ∈ V ′ using Dijkstra’s algorithm, cal-
culate the remaining average bandwidth of the
shortest hops Bi,calculate the number of remain-
ing functions of candidate nodes reci

11: Evaluate vi′ ∈ V ′ nodes
w(vi′) = 1

hopi
·

Bi
maxj∈V ′ (Bj)

·
reci

maxj∈V ′ (recj)
12: else
13: Calculate the shortest delay delayi to all candidate

nodes vi′ ∈ V ′ using Dijkstra algorithm,calculate
the number of remaining functions of candidate
nodes reci

14: Evaluate vi′ ∈ V ′ nodes
w(vi′) = (1− delayi

maxj∈V ′ (delayj)
)( reci

maxj∈V ′ (recj)
)

15: end if
16: Select VM node with large w(vi′) to place function

which denoted as vmnt . And Let l
p
st,nt = 1, vmst = vmnt

17: if SFC mapping ends and delay qt requirement is
met then

18: Update network information, zum,p = 1 and
Snum = Snum+ 1

19: else
20: Goto step 11
21: end if
22: end for
23: end for

V. SIMULATION AND RESULT ANALYSIS
In order to evaluate the performance of the scheme in this
paper, we use MATLAB and apply framework design algo-
rithms such as Tenseflow and Keras to build the simulation
model of the proposed algorithm. The simulation parameters
are given based on 5G network standard. Considers that rate
constrained and delay constrained users are uniform dis-
tributed in a cell with a radius of 500m. The cell has 1 macro
BS and 4 micro BSs. Each slice needs to meet the minimum
QoS requirements such as rate or delay constraints. Our pro-
posed DQN resource allocation algorithm is always learning

the changes of the environment and making corresponding
resource allocation adjustments in the real environment. But
in order to observe whether our trained network can make
good decisions according to changes in the environment,
we observe 300 slicing periods in each simulation, and one
slicing cycle is 5 ms. This algorithm is also applicable to
multi-cell scenario. The resource allocation process is the
same as a single cell. The simulation parameters are shown
in Table 2.

TABLE 2. Simulation parameters configuration.

In this paper, we have proposed a DQN resource allocation
scheme.We compare our proposed schemewith the other two
schemes, the optimal access side resource allocation (ASO)
and the resource allocation based on the BS coverage (BSC).
The ASO scheme indicates that each user chooses the closest
BS to allocate resources on the access side. The BSC scheme
indicates that each BS allocates resources according to the
coverage area of the BS. We will observe the E2E access rate
over time in the three schemes.

Fig. 4 shows the different E2E access rates of the three
schemes in the static environment which users are stationary.
The E2E access success rate of the proposed DQN scheme is
over 98% in the static. The E2E access rate of the ASO and
BSC schemes is not higher than 94%. ASO scheme is slightly
higher than the BSC scheme. The distribution of users may
not be distributed according to the coverage size of the BS in
the static environment. The performance of the DQN scheme
is better than the other schemes. In Fig. 4, we can find that the
DQN scheme can still automatically adjust the resources until
reaching the best solution in the static environment. But other
schemes can’t achieve dynamically adjust so that the access
rate won’t change. The most important thing is that the DQN
designed in this paper can directly make use of the access
side and the core side situation to automatically adjust the
allocation of resources at the next moment. In other words,
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FIGURE 4. Static environment access rate changes with time.

DQN allocates resources from an E2E perspective which is
different from the other two schemes. It only considers the
access side.

We have confirmed that the DQN scheme has certain
advantages for static resource adjustment. However, users
and devices are dynamically mobile in the real environ-
ment. In order to study the feasibility of DQN scheme in a
mobile scenario. Fig. 5 depicts that users move randomly in
the cell. The moving speed is less than the maximum rate
we define. The maximum rates we studied were vmax =

30 m/min, vmax = 60 m/min and vmax = 90 m/min
respectively. We also compare DQN scheme with ASO and
BSC schemes.

When the vmax = 30 m/min or vmax = 60 m/min,
the E2E access rate of user is higher than 95%. Compared
with other schemes the DQN schemes is increased by at
least 4%. When the vmax = 60 m/min, the access rate of the
three schemes has declined, but the DQN scheme is still better
than other schemes. With the speed increases, we can find
that the fluctuation of the access rate of the DQN scheme is
smaller than that of the other two schemes. Because the DQN
scheme comprehensively considers the whole E2E resources
for dynamic adjustment. The ASO scheme fluctuates greatly
with the change of the dynamic environment, because it does
not consider the influence of the core side and simply satisfies
the maximum access of the access side.

In order to compare the advantages of the proposed scheme
more clearly, Fig. 6 compares rate constrained slices and
delay constrained slices when users’ maximum movement
speed is less than 60.We evaluate the performance of 300 slic-
ing cycles in the dynamic environment. Compare the average
values of Rm, Sm and E2E success rate of three schemes.

Fig. 6 show the schemes of ASO and BSC can ensure a
large access rate on the access side. But the average value
of Sm is much lower than that of the DQN scheme, this means
users can’t access on the core side without take into account
the influence of E2E. We can find that the average access rate
of DQN scheme is higher than 97% for all slices. Compared

FIGURE 5. Dynamic environment access rate changes with time.

with ASO scheme, the average access rate is increased by 9%
for delay constrained slices and 5% for rate constrained slices.
The performance of the DQN scheme on the access side is
not as good as that of the other two schemes, but users have a
high probability of success on the core side. From Fig. 6, it is
shown that the DQN dynamic resource allocation scheme can
significantly improve the capacity of E2E system.
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FIGURE 6. Comparison access rates for the two slices.

VI. CONCLUSION
In this paper, we proposed the DQN based autonomous
resources allocation framework for the next generation
mobile networks. The proposed scheme take into account the
influence of E2E to ensure the maximum access rate of the
whole system. In this system, we consider rate constrained
slices and delay constrained slices. Different slices have
different constraints and resource requirements. Reasonable
resource allocation and dynamic adjustment between slices
make the system access more users. DQN was used by
the slices to adjust resources. The reward of DQN is the
E2E access rate, which was solved by break the P1 into
two sub-problem. Different algorithms are designed to solve
sub-problem so that we can get the reward of DQN and
autonomously adjust resource. The simulation results show
that DQN can dynamically change the resource allocation
according to the system access rate in static or dynamic
environment. The system access rate can be higher than 98%
in static environment which is the best compared with ASO
and BSC schemes. When users moves below 60 m/min,
the average access rate of DQN scheme is higher than 97%.
Compared with ASO schemes, the average access rate is
increased by 9% for delay constrained slices and 5% for rate
constrained slices.
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